/* * Copyright (c) 2015-2020, Intel Corporation * Copyright (c) 2020-2023, VectorCamp PC * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \file * \brief SIMD types and primitive operations. */ #ifndef ARCH_COMMON_SIMD_UTILS_H #define ARCH_COMMON_SIMD_UTILS_H #include "ue2common.h" #include "util/simd_types.h" #include "util/unaligned.h" #include "util/intrinsics.h" #include // for memcpy #if !defined(HAVE_SIMD_128_BITS) && !defined(VS_SIMDE_BACKEND) #error "You need at least a 128-bit capable SIMD engine!" #endif // HAVE_SIMD_128_BITS #ifdef DEBUG static inline void print_m128_16x8(const char *label, m128 vec) { uint8_t ALIGN_ATTR(16) data[16]; store128(data, vec); DEBUG_PRINTF("%12s: ", label); for(int i=15; i >=0; i--) printf("%02x ", data[i]); printf("\n"); } static inline void print_m128_8x16(const char *label, m128 vec) { uint16_t ALIGN_ATTR(16) data[8]; store128(data, vec); DEBUG_PRINTF("%12s: ", label); for(int i=7; i >= 0; i--) printf("%04x ", data[i]); printf("\n"); } static inline void print_m128_4x32(const char *label, m128 vec) { uint32_t ALIGN_ATTR(16) data[4]; store128(data, vec); DEBUG_PRINTF("%12s: ", label); for(int i=3; i >= 0; i--) printf("%08x ", data[i]); printf("\n"); } static inline void print_m128_2x64(const char *label, m128 vec) { uint64_t ALIGN_ATTR(16) data[2]; store128(data, vec); DEBUG_PRINTF("%12s: ", label); for(int i=1; i >= 0; i--) printf("%016lx ", data[i]); printf("\n"); } #else #define print_m128_16x8(label, vec) ; #define print_m128_8x16(label, vec) ; #define print_m128_4x32(label, vec) ; #define print_m128_2x64(label, vec) ; #endif #if !defined(ARCH_IA32) && !defined(ARCH_X86_64) && !defined(VS_SIMDE_BACKEND) #define ZEROES_8 0, 0, 0, 0, 0, 0, 0, 0 #define ZEROES_31 ZEROES_8, ZEROES_8, ZEROES_8, 0, 0, 0, 0, 0, 0, 0 #define ZEROES_32 ZEROES_8, ZEROES_8, ZEROES_8, ZEROES_8 /** \brief LUT for the mask1bit functions. */ ALIGN_CL_DIRECTIVE static const u8 simd_onebit_masks[] = { ZEROES_32, ZEROES_32, ZEROES_31, 0x01, ZEROES_32, ZEROES_31, 0x02, ZEROES_32, ZEROES_31, 0x04, ZEROES_32, ZEROES_31, 0x08, ZEROES_32, ZEROES_31, 0x10, ZEROES_32, ZEROES_31, 0x20, ZEROES_32, ZEROES_31, 0x40, ZEROES_32, ZEROES_31, 0x80, ZEROES_32, ZEROES_32, ZEROES_32, }; #endif // !defined(ARCH_IA32) && !defined(ARCH_X86_64) /**** **** 256-bit Primitives ****/ #if !defined(HAVE_SIMD_256_BITS) static really_really_inline m256 lshift64_m256(m256 a, int b) { m256 rv = a; rv.lo = lshift64_m128(rv.lo, b); rv.hi = lshift64_m128(rv.hi, b); return rv; } static really_inline m256 rshift64_m256(m256 a, int b) { m256 rv = a; rv.lo = rshift64_m128(rv.lo, b); rv.hi = rshift64_m128(rv.hi, b); return rv; } static really_inline m256 eq256(m256 a, m256 b) { m256 rv; rv.lo = eq128(a.lo, b.lo); rv.hi = eq128(a.hi, b.hi); return rv; } static really_inline u32 movemask256(m256 a) { u32 lo_mask = movemask128(a.lo); u32 hi_mask = movemask128(a.hi); return lo_mask | (hi_mask << 16); } static really_inline m256 set1_4x64(u64a c) { m128 a128 = set1_2x64(c); m256 rv = {a128, a128}; return rv; } static really_inline m256 set1_2x128(m128 a) { m256 rv = {a, a}; return rv; } static really_inline m256 zeroes256(void) { m256 rv = {zeroes128(), zeroes128()}; return rv; } static really_inline m256 ones256(void) { m256 rv = {ones128(), ones128()}; return rv; } static really_inline m256 add256(m256 a, m256 b) { m256 rv; rv.lo = add128(a.lo, b.lo); rv.hi = add128(a.hi, b.hi); return rv; } static really_inline m256 and256(m256 a, m256 b) { m256 rv; rv.lo = and128(a.lo, b.lo); rv.hi = and128(a.hi, b.hi); return rv; } static really_inline m256 or256(m256 a, m256 b) { m256 rv; rv.lo = or128(a.lo, b.lo); rv.hi = or128(a.hi, b.hi); return rv; } static really_inline m256 xor256(m256 a, m256 b) { m256 rv; rv.lo = xor128(a.lo, b.lo); rv.hi = xor128(a.hi, b.hi); return rv; } static really_inline m256 not256(m256 a) { m256 rv; rv.lo = not128(a.lo); rv.hi = not128(a.hi); return rv; } static really_inline m256 andnot256(m256 a, m256 b) { m256 rv; rv.lo = andnot128(a.lo, b.lo); rv.hi = andnot128(a.hi, b.hi); return rv; } static really_inline int diff256(m256 a, m256 b) { return diff128(a.lo, b.lo) || diff128(a.hi, b.hi); } static really_inline int isnonzero256(m256 a) { return isnonzero128(or128(a.lo, a.hi)); } /** * "Rich" version of diff256(). Takes two vectors a and b and returns a 8-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich256(m256 a, m256 b) { return diffrich128(a.lo, b.lo) | (diffrich128(a.hi, b.hi) << 4); } /** * "Rich" version of diff256(), 64-bit variant. Takes two vectors a and b and * returns an 8-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_256(m256 a, m256 b) { u32 d = diffrich256(a, b); return (d | (d >> 1)) & 0x55555555; } // aligned load static really_inline m256 load256(const void *ptr) { assert(ISALIGNED_N(ptr, alignof(m256))); // cppcheck-suppress cstyleCast m256 rv = { load128(ptr), load128((const char *)ptr + 16) }; return rv; } // aligned load of 128-bit value to low and high part of 256-bit value static really_inline m256 load2x128(const void *ptr) { return set1_2x128(load128(ptr)); } static really_inline m256 loadu2x128(const void *ptr) { return set1_2x128(loadu128(ptr)); } // aligned store static really_inline void store256(void *ptr, m256 a) { assert(ISALIGNED_N(ptr, alignof(m256))); ptr = vectorscan_assume_aligned(ptr, 16); // cppcheck-suppress cstyleCast *(m256 *)ptr = a; } // unaligned load static really_inline m256 loadu256(const void *ptr) { // cppcheck-suppress cstyleCast m256 rv = { loadu128(ptr), loadu128((const char *)ptr + 16) }; return rv; } // unaligned store static really_inline void storeu256(void *ptr, m256 a) { storeu128(ptr, a.lo); // cppcheck-suppress cstyleCast storeu128((char *)ptr + 16, a.hi); } // packed unaligned store of first N bytes static really_inline void storebytes256(void *ptr, m256 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m256 loadbytes256(const void *ptr, unsigned int n) { m256 a = zeroes256(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } static really_inline m256 mask1bit256(unsigned int n) { assert(n < sizeof(m256) * 8); u32 mask_idx = ((n % 8) * 64) + 95; mask_idx -= n / 8; return loadu256(&simd_onebit_masks[mask_idx]); } static really_inline m256 set1_32x8(u32 in) { m256 rv; rv.hi = set1_16x8(in); rv.lo = set1_16x8(in); return rv; } static really_inline m256 set8x32(u32 hi_3, u32 hi_2, u32 hi_1, u32 hi_0, u32 lo_3, u32 lo_2, u32 lo_1, u32 lo_0) { m256 rv; rv.hi = set4x32(hi_3, hi_2, hi_1, hi_0); rv.lo = set4x32(lo_3, lo_2, lo_1, lo_0); return rv; } static really_inline m256 set4x64(u64a hi_1, u64a hi_0, u64a lo_1, u64a lo_0) { m256 rv; rv.hi = set2x64(hi_1, hi_0); rv.lo = set2x64(lo_1, lo_0); return rv; } // switches on bit N in the given vector. static really_inline void setbit256(m256 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); m128 *sub; if (n < 128) { sub = &ptr->lo; } else { sub = &ptr->hi; n -= 128; } setbit128(sub, n); } // switches off bit N in the given vector. static really_inline void clearbit256(m256 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); m128 *sub; if (n < 128) { sub = &ptr->lo; } else { sub = &ptr->hi; n -= 128; } clearbit128(sub, n); } // tests bit N in the given vector. static really_inline char testbit256(m256 val, unsigned int n) { assert(n < sizeof(val) * 8); m128 sub; if (n < 128) { sub = val.lo; } else { sub = val.hi; n -= 128; } return testbit128(sub, n); } static really_really_inline m128 movdq_hi(m256 x) { return x.hi; } static really_really_inline m128 movdq_lo(m256 x) { return x.lo; } static really_inline m256 combine2x128(m128 hi, m128 lo) { m256 rv = {lo, hi}; return rv; } static really_inline m256 pshufb_m256(m256 a, m256 b) { m256 rv; rv.lo = pshufb_m128(a.lo, b.lo); rv.hi = pshufb_m128(a.hi, b.hi); return rv; } #endif // HAVE_SIMD_256_BITS /**** **** 384-bit Primitives ****/ static really_inline m384 and384(m384 a, m384 b) { m384 rv; rv.lo = and128(a.lo, b.lo); rv.mid = and128(a.mid, b.mid); rv.hi = and128(a.hi, b.hi); return rv; } static really_inline m384 or384(m384 a, m384 b) { m384 rv; rv.lo = or128(a.lo, b.lo); rv.mid = or128(a.mid, b.mid); rv.hi = or128(a.hi, b.hi); return rv; } static really_inline m384 xor384(m384 a, m384 b) { m384 rv; rv.lo = xor128(a.lo, b.lo); rv.mid = xor128(a.mid, b.mid); rv.hi = xor128(a.hi, b.hi); return rv; } static really_inline m384 not384(m384 a) { m384 rv; rv.lo = not128(a.lo); rv.mid = not128(a.mid); rv.hi = not128(a.hi); return rv; } static really_inline m384 andnot384(m384 a, m384 b) { m384 rv; rv.lo = andnot128(a.lo, b.lo); rv.mid = andnot128(a.mid, b.mid); rv.hi = andnot128(a.hi, b.hi); return rv; } static really_really_inline m384 lshift64_m384(m384 a, unsigned b) { m384 rv; rv.lo = lshift64_m128(a.lo, b); rv.mid = lshift64_m128(a.mid, b); rv.hi = lshift64_m128(a.hi, b); return rv; } static really_inline m384 zeroes384(void) { m384 rv = {zeroes128(), zeroes128(), zeroes128()}; return rv; } static really_inline m384 ones384(void) { m384 rv = {ones128(), ones128(), ones128()}; return rv; } static really_inline int diff384(m384 a, m384 b) { return diff128(a.lo, b.lo) || diff128(a.mid, b.mid) || diff128(a.hi, b.hi); } static really_inline int isnonzero384(m384 a) { return isnonzero128(or128(or128(a.lo, a.mid), a.hi)); } /** * "Rich" version of diff384(). Takes two vectors a and b and returns a 12-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich384(m384 a, m384 b) { return diffrich128(a.lo, b.lo) | (diffrich128(a.mid, b.mid) << 4) | (diffrich128(a.hi, b.hi) << 8); } /** * "Rich" version of diff384(), 64-bit variant. Takes two vectors a and b and * returns a 12-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_384(m384 a, m384 b) { u32 d = diffrich384(a, b); return (d | (d >> 1)) & 0x55555555; } // aligned load static really_inline m384 load384(const void *ptr) { assert(ISALIGNED_16(ptr)); // cppcheck-suppress cstyleCast m384 rv = { load128(ptr), load128((const char *)ptr + 16),load128((const char *)ptr + 32) }; return rv; } // aligned store static really_inline void store384(void *ptr, m384 a) { assert(ISALIGNED_16(ptr)); ptr = vectorscan_assume_aligned(ptr, 16); // cppcheck-suppress cstyleCast *(m384 *)ptr = a; } // unaligned load static really_inline m384 loadu384(const void *ptr) { // cppcheck-suppress cstyleCast m384 rv = { loadu128(ptr), loadu128((const char *)ptr + 16),loadu128((const char *)ptr + 32)}; return rv; } // packed unaligned store of first N bytes static really_inline void storebytes384(void *ptr, m384 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m384 loadbytes384(const void *ptr, unsigned int n) { m384 a = zeroes384(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } // switches on bit N in the given vector. static really_inline void setbit384(m384 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); m128 *sub; if (n < 128) { sub = &ptr->lo; } else if (n < 256) { sub = &ptr->mid; } else { sub = &ptr->hi; } setbit128(sub, n % 128); } // switches off bit N in the given vector. static really_inline void clearbit384(m384 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); m128 *sub; if (n < 128) { sub = &ptr->lo; } else if (n < 256) { sub = &ptr->mid; } else { sub = &ptr->hi; } clearbit128(sub, n % 128); } // tests bit N in the given vector. static really_inline char testbit384(m384 val, unsigned int n) { assert(n < sizeof(val) * 8); m128 sub; if (n < 128) { sub = val.lo; } else if (n < 256) { sub = val.mid; } else { sub = val.hi; } return testbit128(sub, n % 128); } /**** **** 512-bit Primitives ****/ #if !defined(HAVE_SIMD_512_BITS) static really_inline m512 zeroes512(void) { m512 rv = {zeroes256(), zeroes256()}; return rv; } static really_inline m512 ones512(void) { m512 rv = {ones256(), ones256()}; return rv; } static really_inline m512 set1_64x8(u8 a) { m256 a256 = set1_32x8(a); m512 rv = {a256, a256}; return rv; } static really_inline m512 set1_8x64(u64a a) { m256 a256 = set1_4x64(a); m512 rv = {a256, a256}; return rv; } static really_inline m512 set8x64(u64a hi_3, u64a hi_2, u64a hi_1, u64a hi_0, u64a lo_3, u64a lo_2, u64a lo_1, u64a lo_0) { m512 rv; rv.lo = set4x64(lo_3, lo_2, lo_1, lo_0); rv.hi = set4x64(hi_3, hi_2, hi_1, hi_0); return rv; } /* static really_inline m512 swap256in512(m512 a) { m512 idx = set8x64(3ULL, 2ULL, 1ULL, 0ULL, 7ULL, 6ULL, 5ULL, 4ULL); return vpermq512(idx, a); }*/ static really_inline m512 set1_4x128(m128 a) { m256 a256 = set1_2x128(a); m512 rv = {a256, a256}; return rv; } static really_inline m512 add512(m512 a, m512 b) { m512 rv; rv.lo = add256(a.lo, b.lo); rv.hi = add256(a.hi, b.hi); return rv; } static really_inline m512 and512(m512 a, m512 b) { m512 rv; rv.lo = and256(a.lo, b.lo); rv.hi = and256(a.hi, b.hi); return rv; } static really_inline m512 or512(m512 a, m512 b) { m512 rv; rv.lo = or256(a.lo, b.lo); rv.hi = or256(a.hi, b.hi); return rv; } static really_inline m512 xor512(m512 a, m512 b) { m512 rv; rv.lo = xor256(a.lo, b.lo); rv.hi = xor256(a.hi, b.hi); return rv; } static really_inline m512 not512(m512 a) { m512 rv; rv.lo = not256(a.lo); rv.hi = not256(a.hi); return rv; } static really_inline m512 andnot512(m512 a, m512 b) { m512 rv; rv.lo = andnot256(a.lo, b.lo); rv.hi = andnot256(a.hi, b.hi); return rv; } static really_really_inline m512 lshift64_m512(m512 a, unsigned b) { m512 rv; rv.lo = lshift64_m256(a.lo, b); rv.hi = lshift64_m256(a.hi, b); return rv; } static really_inline int diff512(m512 a, m512 b) { return diff256(a.lo, b.lo) || diff256(a.hi, b.hi); } static really_inline int isnonzero512(m512 a) { m256 x = or256(a.lo, a.lo); m256 y = or256(a.hi, a.hi); return isnonzero256(or256(x, y)); } /** * "Rich" version of diff512(). Takes two vectors a and b and returns a 16-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich512(m512 a, m512 b) { return diffrich256(a.lo, b.lo) | (diffrich256(a.hi, b.hi) << 8); } /** * "Rich" version of diffrich(), 64-bit variant. Takes two vectors a and b and * returns a 16-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_512(m512 a, m512 b) { //TODO: cmp_epi64? u32 d = diffrich512(a, b); return (d | (d >> 1)) & 0x55555555; } // aligned load static really_inline m512 load512(const void *ptr) { assert(ISALIGNED_N(ptr, alignof(m256))); // cppcheck-suppress cstyleCast m512 rv = { load256(ptr), load256((const char *)ptr + 32) }; return rv; } // aligned store static really_inline void store512(void *ptr, m512 a) { assert(ISALIGNED_N(ptr, alignof(m512))); // cppcheck-suppress cstyleCast m512 *x = (m512 *)ptr; store256(&x->lo, a.lo); store256(&x->hi, a.hi); } // unaligned load static really_inline m512 loadu512(const void *ptr) { // cppcheck-suppress cstyleCast m512 rv = { loadu256(ptr), loadu256((const char *)ptr + 32) }; return rv; } /*static really_inline m512 loadu_maskz_m512(__mmask64 k, const void *ptr) { } static really_inline m512 loadu_mask_m512(m512 src, __mmask64 k, const void *ptr) { } static really_inline m512 set_mask_m512(__mmask64 k) { }*/ // packed unaligned store of first N bytes static really_inline void storebytes512(void *ptr, m512 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m512 loadbytes512(const void *ptr, unsigned int n) { m512 a = zeroes512(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } static really_inline m512 mask1bit512(unsigned int n) { assert(n < sizeof(m512) * 8); u32 mask_idx = ((n % 8) * 64) + 95; mask_idx -= n / 8; return loadu512(&simd_onebit_masks[mask_idx]); } // switches on bit N in the given vector. static really_inline void setbit512(m512 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); m256 *sub; if (n < 256) { sub = &ptr->lo; } else { sub = &ptr->hi; n -= 256; } setbit256(sub, n); } // switches off bit N in the given vector. static really_inline void clearbit512(m512 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); m256 *sub; if (n < 256) { sub = &ptr->lo; } else { sub = &ptr->hi; n -= 256; } clearbit256(sub, n); } // tests bit N in the given vector. static really_inline char testbit512(m512 val, unsigned int n) { assert(n < sizeof(val) * 8); m256 sub; if (n < 256) { sub = val.lo; } else { sub = val.hi; n -= 256; } return testbit256(sub, n); } #endif // HAVE_SIMD_512_BITS #endif // ARCH_COMMON_SIMD_UTILS_H