mirror of
https://github.com/VectorCamp/vectorscan.git
synced 2025-06-28 16:41:01 +03:00
815 lines
19 KiB
C
815 lines
19 KiB
C
/*
|
|
* Copyright (c) 2015-2020, Intel Corporation
|
|
* Copyright (c) 2020-2023, VectorCamp PC
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** \file
|
|
* \brief SIMD types and primitive operations.
|
|
*/
|
|
|
|
#ifndef ARCH_COMMON_SIMD_UTILS_H
|
|
#define ARCH_COMMON_SIMD_UTILS_H
|
|
|
|
#include "ue2common.h"
|
|
#include "util/simd_types.h"
|
|
#include "util/unaligned.h"
|
|
#include "util/intrinsics.h"
|
|
|
|
#include <string.h> // for memcpy
|
|
|
|
#if !defined(HAVE_SIMD_128_BITS) && !defined(VS_SIMDE_BACKEND)
|
|
#error "You need at least a 128-bit capable SIMD engine!"
|
|
#endif // HAVE_SIMD_128_BITS
|
|
|
|
#ifdef DEBUG
|
|
static inline void print_m128_16x8(const char *label, m128 vec) {
|
|
uint8_t ALIGN_ATTR(16) data[16];
|
|
store128(data, vec);
|
|
DEBUG_PRINTF("%12s: ", label);
|
|
for(int i=15; i >=0; i--)
|
|
printf("%02x ", data[i]);
|
|
printf("\n");
|
|
}
|
|
|
|
static inline void print_m128_8x16(const char *label, m128 vec) {
|
|
uint16_t ALIGN_ATTR(16) data[8];
|
|
store128(data, vec);
|
|
DEBUG_PRINTF("%12s: ", label);
|
|
for(int i=7; i >= 0; i--)
|
|
printf("%04x ", data[i]);
|
|
printf("\n");
|
|
}
|
|
|
|
static inline void print_m128_4x32(const char *label, m128 vec) {
|
|
uint32_t ALIGN_ATTR(16) data[4];
|
|
store128(data, vec);
|
|
DEBUG_PRINTF("%12s: ", label);
|
|
for(int i=3; i >= 0; i--)
|
|
printf("%08x ", data[i]);
|
|
printf("\n");
|
|
}
|
|
|
|
static inline void print_m128_2x64(const char *label, m128 vec) {
|
|
uint64_t ALIGN_ATTR(16) data[2];
|
|
store128(data, vec);
|
|
DEBUG_PRINTF("%12s: ", label);
|
|
for(int i=1; i >= 0; i--)
|
|
printf("%016lx ", data[i]);
|
|
printf("\n");
|
|
}
|
|
#else
|
|
#define print_m128_16x8(label, vec) ;
|
|
#define print_m128_8x16(label, vec) ;
|
|
#define print_m128_4x32(label, vec) ;
|
|
#define print_m128_2x64(label, vec) ;
|
|
#endif
|
|
|
|
#if !defined(ARCH_IA32) && !defined(ARCH_X86_64) && !defined(VS_SIMDE_BACKEND)
|
|
#define ZEROES_8 0, 0, 0, 0, 0, 0, 0, 0
|
|
#define ZEROES_31 ZEROES_8, ZEROES_8, ZEROES_8, 0, 0, 0, 0, 0, 0, 0
|
|
#define ZEROES_32 ZEROES_8, ZEROES_8, ZEROES_8, ZEROES_8
|
|
|
|
/** \brief LUT for the mask1bit functions. */
|
|
ALIGN_CL_DIRECTIVE static const u8 simd_onebit_masks[] = {
|
|
ZEROES_32, ZEROES_32,
|
|
ZEROES_31, 0x01, ZEROES_32,
|
|
ZEROES_31, 0x02, ZEROES_32,
|
|
ZEROES_31, 0x04, ZEROES_32,
|
|
ZEROES_31, 0x08, ZEROES_32,
|
|
ZEROES_31, 0x10, ZEROES_32,
|
|
ZEROES_31, 0x20, ZEROES_32,
|
|
ZEROES_31, 0x40, ZEROES_32,
|
|
ZEROES_31, 0x80, ZEROES_32,
|
|
ZEROES_32, ZEROES_32,
|
|
};
|
|
#endif // !defined(ARCH_IA32) && !defined(ARCH_X86_64)
|
|
|
|
/****
|
|
**** 256-bit Primitives
|
|
****/
|
|
|
|
#if !defined(HAVE_SIMD_256_BITS)
|
|
|
|
static really_really_inline
|
|
m256 lshift64_m256(m256 a, int b) {
|
|
m256 rv = a;
|
|
rv.lo = lshift64_m128(rv.lo, b);
|
|
rv.hi = lshift64_m128(rv.hi, b);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m256 rshift64_m256(m256 a, int b) {
|
|
m256 rv = a;
|
|
rv.lo = rshift64_m128(rv.lo, b);
|
|
rv.hi = rshift64_m128(rv.hi, b);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m256 eq256(m256 a, m256 b) {
|
|
m256 rv;
|
|
rv.lo = eq128(a.lo, b.lo);
|
|
rv.hi = eq128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
u32 movemask256(m256 a) {
|
|
u32 lo_mask = movemask128(a.lo);
|
|
u32 hi_mask = movemask128(a.hi);
|
|
return lo_mask | (hi_mask << 16);
|
|
}
|
|
|
|
static really_inline m256 set1_4x64(u64a c) {
|
|
m128 a128 = set1_2x64(c);
|
|
m256 rv = {a128, a128};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m256 set1_2x128(m128 a) {
|
|
m256 rv = {a, a};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m256 zeroes256(void) {
|
|
m256 rv = {zeroes128(), zeroes128()};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m256 ones256(void) {
|
|
m256 rv = {ones128(), ones128()};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m256 add256(m256 a, m256 b) {
|
|
m256 rv;
|
|
rv.lo = add128(a.lo, b.lo);
|
|
rv.hi = add128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m256 and256(m256 a, m256 b) {
|
|
m256 rv;
|
|
rv.lo = and128(a.lo, b.lo);
|
|
rv.hi = and128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m256 or256(m256 a, m256 b) {
|
|
m256 rv;
|
|
rv.lo = or128(a.lo, b.lo);
|
|
rv.hi = or128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m256 xor256(m256 a, m256 b) {
|
|
m256 rv;
|
|
rv.lo = xor128(a.lo, b.lo);
|
|
rv.hi = xor128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m256 not256(m256 a) {
|
|
m256 rv;
|
|
rv.lo = not128(a.lo);
|
|
rv.hi = not128(a.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m256 andnot256(m256 a, m256 b) {
|
|
m256 rv;
|
|
rv.lo = andnot128(a.lo, b.lo);
|
|
rv.hi = andnot128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline int diff256(m256 a, m256 b) {
|
|
return diff128(a.lo, b.lo) || diff128(a.hi, b.hi);
|
|
}
|
|
|
|
static really_inline int isnonzero256(m256 a) {
|
|
return isnonzero128(or128(a.lo, a.hi));
|
|
}
|
|
|
|
/**
|
|
* "Rich" version of diff256(). Takes two vectors a and b and returns a 8-bit
|
|
* mask indicating which 32-bit words contain differences.
|
|
*/
|
|
static really_inline
|
|
u32 diffrich256(m256 a, m256 b) {
|
|
return diffrich128(a.lo, b.lo) | (diffrich128(a.hi, b.hi) << 4);
|
|
}
|
|
|
|
/**
|
|
* "Rich" version of diff256(), 64-bit variant. Takes two vectors a and b and
|
|
* returns an 8-bit mask indicating which 64-bit words contain differences.
|
|
*/
|
|
static really_inline u32 diffrich64_256(m256 a, m256 b) {
|
|
u32 d = diffrich256(a, b);
|
|
return (d | (d >> 1)) & 0x55555555;
|
|
}
|
|
|
|
// aligned load
|
|
static really_inline m256 load256(const void *ptr) {
|
|
assert(ISALIGNED_N(ptr, alignof(m256)));
|
|
// cppcheck-suppress cstyleCast
|
|
m256 rv = { load128(ptr), load128((const char *)ptr + 16) };
|
|
return rv;
|
|
}
|
|
|
|
// aligned load of 128-bit value to low and high part of 256-bit value
|
|
static really_inline m256 load2x128(const void *ptr) {
|
|
return set1_2x128(load128(ptr));
|
|
}
|
|
|
|
static really_inline m256 loadu2x128(const void *ptr) {
|
|
return set1_2x128(loadu128(ptr));
|
|
}
|
|
|
|
// aligned store
|
|
static really_inline void store256(void *ptr, m256 a) {
|
|
assert(ISALIGNED_N(ptr, alignof(m256)));
|
|
ptr = vectorscan_assume_aligned(ptr, 16);
|
|
// cppcheck-suppress cstyleCast
|
|
*(m256 *)ptr = a;
|
|
}
|
|
|
|
// unaligned load
|
|
static really_inline m256 loadu256(const void *ptr) {
|
|
// cppcheck-suppress cstyleCast
|
|
m256 rv = { loadu128(ptr), loadu128((const char *)ptr + 16) };
|
|
return rv;
|
|
}
|
|
|
|
// unaligned store
|
|
static really_inline void storeu256(void *ptr, m256 a) {
|
|
storeu128(ptr, a.lo);
|
|
// cppcheck-suppress cstyleCast
|
|
storeu128((char *)ptr + 16, a.hi);
|
|
}
|
|
|
|
// packed unaligned store of first N bytes
|
|
static really_inline
|
|
void storebytes256(void *ptr, m256 a, unsigned int n) {
|
|
assert(n <= sizeof(a));
|
|
memcpy(ptr, &a, n);
|
|
}
|
|
|
|
// packed unaligned load of first N bytes, pad with zero
|
|
static really_inline
|
|
m256 loadbytes256(const void *ptr, unsigned int n) {
|
|
m256 a = zeroes256();
|
|
assert(n <= sizeof(a));
|
|
memcpy(&a, ptr, n);
|
|
return a;
|
|
}
|
|
|
|
static really_inline
|
|
m256 mask1bit256(unsigned int n) {
|
|
assert(n < sizeof(m256) * 8);
|
|
u32 mask_idx = ((n % 8) * 64) + 95;
|
|
mask_idx -= n / 8;
|
|
return loadu256(&simd_onebit_masks[mask_idx]);
|
|
}
|
|
|
|
static really_inline
|
|
m256 set1_32x8(u32 in) {
|
|
m256 rv;
|
|
rv.hi = set1_16x8(in);
|
|
rv.lo = set1_16x8(in);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m256 set8x32(u32 hi_3, u32 hi_2, u32 hi_1, u32 hi_0, u32 lo_3, u32 lo_2, u32 lo_1, u32 lo_0) {
|
|
m256 rv;
|
|
rv.hi = set4x32(hi_3, hi_2, hi_1, hi_0);
|
|
rv.lo = set4x32(lo_3, lo_2, lo_1, lo_0);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m256 set4x64(u64a hi_1, u64a hi_0, u64a lo_1, u64a lo_0) {
|
|
m256 rv;
|
|
rv.hi = set2x64(hi_1, hi_0);
|
|
rv.lo = set2x64(lo_1, lo_0);
|
|
return rv;
|
|
}
|
|
|
|
// switches on bit N in the given vector.
|
|
static really_inline
|
|
void setbit256(m256 *ptr, unsigned int n) {
|
|
assert(n < sizeof(*ptr) * 8);
|
|
m128 *sub;
|
|
if (n < 128) {
|
|
sub = &ptr->lo;
|
|
} else {
|
|
sub = &ptr->hi;
|
|
n -= 128;
|
|
}
|
|
setbit128(sub, n);
|
|
}
|
|
|
|
// switches off bit N in the given vector.
|
|
static really_inline
|
|
void clearbit256(m256 *ptr, unsigned int n) {
|
|
assert(n < sizeof(*ptr) * 8);
|
|
m128 *sub;
|
|
if (n < 128) {
|
|
sub = &ptr->lo;
|
|
} else {
|
|
sub = &ptr->hi;
|
|
n -= 128;
|
|
}
|
|
clearbit128(sub, n);
|
|
}
|
|
|
|
// tests bit N in the given vector.
|
|
static really_inline
|
|
char testbit256(m256 val, unsigned int n) {
|
|
assert(n < sizeof(val) * 8);
|
|
m128 sub;
|
|
if (n < 128) {
|
|
sub = val.lo;
|
|
} else {
|
|
sub = val.hi;
|
|
n -= 128;
|
|
}
|
|
return testbit128(sub, n);
|
|
}
|
|
|
|
static really_really_inline
|
|
m128 movdq_hi(m256 x) {
|
|
return x.hi;
|
|
}
|
|
|
|
static really_really_inline
|
|
m128 movdq_lo(m256 x) {
|
|
return x.lo;
|
|
}
|
|
|
|
static really_inline
|
|
m256 combine2x128(m128 hi, m128 lo) {
|
|
m256 rv = {lo, hi};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m256 pshufb_m256(m256 a, m256 b) {
|
|
m256 rv;
|
|
rv.lo = pshufb_m128(a.lo, b.lo);
|
|
rv.hi = pshufb_m128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
#endif // HAVE_SIMD_256_BITS
|
|
|
|
/****
|
|
**** 384-bit Primitives
|
|
****/
|
|
|
|
static really_inline m384 and384(m384 a, m384 b) {
|
|
m384 rv;
|
|
rv.lo = and128(a.lo, b.lo);
|
|
rv.mid = and128(a.mid, b.mid);
|
|
rv.hi = and128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m384 or384(m384 a, m384 b) {
|
|
m384 rv;
|
|
rv.lo = or128(a.lo, b.lo);
|
|
rv.mid = or128(a.mid, b.mid);
|
|
rv.hi = or128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m384 xor384(m384 a, m384 b) {
|
|
m384 rv;
|
|
rv.lo = xor128(a.lo, b.lo);
|
|
rv.mid = xor128(a.mid, b.mid);
|
|
rv.hi = xor128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
static really_inline m384 not384(m384 a) {
|
|
m384 rv;
|
|
rv.lo = not128(a.lo);
|
|
rv.mid = not128(a.mid);
|
|
rv.hi = not128(a.hi);
|
|
return rv;
|
|
}
|
|
static really_inline m384 andnot384(m384 a, m384 b) {
|
|
m384 rv;
|
|
rv.lo = andnot128(a.lo, b.lo);
|
|
rv.mid = andnot128(a.mid, b.mid);
|
|
rv.hi = andnot128(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_really_inline
|
|
m384 lshift64_m384(m384 a, unsigned b) {
|
|
m384 rv;
|
|
rv.lo = lshift64_m128(a.lo, b);
|
|
rv.mid = lshift64_m128(a.mid, b);
|
|
rv.hi = lshift64_m128(a.hi, b);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m384 zeroes384(void) {
|
|
m384 rv = {zeroes128(), zeroes128(), zeroes128()};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline m384 ones384(void) {
|
|
m384 rv = {ones128(), ones128(), ones128()};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline int diff384(m384 a, m384 b) {
|
|
return diff128(a.lo, b.lo) || diff128(a.mid, b.mid) || diff128(a.hi, b.hi);
|
|
}
|
|
|
|
static really_inline int isnonzero384(m384 a) {
|
|
return isnonzero128(or128(or128(a.lo, a.mid), a.hi));
|
|
}
|
|
|
|
/**
|
|
* "Rich" version of diff384(). Takes two vectors a and b and returns a 12-bit
|
|
* mask indicating which 32-bit words contain differences.
|
|
*/
|
|
static really_inline
|
|
u32 diffrich384(m384 a, m384 b) {
|
|
return diffrich128(a.lo, b.lo) | (diffrich128(a.mid, b.mid) << 4) | (diffrich128(a.hi, b.hi) << 8);
|
|
}
|
|
|
|
/**
|
|
* "Rich" version of diff384(), 64-bit variant. Takes two vectors a and b and
|
|
* returns a 12-bit mask indicating which 64-bit words contain differences.
|
|
*/
|
|
static really_inline u32 diffrich64_384(m384 a, m384 b) {
|
|
u32 d = diffrich384(a, b);
|
|
return (d | (d >> 1)) & 0x55555555;
|
|
}
|
|
|
|
// aligned load
|
|
static really_inline m384 load384(const void *ptr) {
|
|
assert(ISALIGNED_16(ptr));
|
|
// cppcheck-suppress cstyleCast
|
|
m384 rv = { load128(ptr), load128((const char *)ptr + 16),load128((const char *)ptr + 32) };
|
|
return rv;
|
|
}
|
|
|
|
// aligned store
|
|
static really_inline void store384(void *ptr, m384 a) {
|
|
assert(ISALIGNED_16(ptr));
|
|
ptr = vectorscan_assume_aligned(ptr, 16);
|
|
// cppcheck-suppress cstyleCast
|
|
*(m384 *)ptr = a;
|
|
}
|
|
|
|
// unaligned load
|
|
static really_inline m384 loadu384(const void *ptr) {
|
|
// cppcheck-suppress cstyleCast
|
|
m384 rv = { loadu128(ptr), loadu128((const char *)ptr + 16),loadu128((const char *)ptr + 32)};
|
|
return rv;
|
|
}
|
|
|
|
// packed unaligned store of first N bytes
|
|
static really_inline
|
|
void storebytes384(void *ptr, m384 a, unsigned int n) {
|
|
assert(n <= sizeof(a));
|
|
memcpy(ptr, &a, n);
|
|
}
|
|
|
|
// packed unaligned load of first N bytes, pad with zero
|
|
static really_inline
|
|
m384 loadbytes384(const void *ptr, unsigned int n) {
|
|
m384 a = zeroes384();
|
|
assert(n <= sizeof(a));
|
|
memcpy(&a, ptr, n);
|
|
return a;
|
|
}
|
|
|
|
// switches on bit N in the given vector.
|
|
static really_inline
|
|
void setbit384(m384 *ptr, unsigned int n) {
|
|
assert(n < sizeof(*ptr) * 8);
|
|
m128 *sub;
|
|
if (n < 128) {
|
|
sub = &ptr->lo;
|
|
} else if (n < 256) {
|
|
sub = &ptr->mid;
|
|
} else {
|
|
sub = &ptr->hi;
|
|
}
|
|
setbit128(sub, n % 128);
|
|
}
|
|
|
|
// switches off bit N in the given vector.
|
|
static really_inline
|
|
void clearbit384(m384 *ptr, unsigned int n) {
|
|
assert(n < sizeof(*ptr) * 8);
|
|
m128 *sub;
|
|
if (n < 128) {
|
|
sub = &ptr->lo;
|
|
} else if (n < 256) {
|
|
sub = &ptr->mid;
|
|
} else {
|
|
sub = &ptr->hi;
|
|
}
|
|
clearbit128(sub, n % 128);
|
|
}
|
|
|
|
// tests bit N in the given vector.
|
|
static really_inline
|
|
char testbit384(m384 val, unsigned int n) {
|
|
assert(n < sizeof(val) * 8);
|
|
m128 sub;
|
|
if (n < 128) {
|
|
sub = val.lo;
|
|
} else if (n < 256) {
|
|
sub = val.mid;
|
|
} else {
|
|
sub = val.hi;
|
|
}
|
|
return testbit128(sub, n % 128);
|
|
}
|
|
|
|
|
|
/****
|
|
**** 512-bit Primitives
|
|
****/
|
|
|
|
#if !defined(HAVE_SIMD_512_BITS)
|
|
|
|
static really_inline
|
|
m512 zeroes512(void) {
|
|
m512 rv = {zeroes256(), zeroes256()};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m512 ones512(void) {
|
|
m512 rv = {ones256(), ones256()};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m512 set1_64x8(u8 a) {
|
|
m256 a256 = set1_32x8(a);
|
|
m512 rv = {a256, a256};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m512 set1_8x64(u64a a) {
|
|
m256 a256 = set1_4x64(a);
|
|
m512 rv = {a256, a256};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m512 set8x64(u64a hi_3, u64a hi_2, u64a hi_1, u64a hi_0,
|
|
u64a lo_3, u64a lo_2, u64a lo_1, u64a lo_0) {
|
|
m512 rv;
|
|
rv.lo = set4x64(lo_3, lo_2, lo_1, lo_0);
|
|
rv.hi = set4x64(hi_3, hi_2, hi_1, hi_0);
|
|
return rv;
|
|
}
|
|
/*
|
|
static really_inline
|
|
m512 swap256in512(m512 a) {
|
|
m512 idx = set8x64(3ULL, 2ULL, 1ULL, 0ULL, 7ULL, 6ULL, 5ULL, 4ULL);
|
|
return vpermq512(idx, a);
|
|
}*/
|
|
|
|
static really_inline
|
|
m512 set1_4x128(m128 a) {
|
|
m256 a256 = set1_2x128(a);
|
|
m512 rv = {a256, a256};
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m512 add512(m512 a, m512 b) {
|
|
m512 rv;
|
|
rv.lo = add256(a.lo, b.lo);
|
|
rv.hi = add256(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m512 and512(m512 a, m512 b) {
|
|
m512 rv;
|
|
rv.lo = and256(a.lo, b.lo);
|
|
rv.hi = and256(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m512 or512(m512 a, m512 b) {
|
|
m512 rv;
|
|
rv.lo = or256(a.lo, b.lo);
|
|
rv.hi = or256(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m512 xor512(m512 a, m512 b) {
|
|
m512 rv;
|
|
rv.lo = xor256(a.lo, b.lo);
|
|
rv.hi = xor256(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m512 not512(m512 a) {
|
|
m512 rv;
|
|
rv.lo = not256(a.lo);
|
|
rv.hi = not256(a.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
m512 andnot512(m512 a, m512 b) {
|
|
m512 rv;
|
|
rv.lo = andnot256(a.lo, b.lo);
|
|
rv.hi = andnot256(a.hi, b.hi);
|
|
return rv;
|
|
}
|
|
|
|
static really_really_inline
|
|
m512 lshift64_m512(m512 a, unsigned b) {
|
|
m512 rv;
|
|
rv.lo = lshift64_m256(a.lo, b);
|
|
rv.hi = lshift64_m256(a.hi, b);
|
|
return rv;
|
|
}
|
|
|
|
static really_inline
|
|
int diff512(m512 a, m512 b) {
|
|
return diff256(a.lo, b.lo) || diff256(a.hi, b.hi);
|
|
}
|
|
|
|
static really_inline
|
|
int isnonzero512(m512 a) {
|
|
m256 x = or256(a.lo, a.lo);
|
|
m256 y = or256(a.hi, a.hi);
|
|
return isnonzero256(or256(x, y));
|
|
}
|
|
|
|
/**
|
|
* "Rich" version of diff512(). Takes two vectors a and b and returns a 16-bit
|
|
* mask indicating which 32-bit words contain differences.
|
|
*/
|
|
static really_inline
|
|
u32 diffrich512(m512 a, m512 b) {
|
|
return diffrich256(a.lo, b.lo) | (diffrich256(a.hi, b.hi) << 8);
|
|
}
|
|
|
|
/**
|
|
* "Rich" version of diffrich(), 64-bit variant. Takes two vectors a and b and
|
|
* returns a 16-bit mask indicating which 64-bit words contain differences.
|
|
*/
|
|
static really_inline
|
|
u32 diffrich64_512(m512 a, m512 b) {
|
|
//TODO: cmp_epi64?
|
|
u32 d = diffrich512(a, b);
|
|
return (d | (d >> 1)) & 0x55555555;
|
|
}
|
|
|
|
// aligned load
|
|
static really_inline
|
|
m512 load512(const void *ptr) {
|
|
assert(ISALIGNED_N(ptr, alignof(m256)));
|
|
// cppcheck-suppress cstyleCast
|
|
m512 rv = { load256(ptr), load256((const char *)ptr + 32) };
|
|
return rv;
|
|
}
|
|
|
|
// aligned store
|
|
static really_inline
|
|
void store512(void *ptr, m512 a) {
|
|
assert(ISALIGNED_N(ptr, alignof(m512)));
|
|
// cppcheck-suppress cstyleCast
|
|
m512 *x = (m512 *)ptr;
|
|
store256(&x->lo, a.lo);
|
|
store256(&x->hi, a.hi);
|
|
}
|
|
|
|
// unaligned load
|
|
static really_inline
|
|
m512 loadu512(const void *ptr) {
|
|
// cppcheck-suppress cstyleCast
|
|
m512 rv = { loadu256(ptr), loadu256((const char *)ptr + 32) };
|
|
return rv;
|
|
}
|
|
|
|
/*static really_inline
|
|
m512 loadu_maskz_m512(__mmask64 k, const void *ptr) {
|
|
}
|
|
|
|
static really_inline
|
|
m512 loadu_mask_m512(m512 src, __mmask64 k, const void *ptr) {
|
|
}
|
|
|
|
static really_inline
|
|
m512 set_mask_m512(__mmask64 k) {
|
|
}*/
|
|
|
|
// packed unaligned store of first N bytes
|
|
static really_inline
|
|
void storebytes512(void *ptr, m512 a, unsigned int n) {
|
|
assert(n <= sizeof(a));
|
|
memcpy(ptr, &a, n);
|
|
}
|
|
|
|
// packed unaligned load of first N bytes, pad with zero
|
|
static really_inline
|
|
m512 loadbytes512(const void *ptr, unsigned int n) {
|
|
m512 a = zeroes512();
|
|
assert(n <= sizeof(a));
|
|
memcpy(&a, ptr, n);
|
|
return a;
|
|
}
|
|
|
|
static really_inline
|
|
m512 mask1bit512(unsigned int n) {
|
|
assert(n < sizeof(m512) * 8);
|
|
u32 mask_idx = ((n % 8) * 64) + 95;
|
|
mask_idx -= n / 8;
|
|
return loadu512(&simd_onebit_masks[mask_idx]);
|
|
}
|
|
|
|
// switches on bit N in the given vector.
|
|
static really_inline
|
|
void setbit512(m512 *ptr, unsigned int n) {
|
|
assert(n < sizeof(*ptr) * 8);
|
|
m256 *sub;
|
|
if (n < 256) {
|
|
sub = &ptr->lo;
|
|
} else {
|
|
sub = &ptr->hi;
|
|
n -= 256;
|
|
}
|
|
setbit256(sub, n);
|
|
}
|
|
|
|
// switches off bit N in the given vector.
|
|
static really_inline
|
|
void clearbit512(m512 *ptr, unsigned int n) {
|
|
assert(n < sizeof(*ptr) * 8);
|
|
m256 *sub;
|
|
if (n < 256) {
|
|
sub = &ptr->lo;
|
|
} else {
|
|
sub = &ptr->hi;
|
|
n -= 256;
|
|
}
|
|
clearbit256(sub, n);
|
|
}
|
|
|
|
// tests bit N in the given vector.
|
|
static really_inline
|
|
char testbit512(m512 val, unsigned int n) {
|
|
assert(n < sizeof(val) * 8);
|
|
m256 sub;
|
|
if (n < 256) {
|
|
sub = val.lo;
|
|
} else {
|
|
sub = val.hi;
|
|
n -= 256;
|
|
}
|
|
return testbit256(sub, n);
|
|
}
|
|
|
|
#endif // HAVE_SIMD_512_BITS
|
|
|
|
#endif // ARCH_COMMON_SIMD_UTILS_H
|