vectorscan/src/util/arch/common/simd_utils.h
2024-05-20 17:09:30 +03:00

815 lines
19 KiB
C

/*
* Copyright (c) 2015-2020, Intel Corporation
* Copyright (c) 2020-2023, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief SIMD types and primitive operations.
*/
#ifndef ARCH_COMMON_SIMD_UTILS_H
#define ARCH_COMMON_SIMD_UTILS_H
#include "ue2common.h"
#include "util/simd_types.h"
#include "util/unaligned.h"
#include "util/intrinsics.h"
#include <string.h> // for memcpy
#if !defined(HAVE_SIMD_128_BITS) && !defined(VS_SIMDE_BACKEND)
#error "You need at least a 128-bit capable SIMD engine!"
#endif // HAVE_SIMD_128_BITS
#ifdef DEBUG
static inline void print_m128_16x8(const char *label, m128 vec) {
uint8_t ALIGN_ATTR(16) data[16];
store128(data, vec);
DEBUG_PRINTF("%12s: ", label);
for(int i=15; i >=0; i--)
printf("%02x ", data[i]);
printf("\n");
}
static inline void print_m128_8x16(const char *label, m128 vec) {
uint16_t ALIGN_ATTR(16) data[8];
store128(data, vec);
DEBUG_PRINTF("%12s: ", label);
for(int i=7; i >= 0; i--)
printf("%04x ", data[i]);
printf("\n");
}
static inline void print_m128_4x32(const char *label, m128 vec) {
uint32_t ALIGN_ATTR(16) data[4];
store128(data, vec);
DEBUG_PRINTF("%12s: ", label);
for(int i=3; i >= 0; i--)
printf("%08x ", data[i]);
printf("\n");
}
static inline void print_m128_2x64(const char *label, m128 vec) {
uint64_t ALIGN_ATTR(16) data[2];
store128(data, vec);
DEBUG_PRINTF("%12s: ", label);
for(int i=1; i >= 0; i--)
printf("%016lx ", data[i]);
printf("\n");
}
#else
#define print_m128_16x8(label, vec) ;
#define print_m128_8x16(label, vec) ;
#define print_m128_4x32(label, vec) ;
#define print_m128_2x64(label, vec) ;
#endif
#if !defined(ARCH_IA32) && !defined(ARCH_X86_64) && !defined(VS_SIMDE_BACKEND)
#define ZEROES_8 0, 0, 0, 0, 0, 0, 0, 0
#define ZEROES_31 ZEROES_8, ZEROES_8, ZEROES_8, 0, 0, 0, 0, 0, 0, 0
#define ZEROES_32 ZEROES_8, ZEROES_8, ZEROES_8, ZEROES_8
/** \brief LUT for the mask1bit functions. */
ALIGN_CL_DIRECTIVE static const u8 simd_onebit_masks[] = {
ZEROES_32, ZEROES_32,
ZEROES_31, 0x01, ZEROES_32,
ZEROES_31, 0x02, ZEROES_32,
ZEROES_31, 0x04, ZEROES_32,
ZEROES_31, 0x08, ZEROES_32,
ZEROES_31, 0x10, ZEROES_32,
ZEROES_31, 0x20, ZEROES_32,
ZEROES_31, 0x40, ZEROES_32,
ZEROES_31, 0x80, ZEROES_32,
ZEROES_32, ZEROES_32,
};
#endif // !defined(ARCH_IA32) && !defined(ARCH_X86_64)
/****
**** 256-bit Primitives
****/
#if !defined(HAVE_SIMD_256_BITS)
static really_really_inline
m256 lshift64_m256(m256 a, int b) {
m256 rv = a;
rv.lo = lshift64_m128(rv.lo, b);
rv.hi = lshift64_m128(rv.hi, b);
return rv;
}
static really_inline
m256 rshift64_m256(m256 a, int b) {
m256 rv = a;
rv.lo = rshift64_m128(rv.lo, b);
rv.hi = rshift64_m128(rv.hi, b);
return rv;
}
static really_inline
m256 eq256(m256 a, m256 b) {
m256 rv;
rv.lo = eq128(a.lo, b.lo);
rv.hi = eq128(a.hi, b.hi);
return rv;
}
static really_inline
u32 movemask256(m256 a) {
u32 lo_mask = movemask128(a.lo);
u32 hi_mask = movemask128(a.hi);
return lo_mask | (hi_mask << 16);
}
static really_inline m256 set1_4x64(u64a c) {
m128 a128 = set1_2x64(c);
m256 rv = {a128, a128};
return rv;
}
static really_inline
m256 set1_2x128(m128 a) {
m256 rv = {a, a};
return rv;
}
static really_inline m256 zeroes256(void) {
m256 rv = {zeroes128(), zeroes128()};
return rv;
}
static really_inline m256 ones256(void) {
m256 rv = {ones128(), ones128()};
return rv;
}
static really_inline m256 add256(m256 a, m256 b) {
m256 rv;
rv.lo = add128(a.lo, b.lo);
rv.hi = add128(a.hi, b.hi);
return rv;
}
static really_inline m256 and256(m256 a, m256 b) {
m256 rv;
rv.lo = and128(a.lo, b.lo);
rv.hi = and128(a.hi, b.hi);
return rv;
}
static really_inline m256 or256(m256 a, m256 b) {
m256 rv;
rv.lo = or128(a.lo, b.lo);
rv.hi = or128(a.hi, b.hi);
return rv;
}
static really_inline m256 xor256(m256 a, m256 b) {
m256 rv;
rv.lo = xor128(a.lo, b.lo);
rv.hi = xor128(a.hi, b.hi);
return rv;
}
static really_inline m256 not256(m256 a) {
m256 rv;
rv.lo = not128(a.lo);
rv.hi = not128(a.hi);
return rv;
}
static really_inline m256 andnot256(m256 a, m256 b) {
m256 rv;
rv.lo = andnot128(a.lo, b.lo);
rv.hi = andnot128(a.hi, b.hi);
return rv;
}
static really_inline int diff256(m256 a, m256 b) {
return diff128(a.lo, b.lo) || diff128(a.hi, b.hi);
}
static really_inline int isnonzero256(m256 a) {
return isnonzero128(or128(a.lo, a.hi));
}
/**
* "Rich" version of diff256(). Takes two vectors a and b and returns a 8-bit
* mask indicating which 32-bit words contain differences.
*/
static really_inline
u32 diffrich256(m256 a, m256 b) {
return diffrich128(a.lo, b.lo) | (diffrich128(a.hi, b.hi) << 4);
}
/**
* "Rich" version of diff256(), 64-bit variant. Takes two vectors a and b and
* returns an 8-bit mask indicating which 64-bit words contain differences.
*/
static really_inline u32 diffrich64_256(m256 a, m256 b) {
u32 d = diffrich256(a, b);
return (d | (d >> 1)) & 0x55555555;
}
// aligned load
static really_inline m256 load256(const void *ptr) {
assert(ISALIGNED_N(ptr, alignof(m256)));
// cppcheck-suppress cstyleCast
m256 rv = { load128(ptr), load128((const char *)ptr + 16) };
return rv;
}
// aligned load of 128-bit value to low and high part of 256-bit value
static really_inline m256 load2x128(const void *ptr) {
return set1_2x128(load128(ptr));
}
static really_inline m256 loadu2x128(const void *ptr) {
return set1_2x128(loadu128(ptr));
}
// aligned store
static really_inline void store256(void *ptr, m256 a) {
assert(ISALIGNED_N(ptr, alignof(m256)));
ptr = vectorscan_assume_aligned(ptr, 16);
// cppcheck-suppress cstyleCast
*(m256 *)ptr = a;
}
// unaligned load
static really_inline m256 loadu256(const void *ptr) {
// cppcheck-suppress cstyleCast
m256 rv = { loadu128(ptr), loadu128((const char *)ptr + 16) };
return rv;
}
// unaligned store
static really_inline void storeu256(void *ptr, m256 a) {
storeu128(ptr, a.lo);
// cppcheck-suppress cstyleCast
storeu128((char *)ptr + 16, a.hi);
}
// packed unaligned store of first N bytes
static really_inline
void storebytes256(void *ptr, m256 a, unsigned int n) {
assert(n <= sizeof(a));
memcpy(ptr, &a, n);
}
// packed unaligned load of first N bytes, pad with zero
static really_inline
m256 loadbytes256(const void *ptr, unsigned int n) {
m256 a = zeroes256();
assert(n <= sizeof(a));
memcpy(&a, ptr, n);
return a;
}
static really_inline
m256 mask1bit256(unsigned int n) {
assert(n < sizeof(m256) * 8);
u32 mask_idx = ((n % 8) * 64) + 95;
mask_idx -= n / 8;
return loadu256(&simd_onebit_masks[mask_idx]);
}
static really_inline
m256 set1_32x8(u32 in) {
m256 rv;
rv.hi = set1_16x8(in);
rv.lo = set1_16x8(in);
return rv;
}
static really_inline
m256 set8x32(u32 hi_3, u32 hi_2, u32 hi_1, u32 hi_0, u32 lo_3, u32 lo_2, u32 lo_1, u32 lo_0) {
m256 rv;
rv.hi = set4x32(hi_3, hi_2, hi_1, hi_0);
rv.lo = set4x32(lo_3, lo_2, lo_1, lo_0);
return rv;
}
static really_inline
m256 set4x64(u64a hi_1, u64a hi_0, u64a lo_1, u64a lo_0) {
m256 rv;
rv.hi = set2x64(hi_1, hi_0);
rv.lo = set2x64(lo_1, lo_0);
return rv;
}
// switches on bit N in the given vector.
static really_inline
void setbit256(m256 *ptr, unsigned int n) {
assert(n < sizeof(*ptr) * 8);
m128 *sub;
if (n < 128) {
sub = &ptr->lo;
} else {
sub = &ptr->hi;
n -= 128;
}
setbit128(sub, n);
}
// switches off bit N in the given vector.
static really_inline
void clearbit256(m256 *ptr, unsigned int n) {
assert(n < sizeof(*ptr) * 8);
m128 *sub;
if (n < 128) {
sub = &ptr->lo;
} else {
sub = &ptr->hi;
n -= 128;
}
clearbit128(sub, n);
}
// tests bit N in the given vector.
static really_inline
char testbit256(m256 val, unsigned int n) {
assert(n < sizeof(val) * 8);
m128 sub;
if (n < 128) {
sub = val.lo;
} else {
sub = val.hi;
n -= 128;
}
return testbit128(sub, n);
}
static really_really_inline
m128 movdq_hi(m256 x) {
return x.hi;
}
static really_really_inline
m128 movdq_lo(m256 x) {
return x.lo;
}
static really_inline
m256 combine2x128(m128 hi, m128 lo) {
m256 rv = {lo, hi};
return rv;
}
static really_inline
m256 pshufb_m256(m256 a, m256 b) {
m256 rv;
rv.lo = pshufb_m128(a.lo, b.lo);
rv.hi = pshufb_m128(a.hi, b.hi);
return rv;
}
#endif // HAVE_SIMD_256_BITS
/****
**** 384-bit Primitives
****/
static really_inline m384 and384(m384 a, m384 b) {
m384 rv;
rv.lo = and128(a.lo, b.lo);
rv.mid = and128(a.mid, b.mid);
rv.hi = and128(a.hi, b.hi);
return rv;
}
static really_inline m384 or384(m384 a, m384 b) {
m384 rv;
rv.lo = or128(a.lo, b.lo);
rv.mid = or128(a.mid, b.mid);
rv.hi = or128(a.hi, b.hi);
return rv;
}
static really_inline m384 xor384(m384 a, m384 b) {
m384 rv;
rv.lo = xor128(a.lo, b.lo);
rv.mid = xor128(a.mid, b.mid);
rv.hi = xor128(a.hi, b.hi);
return rv;
}
static really_inline m384 not384(m384 a) {
m384 rv;
rv.lo = not128(a.lo);
rv.mid = not128(a.mid);
rv.hi = not128(a.hi);
return rv;
}
static really_inline m384 andnot384(m384 a, m384 b) {
m384 rv;
rv.lo = andnot128(a.lo, b.lo);
rv.mid = andnot128(a.mid, b.mid);
rv.hi = andnot128(a.hi, b.hi);
return rv;
}
static really_really_inline
m384 lshift64_m384(m384 a, unsigned b) {
m384 rv;
rv.lo = lshift64_m128(a.lo, b);
rv.mid = lshift64_m128(a.mid, b);
rv.hi = lshift64_m128(a.hi, b);
return rv;
}
static really_inline m384 zeroes384(void) {
m384 rv = {zeroes128(), zeroes128(), zeroes128()};
return rv;
}
static really_inline m384 ones384(void) {
m384 rv = {ones128(), ones128(), ones128()};
return rv;
}
static really_inline int diff384(m384 a, m384 b) {
return diff128(a.lo, b.lo) || diff128(a.mid, b.mid) || diff128(a.hi, b.hi);
}
static really_inline int isnonzero384(m384 a) {
return isnonzero128(or128(or128(a.lo, a.mid), a.hi));
}
/**
* "Rich" version of diff384(). Takes two vectors a and b and returns a 12-bit
* mask indicating which 32-bit words contain differences.
*/
static really_inline
u32 diffrich384(m384 a, m384 b) {
return diffrich128(a.lo, b.lo) | (diffrich128(a.mid, b.mid) << 4) | (diffrich128(a.hi, b.hi) << 8);
}
/**
* "Rich" version of diff384(), 64-bit variant. Takes two vectors a and b and
* returns a 12-bit mask indicating which 64-bit words contain differences.
*/
static really_inline u32 diffrich64_384(m384 a, m384 b) {
u32 d = diffrich384(a, b);
return (d | (d >> 1)) & 0x55555555;
}
// aligned load
static really_inline m384 load384(const void *ptr) {
assert(ISALIGNED_16(ptr));
// cppcheck-suppress cstyleCast
m384 rv = { load128(ptr), load128((const char *)ptr + 16),load128((const char *)ptr + 32) };
return rv;
}
// aligned store
static really_inline void store384(void *ptr, m384 a) {
assert(ISALIGNED_16(ptr));
ptr = vectorscan_assume_aligned(ptr, 16);
// cppcheck-suppress cstyleCast
*(m384 *)ptr = a;
}
// unaligned load
static really_inline m384 loadu384(const void *ptr) {
// cppcheck-suppress cstyleCast
m384 rv = { loadu128(ptr), loadu128((const char *)ptr + 16),loadu128((const char *)ptr + 32)};
return rv;
}
// packed unaligned store of first N bytes
static really_inline
void storebytes384(void *ptr, m384 a, unsigned int n) {
assert(n <= sizeof(a));
memcpy(ptr, &a, n);
}
// packed unaligned load of first N bytes, pad with zero
static really_inline
m384 loadbytes384(const void *ptr, unsigned int n) {
m384 a = zeroes384();
assert(n <= sizeof(a));
memcpy(&a, ptr, n);
return a;
}
// switches on bit N in the given vector.
static really_inline
void setbit384(m384 *ptr, unsigned int n) {
assert(n < sizeof(*ptr) * 8);
m128 *sub;
if (n < 128) {
sub = &ptr->lo;
} else if (n < 256) {
sub = &ptr->mid;
} else {
sub = &ptr->hi;
}
setbit128(sub, n % 128);
}
// switches off bit N in the given vector.
static really_inline
void clearbit384(m384 *ptr, unsigned int n) {
assert(n < sizeof(*ptr) * 8);
m128 *sub;
if (n < 128) {
sub = &ptr->lo;
} else if (n < 256) {
sub = &ptr->mid;
} else {
sub = &ptr->hi;
}
clearbit128(sub, n % 128);
}
// tests bit N in the given vector.
static really_inline
char testbit384(m384 val, unsigned int n) {
assert(n < sizeof(val) * 8);
m128 sub;
if (n < 128) {
sub = val.lo;
} else if (n < 256) {
sub = val.mid;
} else {
sub = val.hi;
}
return testbit128(sub, n % 128);
}
/****
**** 512-bit Primitives
****/
#if !defined(HAVE_SIMD_512_BITS)
static really_inline
m512 zeroes512(void) {
m512 rv = {zeroes256(), zeroes256()};
return rv;
}
static really_inline
m512 ones512(void) {
m512 rv = {ones256(), ones256()};
return rv;
}
static really_inline
m512 set1_64x8(u8 a) {
m256 a256 = set1_32x8(a);
m512 rv = {a256, a256};
return rv;
}
static really_inline
m512 set1_8x64(u64a a) {
m256 a256 = set1_4x64(a);
m512 rv = {a256, a256};
return rv;
}
static really_inline
m512 set8x64(u64a hi_3, u64a hi_2, u64a hi_1, u64a hi_0,
u64a lo_3, u64a lo_2, u64a lo_1, u64a lo_0) {
m512 rv;
rv.lo = set4x64(lo_3, lo_2, lo_1, lo_0);
rv.hi = set4x64(hi_3, hi_2, hi_1, hi_0);
return rv;
}
/*
static really_inline
m512 swap256in512(m512 a) {
m512 idx = set8x64(3ULL, 2ULL, 1ULL, 0ULL, 7ULL, 6ULL, 5ULL, 4ULL);
return vpermq512(idx, a);
}*/
static really_inline
m512 set1_4x128(m128 a) {
m256 a256 = set1_2x128(a);
m512 rv = {a256, a256};
return rv;
}
static really_inline
m512 add512(m512 a, m512 b) {
m512 rv;
rv.lo = add256(a.lo, b.lo);
rv.hi = add256(a.hi, b.hi);
return rv;
}
static really_inline
m512 and512(m512 a, m512 b) {
m512 rv;
rv.lo = and256(a.lo, b.lo);
rv.hi = and256(a.hi, b.hi);
return rv;
}
static really_inline
m512 or512(m512 a, m512 b) {
m512 rv;
rv.lo = or256(a.lo, b.lo);
rv.hi = or256(a.hi, b.hi);
return rv;
}
static really_inline
m512 xor512(m512 a, m512 b) {
m512 rv;
rv.lo = xor256(a.lo, b.lo);
rv.hi = xor256(a.hi, b.hi);
return rv;
}
static really_inline
m512 not512(m512 a) {
m512 rv;
rv.lo = not256(a.lo);
rv.hi = not256(a.hi);
return rv;
}
static really_inline
m512 andnot512(m512 a, m512 b) {
m512 rv;
rv.lo = andnot256(a.lo, b.lo);
rv.hi = andnot256(a.hi, b.hi);
return rv;
}
static really_really_inline
m512 lshift64_m512(m512 a, unsigned b) {
m512 rv;
rv.lo = lshift64_m256(a.lo, b);
rv.hi = lshift64_m256(a.hi, b);
return rv;
}
static really_inline
int diff512(m512 a, m512 b) {
return diff256(a.lo, b.lo) || diff256(a.hi, b.hi);
}
static really_inline
int isnonzero512(m512 a) {
m256 x = or256(a.lo, a.lo);
m256 y = or256(a.hi, a.hi);
return isnonzero256(or256(x, y));
}
/**
* "Rich" version of diff512(). Takes two vectors a and b and returns a 16-bit
* mask indicating which 32-bit words contain differences.
*/
static really_inline
u32 diffrich512(m512 a, m512 b) {
return diffrich256(a.lo, b.lo) | (diffrich256(a.hi, b.hi) << 8);
}
/**
* "Rich" version of diffrich(), 64-bit variant. Takes two vectors a and b and
* returns a 16-bit mask indicating which 64-bit words contain differences.
*/
static really_inline
u32 diffrich64_512(m512 a, m512 b) {
//TODO: cmp_epi64?
u32 d = diffrich512(a, b);
return (d | (d >> 1)) & 0x55555555;
}
// aligned load
static really_inline
m512 load512(const void *ptr) {
assert(ISALIGNED_N(ptr, alignof(m256)));
// cppcheck-suppress cstyleCast
m512 rv = { load256(ptr), load256((const char *)ptr + 32) };
return rv;
}
// aligned store
static really_inline
void store512(void *ptr, m512 a) {
assert(ISALIGNED_N(ptr, alignof(m512)));
// cppcheck-suppress cstyleCast
m512 *x = (m512 *)ptr;
store256(&x->lo, a.lo);
store256(&x->hi, a.hi);
}
// unaligned load
static really_inline
m512 loadu512(const void *ptr) {
// cppcheck-suppress cstyleCast
m512 rv = { loadu256(ptr), loadu256((const char *)ptr + 32) };
return rv;
}
/*static really_inline
m512 loadu_maskz_m512(__mmask64 k, const void *ptr) {
}
static really_inline
m512 loadu_mask_m512(m512 src, __mmask64 k, const void *ptr) {
}
static really_inline
m512 set_mask_m512(__mmask64 k) {
}*/
// packed unaligned store of first N bytes
static really_inline
void storebytes512(void *ptr, m512 a, unsigned int n) {
assert(n <= sizeof(a));
memcpy(ptr, &a, n);
}
// packed unaligned load of first N bytes, pad with zero
static really_inline
m512 loadbytes512(const void *ptr, unsigned int n) {
m512 a = zeroes512();
assert(n <= sizeof(a));
memcpy(&a, ptr, n);
return a;
}
static really_inline
m512 mask1bit512(unsigned int n) {
assert(n < sizeof(m512) * 8);
u32 mask_idx = ((n % 8) * 64) + 95;
mask_idx -= n / 8;
return loadu512(&simd_onebit_masks[mask_idx]);
}
// switches on bit N in the given vector.
static really_inline
void setbit512(m512 *ptr, unsigned int n) {
assert(n < sizeof(*ptr) * 8);
m256 *sub;
if (n < 256) {
sub = &ptr->lo;
} else {
sub = &ptr->hi;
n -= 256;
}
setbit256(sub, n);
}
// switches off bit N in the given vector.
static really_inline
void clearbit512(m512 *ptr, unsigned int n) {
assert(n < sizeof(*ptr) * 8);
m256 *sub;
if (n < 256) {
sub = &ptr->lo;
} else {
sub = &ptr->hi;
n -= 256;
}
clearbit256(sub, n);
}
// tests bit N in the given vector.
static really_inline
char testbit512(m512 val, unsigned int n) {
assert(n < sizeof(val) * 8);
m256 sub;
if (n < 256) {
sub = val.lo;
} else {
sub = val.hi;
n -= 256;
}
return testbit256(sub, n);
}
#endif // HAVE_SIMD_512_BITS
#endif // ARCH_COMMON_SIMD_UTILS_H