vectorscan/src/nfa/vermicelli_sse.h
George Wort c7086cb7f1 Add SVE2 support for dvermicelli
Change-Id: I056ef15e162ab6fb1f78964321ce893f4096367e
2021-10-12 11:51:34 +03:00

1284 lines
39 KiB
C

/*
* Copyright (c) 2015-2020, Intel Corporation
* Copyright (c) 2021, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Vermicelli: Intel SSE implementation.
*
* (users should include vermicelli.h instead of this)
*/
#if !defined(HAVE_AVX512)
#define VERM_BOUNDARY 16
#define VERM_TYPE m128
#define VERM_SET_FN set1_16x8
static really_inline
const u8 *vermSearchAligned(m128 chars, const u8 *buf, const u8 *buf_end,
char negate) {
assert((size_t)buf % 16 == 0);
for (; buf + 31 < buf_end; buf += 32) {
m128 data = load128(buf);
u32 z1 = movemask128(eq128(chars, data));
m128 data2 = load128(buf + 16);
u32 z2 = movemask128(eq128(chars, data2));
u32 z = z1 | (z2 << 16);
if (negate) {
z = ~z;
}
if (unlikely(z)) {
const u8 *matchPos = buf + ctz32(z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
}
for (; buf + 15 < buf_end; buf += 16) {
m128 data = load128(buf);
u32 z = movemask128(eq128(chars, data));
if (negate) {
z = ~z & 0xffff;
}
if (unlikely(z)) {
const u8 *matchPos = buf + ctz32(z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
}
return NULL;
}
static really_inline
const u8 *vermSearchAlignedNocase(m128 chars, const u8 *buf,
const u8 *buf_end, char negate) {
assert((size_t)buf % 16 == 0);
m128 casemask = set1_16x8(CASE_CLEAR);
for (; buf + 31 < buf_end; buf += 32) {
m128 data = load128(buf);
u32 z1 = movemask128(eq128(chars, and128(casemask, data)));
m128 data2 = load128(buf + 16);
u32 z2 = movemask128(eq128(chars, and128(casemask, data2)));
u32 z = z1 | (z2 << 16);
if (negate) {
z = ~z;
}
if (unlikely(z)) {
const u8 *matchPos = buf + ctz32(z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
}
for (; buf + 15 < buf_end; buf += 16) {
m128 data = load128(buf);
u32 z = movemask128(eq128(chars, and128(casemask, data)));
if (negate) {
z = ~z & 0xffff;
}
if (unlikely(z)) {
const u8 *matchPos = buf + ctz32(z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *vermUnalign(m128 chars, const u8 *buf, char negate) {
m128 data = loadu128(buf); // unaligned
u32 z = movemask128(eq128(chars, data));
if (negate) {
z = ~z & 0xffff;
}
if (unlikely(z)) {
const u8 *matchPos = buf + ctz32(z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *vermUnalignNocase(m128 chars, const u8 *buf, char negate) {
m128 casemask = set1_16x8(CASE_CLEAR);
m128 data = loadu128(buf); // unaligned
u32 z = movemask128(eq128(chars, and128(casemask, data)));
if (negate) {
z = ~z & 0xffff;
}
if (unlikely(z)) {
const u8 *matchPos = buf + ctz32(z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
return NULL;
}
static really_inline
const u8 *lastMatchOffset(const u8 *buf_end, u32 z) {
assert(z);
return buf_end - 16 + 31 - clz32(z);
}
static really_inline
const u8 *rvermSearchAligned(m128 chars, const u8 *buf, const u8 *buf_end,
char negate) {
assert((size_t)buf_end % 16 == 0);
for (; buf + 15 < buf_end; buf_end -= 16) {
m128 data = load128(buf_end - 16);
u32 z = movemask128(eq128(chars, data));
if (negate) {
z = ~z & 0xffff;
}
if (unlikely(z)) {
const u8 *matchPos = lastMatchOffset(buf_end, z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
}
return NULL;
}
static really_inline
const u8 *rvermSearchAlignedNocase(m128 chars, const u8 *buf,
const u8 *buf_end, char negate) {
assert((size_t)buf_end % 16 == 0);
m128 casemask = set1_16x8(CASE_CLEAR);
for (; buf + 15 < buf_end; buf_end -= 16) {
m128 data = load128(buf_end - 16);
u32 z = movemask128(eq128(chars, and128(casemask, data)));
if (negate) {
z = ~z & 0xffff;
}
if (unlikely(z)) {
const u8 *matchPos = lastMatchOffset(buf_end, z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *rvermUnalign(m128 chars, const u8 *buf, char negate) {
m128 data = loadu128(buf); // unaligned
u32 z = movemask128(eq128(chars, data));
if (negate) {
z = ~z & 0xffff;
}
if (unlikely(z)) {
const u8 *matchPos = lastMatchOffset(buf + 16, z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *rvermUnalignNocase(m128 chars, const u8 *buf, char negate) {
m128 casemask = set1_16x8(CASE_CLEAR);
m128 data = loadu128(buf); // unaligned
u32 z = movemask128(eq128(chars, and128(casemask, data)));
if (negate) {
z = ~z & 0xffff;
}
if (unlikely(z)) {
const u8 *matchPos = lastMatchOffset(buf + 16, z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
return NULL;
}
static really_inline
const u8 *dvermSearchAligned(m128 chars1, m128 chars2, u8 c1, u8 c2,
const u8 *buf, const u8 *buf_end) {
for (; buf + 16 < buf_end; buf += 16) {
m128 data = load128(buf);
u32 z = movemask128(and128(eq128(chars1, data),
rshiftbyte_m128(eq128(chars2, data), 1)));
if (buf[15] == c1 && buf[16] == c2) {
z |= (1 << 15);
}
if (unlikely(z)) {
const u8 *matchPos = buf + ctz32(z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
}
return NULL;
}
static really_inline
const u8 *dvermSearchAlignedNocase(m128 chars1, m128 chars2, u8 c1, u8 c2,
const u8 *buf, const u8 *buf_end) {
assert((size_t)buf % 16 == 0);
m128 casemask = set1_16x8(CASE_CLEAR);
for (; buf + 16 < buf_end; buf += 16) {
m128 data = load128(buf);
m128 v = and128(casemask, data);
u32 z = movemask128(and128(eq128(chars1, v),
rshiftbyte_m128(eq128(chars2, v), 1)));
if ((buf[15] & CASE_CLEAR) == c1 && (buf[16] & CASE_CLEAR) == c2) {
z |= (1 << 15);
}
if (unlikely(z)) {
const u8 *matchPos = buf + ctz32(z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *dvermPrecondition(m128 chars1, m128 chars2, const u8 *buf) {
m128 data = loadu128(buf); // unaligned
u32 z = movemask128(and128(eq128(chars1, data),
rshiftbyte_m128(eq128(chars2, data), 1)));
/* no fixup of the boundary required - the aligned run will pick it up */
if (unlikely(z)) {
const u8 *matchPos = buf + ctz32(z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *dvermPreconditionNocase(m128 chars1, m128 chars2, const u8 *buf) {
/* due to laziness, nonalphas and nocase having interesting behaviour */
m128 casemask = set1_16x8(CASE_CLEAR);
m128 data = loadu128(buf); // unaligned
m128 v = and128(casemask, data);
u32 z = movemask128(and128(eq128(chars1, v),
rshiftbyte_m128(eq128(chars2, v), 1)));
/* no fixup of the boundary required - the aligned run will pick it up */
if (unlikely(z)) {
const u8 *matchPos = buf + ctz32(z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
return NULL;
}
static really_inline
const u8 *rdvermSearchAligned(m128 chars1, m128 chars2, u8 c1, u8 c2,
const u8 *buf, const u8 *buf_end) {
assert((size_t)buf_end % 16 == 0);
for (; buf + 16 < buf_end; buf_end -= 16) {
m128 data = load128(buf_end - 16);
u32 z = movemask128(and128(eq128(chars2, data),
lshiftbyte_m128(eq128(chars1, data), 1)));
if (buf_end[-17] == c1 && buf_end[-16] == c2) {
z |= 1;
}
if (unlikely(z)) {
const u8 *matchPos = lastMatchOffset(buf_end, z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
}
return buf_end;
}
static really_inline
const u8 *rdvermSearchAlignedNocase(m128 chars1, m128 chars2, u8 c1, u8 c2,
const u8 *buf, const u8 *buf_end) {
assert((size_t)buf_end % 16 == 0);
m128 casemask = set1_16x8(CASE_CLEAR);
for (; buf + 16 < buf_end; buf_end -= 16) {
m128 data = load128(buf_end - 16);
m128 v = and128(casemask, data);
u32 z = movemask128(and128(eq128(chars2, v),
lshiftbyte_m128(eq128(chars1, v), 1)));
if ((buf_end[-17] & CASE_CLEAR) == c1
&& (buf_end[-16] & CASE_CLEAR) == c2) {
z |= 1;
}
if (unlikely(z)) {
const u8 *matchPos = lastMatchOffset(buf_end, z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
}
return buf_end;
}
// returns NULL if not found
static really_inline
const u8 *rdvermPrecondition(m128 chars1, m128 chars2, const u8 *buf) {
m128 data = loadu128(buf);
u32 z = movemask128(and128(eq128(chars2, data),
lshiftbyte_m128(eq128(chars1, data), 1)));
/* no fixup of the boundary required - the aligned run will pick it up */
if (unlikely(z)) {
const u8 *matchPos = lastMatchOffset(buf + 16, z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *rdvermPreconditionNocase(m128 chars1, m128 chars2, const u8 *buf) {
/* due to laziness, nonalphas and nocase having interesting behaviour */
m128 casemask = set1_16x8(CASE_CLEAR);
m128 data = loadu128(buf);
m128 v = and128(casemask, data);
u32 z = movemask128(and128(eq128(chars2, v),
lshiftbyte_m128(eq128(chars1, v), 1)));
/* no fixup of the boundary required - the aligned run will pick it up */
if (unlikely(z)) {
const u8 *matchPos = lastMatchOffset(buf + 16, z);
DEBUG_PRINTF("match pos %p\n", matchPos);
return matchPos;
}
return NULL;
}
#else // HAVE_AVX512
#define VERM_BOUNDARY 64
#define VERM_TYPE m512
#define VERM_SET_FN set1_64x8
static really_inline
const u8 *vermMini(m512 chars, const u8 *buf, const u8 *buf_end, char negate) {
uintptr_t len = buf_end - buf;
__mmask64 mask = (~0ULL) >> (64 - len);
m512 data = loadu_maskz_m512(mask, buf);
u64a z = eq512mask(chars, data);
if (negate) {
z = ~z & mask;
}
z &= mask;
if (unlikely(z)) {
return buf + ctz64(z);
}
return NULL;
}
static really_inline
const u8 *vermMiniNocase(m512 chars, const u8 *buf, const u8 *buf_end,
char negate) {
uintptr_t len = buf_end - buf;
__mmask64 mask = (~0ULL) >> (64 - len);
m512 data = loadu_maskz_m512(mask, buf);
m512 casemask = set1_64x8(CASE_CLEAR);
m512 v = and512(casemask, data);
u64a z = eq512mask(chars, v);
if (negate) {
z = ~z & mask;
}
z &= mask;
if (unlikely(z)) {
return buf + ctz64(z);
}
return NULL;
}
static really_inline
const u8 *vermSearchAligned(m512 chars, const u8 *buf, const u8 *buf_end,
char negate) {
assert((size_t)buf % 64 == 0);
for (; buf + 63 < buf_end; buf += 64) {
m512 data = load512(buf);
u64a z = eq512mask(chars, data);
if (negate) {
z = ~z & ~0ULL;
}
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
}
return NULL;
}
static really_inline
const u8 *vermSearchAlignedNocase(m512 chars, const u8 *buf,
const u8 *buf_end, char negate) {
assert((size_t)buf % 64 == 0);
m512 casemask = set1_64x8(CASE_CLEAR);
for (; buf + 63 < buf_end; buf += 64) {
m512 data = load512(buf);
u64a z = eq512mask(chars, and512(casemask, data));
if (negate) {
z = ~z & ~0ULL;
}
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *vermUnalign(m512 chars, const u8 *buf, char negate) {
m512 data = loadu512(buf); // unaligned
u64a z = eq512mask(chars, data);
if (negate) {
z = ~z & ~0ULL;
}
if (unlikely(z)) {
return buf + ctz64(z);
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *vermUnalignNocase(m512 chars, const u8 *buf, char negate) {
m512 casemask = set1_64x8(CASE_CLEAR);
m512 data = loadu512(buf); // unaligned
u64a z = eq512mask(chars, and512(casemask, data));
if (negate) {
z = ~z & ~0ULL;
}
if (unlikely(z)) {
return buf + ctz64(z);
}
return NULL;
}
static really_inline
const u8 *dvermMini(m512 chars1, m512 chars2, const u8 *buf,
const u8 *buf_end) {
uintptr_t len = buf_end - buf;
__mmask64 mask = (~0ULL) >> (64 - len);
m512 data = loadu_maskz_m512(mask, buf);
u64a z = eq512mask(chars1, data) & (eq512mask(chars2, data) >> 1);
z &= mask;
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
return NULL;
}
static really_inline
const u8 *dvermMiniNocase(m512 chars1, m512 chars2, const u8 *buf,
const u8 *buf_end) {
uintptr_t len = buf_end - buf;
__mmask64 mask = (~0ULL) >> (64 - len);
m512 data = loadu_maskz_m512(mask, buf);
m512 casemask = set1_64x8(CASE_CLEAR);
m512 v = and512(casemask, data);
u64a z = eq512mask(chars1, v) & (eq512mask(chars2, v) >> 1);
z &= mask;
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
return NULL;
}
static really_inline
const u8 *dvermMiniMasked(m512 chars1, m512 chars2, m512 mask1, m512 mask2,
const u8 *buf, const u8 *buf_end) {
uintptr_t len = buf_end - buf;
__mmask64 mask = (~0ULL) >> (64 - len);
m512 data = loadu_maskz_m512(mask, buf);
m512 v1 = and512(data, mask1);
m512 v2 = and512(data, mask2);
u64a z = eq512mask(chars1, v1) & (eq512mask(chars2, v2) >> 1);
z &= mask;
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
return NULL;
}
static really_inline
const u8 *dvermSearchAligned(m512 chars1, m512 chars2, u8 c1, u8 c2,
const u8 *buf, const u8 *buf_end) {
for (; buf + 64 < buf_end; buf += 64) {
m512 data = load512(buf);
u64a z = eq512mask(chars1, data) & (eq512mask(chars2, data) >> 1);
if (buf[63] == c1 && buf[64] == c2) {
z |= (1ULL << 63);
}
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
}
return NULL;
}
static really_inline
const u8 *dvermSearchAlignedNocase(m512 chars1, m512 chars2, u8 c1, u8 c2,
const u8 *buf, const u8 *buf_end) {
assert((size_t)buf % 64 == 0);
m512 casemask = set1_64x8(CASE_CLEAR);
for (; buf + 64 < buf_end; buf += 64) {
m512 data = load512(buf);
m512 v = and512(casemask, data);
u64a z = eq512mask(chars1, v) & (eq512mask(chars2, v) >> 1);
if ((buf[63] & CASE_CLEAR) == c1 && (buf[64] & CASE_CLEAR) == c2) {
z |= (1ULL << 63);
}
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
}
return NULL;
}
static really_inline
const u8 *dvermSearchAlignedMasked(m512 chars1, m512 chars2,
m512 mask1, m512 mask2, u8 c1, u8 c2, u8 m1,
u8 m2, const u8 *buf, const u8 *buf_end) {
assert((size_t)buf % 64 == 0);
for (; buf + 64 < buf_end; buf += 64) {
m512 data = load512(buf);
m512 v1 = and512(data, mask1);
m512 v2 = and512(data, mask2);
u64a z = eq512mask(chars1, v1) & (eq512mask(chars2, v2) >> 1);
if ((buf[63] & m1) == c1 && (buf[64] & m2) == c2) {
z |= (1ULL << 63);
}
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *dvermPrecondition(m512 chars1, m512 chars2, const u8 *buf) {
m512 data = loadu512(buf); // unaligned
u64a z = eq512mask(chars1, data) & (eq512mask(chars2, data) >> 1);
/* no fixup of the boundary required - the aligned run will pick it up */
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *dvermPreconditionNocase(m512 chars1, m512 chars2, const u8 *buf) {
/* due to laziness, nonalphas and nocase having interesting behaviour */
m512 casemask = set1_64x8(CASE_CLEAR);
m512 data = loadu512(buf); // unaligned
m512 v = and512(casemask, data);
u64a z = eq512mask(chars1, v) & (eq512mask(chars2, v) >> 1);
/* no fixup of the boundary required - the aligned run will pick it up */
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *dvermPreconditionMasked(m512 chars1, m512 chars2,
m512 mask1, m512 mask2, const u8 *buf) {
m512 data = loadu512(buf); // unaligned
m512 v1 = and512(data, mask1);
m512 v2 = and512(data, mask2);
u64a z = eq512mask(chars1, v1) & (eq512mask(chars2, v2) >> 1);
/* no fixup of the boundary required - the aligned run will pick it up */
if (unlikely(z)) {
u64a pos = ctz64(z);
return buf + pos;
}
return NULL;
}
static really_inline
const u8 *lastMatchOffset(const u8 *buf_end, u64a z) {
assert(z);
return buf_end - 64 + 63 - clz64(z);
}
static really_inline
const u8 *rvermMini(m512 chars, const u8 *buf, const u8 *buf_end, char negate) {
uintptr_t len = buf_end - buf;
__mmask64 mask = (~0ULL) >> (64 - len);
m512 data = loadu_maskz_m512(mask, buf);
u64a z = eq512mask(chars, data);
if (negate) {
z = ~z & mask;
}
z &= mask;
if (unlikely(z)) {
return lastMatchOffset(buf + 64, z);
}
return NULL;
}
static really_inline
const u8 *rvermMiniNocase(m512 chars, const u8 *buf, const u8 *buf_end,
char negate) {
uintptr_t len = buf_end - buf;
__mmask64 mask = (~0ULL) >> (64 - len);
m512 data = loadu_maskz_m512(mask, buf);
m512 casemask = set1_64x8(CASE_CLEAR);
m512 v = and512(casemask, data);
u64a z = eq512mask(chars, v);
if (negate) {
z = ~z & mask;
}
z &= mask;
if (unlikely(z)) {
return lastMatchOffset(buf + 64, z);
}
return NULL;
}
static really_inline
const u8 *rvermSearchAligned(m512 chars, const u8 *buf, const u8 *buf_end,
char negate) {
assert((size_t)buf_end % 64 == 0);
for (; buf + 63 < buf_end; buf_end -= 64) {
m512 data = load512(buf_end - 64);
u64a z = eq512mask(chars, data);
if (negate) {
z = ~z & ~0ULL;
}
if (unlikely(z)) {
return lastMatchOffset(buf_end, z);
}
}
return NULL;
}
static really_inline
const u8 *rvermSearchAlignedNocase(m512 chars, const u8 *buf,
const u8 *buf_end, char negate) {
assert((size_t)buf_end % 64 == 0);
m512 casemask = set1_64x8(CASE_CLEAR);
for (; buf + 63 < buf_end; buf_end -= 64) {
m512 data = load512(buf_end - 64);
u64a z = eq512mask(chars, and512(casemask, data));
if (negate) {
z = ~z & ~0ULL;
}
if (unlikely(z)) {
return lastMatchOffset(buf_end, z);
}
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *rvermUnalign(m512 chars, const u8 *buf, char negate) {
m512 data = loadu512(buf); // unaligned
u64a z = eq512mask(chars, data);
if (negate) {
z = ~z & ~0ULL;
}
if (unlikely(z)) {
return lastMatchOffset(buf + 64, z);
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *rvermUnalignNocase(m512 chars, const u8 *buf, char negate) {
m512 casemask = set1_64x8(CASE_CLEAR);
m512 data = loadu512(buf); // unaligned
u64a z = eq512mask(chars, and512(casemask, data));
if (negate) {
z = ~z & ~0ULL;
}
if (unlikely(z)) {
return lastMatchOffset(buf + 64, z);
}
return NULL;
}
static really_inline
const u8 *rdvermMini(m512 chars1, m512 chars2, const u8 *buf,
const u8 *buf_end) {
uintptr_t len = buf_end - buf;
__mmask64 mask = (~0ULL) >> (64 - len);
m512 data = loadu_maskz_m512(mask, buf);
u64a z = eq512mask(chars2, data) & (eq512mask(chars1, data) << 1);
z &= mask;
if (unlikely(z)) {
return lastMatchOffset(buf + 64, z);
}
return NULL;
}
static really_inline
const u8 *rdvermMiniNocase(m512 chars1, m512 chars2, const u8 *buf,
const u8 *buf_end) {
uintptr_t len = buf_end - buf;
__mmask64 mask = (~0ULL) >> (64 - len);
m512 data = loadu_maskz_m512(mask, buf);
m512 casemask = set1_64x8(CASE_CLEAR);
m512 v = and512(casemask, data);
u64a z = eq512mask(chars2, v) & (eq512mask(chars1, v) << 1);
z &= mask;
if (unlikely(z)) {
return lastMatchOffset(buf + 64, z);
}
return NULL;
}
static really_inline
const u8 *rdvermSearchAligned(m512 chars1, m512 chars2, u8 c1, u8 c2,
const u8 *buf, const u8 *buf_end) {
assert((size_t)buf_end % 64 == 0);
for (; buf + 64 < buf_end; buf_end -= 64) {
m512 data = load512(buf_end - 64);
u64a z = eq512mask(chars2, data) & (eq512mask(chars1, data) << 1);
if (buf_end[-65] == c1 && buf_end[-64] == c2) {
z |= 1;
}
if (unlikely(z)) {
return lastMatchOffset(buf_end, z);
}
}
return buf_end;
}
static really_inline
const u8 *rdvermSearchAlignedNocase(m512 chars1, m512 chars2, u8 c1, u8 c2,
const u8 *buf, const u8 *buf_end) {
assert((size_t)buf_end % 64 == 0);
m512 casemask = set1_64x8(CASE_CLEAR);
for (; buf + 64 < buf_end; buf_end -= 64) {
m512 data = load512(buf_end - 64);
m512 v = and512(casemask, data);
u64a z = eq512mask(chars2, v) & (eq512mask(chars1, v) << 1);
if ((buf_end[-65] & CASE_CLEAR) == c1
&& (buf_end[-64] & CASE_CLEAR) == c2) {
z |= 1;
}
if (unlikely(z)) {
return lastMatchOffset(buf_end, z);
}
}
return buf_end;
}
// returns NULL if not found
static really_inline
const u8 *rdvermPrecondition(m512 chars1, m512 chars2, const u8 *buf) {
m512 data = loadu512(buf);
u64a z = eq512mask(chars2, data) & (eq512mask(chars1, data) << 1);
// no fixup of the boundary required - the aligned run will pick it up
if (unlikely(z)) {
return lastMatchOffset(buf + 64, z);
}
return NULL;
}
// returns NULL if not found
static really_inline
const u8 *rdvermPreconditionNocase(m512 chars1, m512 chars2, const u8 *buf) {
// due to laziness, nonalphas and nocase having interesting behaviour
m512 casemask = set1_64x8(CASE_CLEAR);
m512 data = loadu512(buf);
m512 v = and512(casemask, data);
u64a z = eq512mask(chars2, v) & (eq512mask(chars1, v) << 1);
// no fixup of the boundary required - the aligned run will pick it up
if (unlikely(z)) {
return lastMatchOffset(buf + 64, z);
}
return NULL;
}
#endif // HAVE_AVX512
static really_inline
const u8 *vermicelliExec(char c, char nocase, const u8 *buf,
const u8 *buf_end) {
DEBUG_PRINTF("verm scan %s\\x%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
assert(buf < buf_end);
VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */
// Handle small scans.
#ifdef HAVE_AVX512
if (buf_end - buf <= VERM_BOUNDARY) {
const u8 *ptr = nocase
? vermMiniNocase(chars, buf, buf_end, 0)
: vermMini(chars, buf, buf_end, 0);
if (ptr) {
return ptr;
}
return buf_end;
}
#else
if (buf_end - buf < VERM_BOUNDARY) {
for (; buf < buf_end; buf++) {
char cur = (char)*buf;
if (nocase) {
cur &= CASE_CLEAR;
}
if (cur == c) {
break;
}
}
return buf;
}
#endif
uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY;
if (min) {
// Input isn't aligned, so we need to run one iteration with an
// unaligned load, then skip buf forward to the next aligned address.
// There's some small overlap here, but we don't mind scanning it twice
// if we can do it quickly, do we?
const u8 *ptr = nocase ? vermUnalignNocase(chars, buf, 0)
: vermUnalign(chars, buf, 0);
if (ptr) {
return ptr;
}
buf += VERM_BOUNDARY - min;
assert(buf < buf_end);
}
// Aligned loops from here on in
const u8 *ptr = nocase ? vermSearchAlignedNocase(chars, buf, buf_end - 1, 0)
: vermSearchAligned(chars, buf, buf_end - 1, 0);
if (ptr) {
return ptr;
}
// Tidy up the mess at the end
ptr = nocase ? vermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 0)
: vermUnalign(chars, buf_end - VERM_BOUNDARY, 0);
return ptr ? ptr : buf_end;
}
/* like vermicelliExec except returns the address of the first character which
* is not c */
static really_inline
const u8 *nvermicelliExec(char c, char nocase, const u8 *buf,
const u8 *buf_end) {
DEBUG_PRINTF("nverm scan %s\\x%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
assert(buf < buf_end);
VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */
// Handle small scans.
#ifdef HAVE_AVX512
if (buf_end - buf <= VERM_BOUNDARY) {
const u8 *ptr = nocase
? vermMiniNocase(chars, buf, buf_end, 1)
: vermMini(chars, buf, buf_end, 1);
if (ptr) {
return ptr;
}
return buf_end;
}
#else
if (buf_end - buf < VERM_BOUNDARY) {
for (; buf < buf_end; buf++) {
char cur = (char)*buf;
if (nocase) {
cur &= CASE_CLEAR;
}
if (cur != c) {
break;
}
}
return buf;
}
#endif
size_t min = (size_t)buf % VERM_BOUNDARY;
if (min) {
// Input isn't aligned, so we need to run one iteration with an
// unaligned load, then skip buf forward to the next aligned address.
// There's some small overlap here, but we don't mind scanning it twice
// if we can do it quickly, do we?
const u8 *ptr = nocase ? vermUnalignNocase(chars, buf, 1)
: vermUnalign(chars, buf, 1);
if (ptr) {
return ptr;
}
buf += VERM_BOUNDARY - min;
assert(buf < buf_end);
}
// Aligned loops from here on in
const u8 *ptr = nocase ? vermSearchAlignedNocase(chars, buf, buf_end - 1, 1)
: vermSearchAligned(chars, buf, buf_end - 1, 1);
if (ptr) {
return ptr;
}
// Tidy up the mess at the end
ptr = nocase ? vermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 1)
: vermUnalign(chars, buf_end - VERM_BOUNDARY, 1);
return ptr ? ptr : buf_end;
}
// Reverse vermicelli scan. Provides exact semantics and returns (buf - 1) if
// character not found.
static really_inline
const u8 *rvermicelliExec(char c, char nocase, const u8 *buf,
const u8 *buf_end) {
DEBUG_PRINTF("rev verm scan %s\\x%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
assert(buf < buf_end);
VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */
// Handle small scans.
#ifdef HAVE_AVX512
if (buf_end - buf <= VERM_BOUNDARY) {
const u8 *ptr = nocase
? rvermMiniNocase(chars, buf, buf_end, 0)
: rvermMini(chars, buf, buf_end, 0);
if (ptr) {
return ptr;
}
return buf - 1;
}
#else
if (buf_end - buf < VERM_BOUNDARY) {
for (buf_end--; buf_end >= buf; buf_end--) {
char cur = (char)*buf_end;
if (nocase) {
cur &= CASE_CLEAR;
}
if (cur == c) {
break;
}
}
return buf_end;
}
#endif
size_t min = (size_t)buf_end % VERM_BOUNDARY;
if (min) {
// Input isn't aligned, so we need to run one iteration with an
// unaligned load, then skip buf backward to the next aligned address.
// There's some small overlap here, but we don't mind scanning it twice
// if we can do it quickly, do we?
const u8 *ptr = nocase ? rvermUnalignNocase(chars,
buf_end - VERM_BOUNDARY,
0)
: rvermUnalign(chars, buf_end - VERM_BOUNDARY,
0);
if (ptr) {
return ptr;
}
buf_end -= min;
if (buf >= buf_end) {
return buf_end;
}
}
// Aligned loops from here on in.
const u8 *ptr = nocase ? rvermSearchAlignedNocase(chars, buf, buf_end, 0)
: rvermSearchAligned(chars, buf, buf_end, 0);
if (ptr) {
return ptr;
}
// Tidy up the mess at the end, return buf - 1 if not found.
ptr = nocase ? rvermUnalignNocase(chars, buf, 0)
: rvermUnalign(chars, buf, 0);
return ptr ? ptr : buf - 1;
}
/* like rvermicelliExec except returns the address of the last character which
* is not c */
static really_inline
const u8 *rnvermicelliExec(char c, char nocase, const u8 *buf,
const u8 *buf_end) {
DEBUG_PRINTF("rev verm scan %s\\x%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
assert(buf < buf_end);
VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */
// Handle small scans.
#ifdef HAVE_AVX512
if (buf_end - buf <= VERM_BOUNDARY) {
const u8 *ptr = nocase
? rvermMiniNocase(chars, buf, buf_end, 1)
: rvermMini(chars, buf, buf_end, 1);
if (ptr) {
return ptr;
}
return buf - 1;
}
#else
if (buf_end - buf < VERM_BOUNDARY) {
for (buf_end--; buf_end >= buf; buf_end--) {
char cur = (char)*buf_end;
if (nocase) {
cur &= CASE_CLEAR;
}
if (cur != c) {
break;
}
}
return buf_end;
}
#endif
size_t min = (size_t)buf_end % VERM_BOUNDARY;
if (min) {
// Input isn't aligned, so we need to run one iteration with an
// unaligned load, then skip buf backward to the next aligned address.
// There's some small overlap here, but we don't mind scanning it twice
// if we can do it quickly, do we?
const u8 *ptr = nocase ? rvermUnalignNocase(chars,
buf_end - VERM_BOUNDARY,
1)
: rvermUnalign(chars, buf_end - VERM_BOUNDARY,
1);
if (ptr) {
return ptr;
}
buf_end -= min;
if (buf >= buf_end) {
return buf_end;
}
}
// Aligned loops from here on in.
const u8 *ptr = nocase ? rvermSearchAlignedNocase(chars, buf, buf_end, 1)
: rvermSearchAligned(chars, buf, buf_end, 1);
if (ptr) {
return ptr;
}
// Tidy up the mess at the end, return buf - 1 if not found.
ptr = nocase ? rvermUnalignNocase(chars, buf, 1)
: rvermUnalign(chars, buf, 1);
return ptr ? ptr : buf - 1;
}
static really_inline
const u8 *vermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf,
const u8 *buf_end) {
DEBUG_PRINTF("double verm scan %s\\x%02hhx%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c1, c2, (size_t)(buf_end - buf));
assert(buf < buf_end);
VERM_TYPE chars1 = VERM_SET_FN(c1); /* nocase already uppercase */
VERM_TYPE chars2 = VERM_SET_FN(c2); /* nocase already uppercase */
#ifdef HAVE_AVX512
if (buf_end - buf <= VERM_BOUNDARY) {
const u8 *ptr = nocase
? dvermMiniNocase(chars1, chars2, buf, buf_end)
: dvermMini(chars1, chars2, buf, buf_end);
if (ptr) {
return ptr;
}
/* check for partial match at end */
u8 mask = nocase ? CASE_CLEAR : 0xff;
if ((buf_end[-1] & mask) == (u8)c1) {
DEBUG_PRINTF("partial!!!\n");
return buf_end - 1;
}
return buf_end;
}
#endif
assert((buf_end - buf) >= VERM_BOUNDARY);
uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY;
if (min) {
// Input isn't aligned, so we need to run one iteration with an
// unaligned load, then skip buf forward to the next aligned address.
// There's some small overlap here, but we don't mind scanning it twice
// if we can do it quickly, do we?
const u8 *ptr = nocase
? dvermPreconditionNocase(chars1, chars2, buf)
: dvermPrecondition(chars1, chars2, buf);
if (ptr) {
return ptr;
}
buf += VERM_BOUNDARY - min;
assert(buf < buf_end);
}
// Aligned loops from here on in
const u8 *ptr = nocase ? dvermSearchAlignedNocase(chars1, chars2, c1, c2,
buf, buf_end)
: dvermSearchAligned(chars1, chars2, c1, c2, buf,
buf_end);
if (ptr) {
return ptr;
}
// Tidy up the mess at the end
ptr = nocase ? dvermPreconditionNocase(chars1, chars2,
buf_end - VERM_BOUNDARY)
: dvermPrecondition(chars1, chars2, buf_end - VERM_BOUNDARY);
if (ptr) {
return ptr;
}
/* check for partial match at end */
u8 mask = nocase ? CASE_CLEAR : 0xff;
if ((buf_end[-1] & mask) == (u8)c1) {
DEBUG_PRINTF("partial!!!\n");
return buf_end - 1;
}
return buf_end;
}
/* returns highest offset of c2 (NOTE: not c1) */
static really_inline
const u8 *rvermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf,
const u8 *buf_end) {
DEBUG_PRINTF("rev double verm scan %s\\x%02hhx%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c1, c2, (size_t)(buf_end - buf));
assert(buf < buf_end);
VERM_TYPE chars1 = VERM_SET_FN(c1); /* nocase already uppercase */
VERM_TYPE chars2 = VERM_SET_FN(c2); /* nocase already uppercase */
#ifdef HAVE_AVX512
if (buf_end - buf <= VERM_BOUNDARY) {
const u8 *ptr = nocase
? rdvermMiniNocase(chars1, chars2, buf, buf_end)
: rdvermMini(chars1, chars2, buf, buf_end);
if (ptr) {
return ptr;
}
// check for partial match at end ???
return buf - 1;
}
#endif
assert((buf_end - buf) >= VERM_BOUNDARY);
size_t min = (size_t)buf_end % VERM_BOUNDARY;
if (min) {
// input not aligned, so we need to run one iteration with an unaligned
// load, then skip buf forward to the next aligned address. There's
// some small overlap here, but we don't mind scanning it twice if we
// can do it quickly, do we?
const u8 *ptr = nocase ? rdvermPreconditionNocase(chars1, chars2,
buf_end - VERM_BOUNDARY)
: rdvermPrecondition(chars1, chars2,
buf_end - VERM_BOUNDARY);
if (ptr) {
return ptr;
}
buf_end -= min;
if (buf >= buf_end) {
return buf_end;
}
}
// Aligned loops from here on in
if (nocase) {
return rdvermSearchAlignedNocase(chars1, chars2, c1, c2, buf, buf_end);
} else {
return rdvermSearchAligned(chars1, chars2, c1, c2, buf, buf_end);
}
}