/* * Copyright (c) 2015-2020, Intel Corporation * Copyright (c) 2021, Arm Limited * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \file * \brief Vermicelli: Intel SSE implementation. * * (users should include vermicelli.h instead of this) */ #if !defined(HAVE_AVX512) #define VERM_BOUNDARY 16 #define VERM_TYPE m128 #define VERM_SET_FN set1_16x8 static really_inline const u8 *vermSearchAligned(m128 chars, const u8 *buf, const u8 *buf_end, char negate) { assert((size_t)buf % 16 == 0); for (; buf + 31 < buf_end; buf += 32) { m128 data = load128(buf); u32 z1 = movemask128(eq128(chars, data)); m128 data2 = load128(buf + 16); u32 z2 = movemask128(eq128(chars, data2)); u32 z = z1 | (z2 << 16); if (negate) { z = ~z; } if (unlikely(z)) { const u8 *matchPos = buf + ctz32(z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } } for (; buf + 15 < buf_end; buf += 16) { m128 data = load128(buf); u32 z = movemask128(eq128(chars, data)); if (negate) { z = ~z & 0xffff; } if (unlikely(z)) { const u8 *matchPos = buf + ctz32(z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } } return NULL; } static really_inline const u8 *vermSearchAlignedNocase(m128 chars, const u8 *buf, const u8 *buf_end, char negate) { assert((size_t)buf % 16 == 0); m128 casemask = set1_16x8(CASE_CLEAR); for (; buf + 31 < buf_end; buf += 32) { m128 data = load128(buf); u32 z1 = movemask128(eq128(chars, and128(casemask, data))); m128 data2 = load128(buf + 16); u32 z2 = movemask128(eq128(chars, and128(casemask, data2))); u32 z = z1 | (z2 << 16); if (negate) { z = ~z; } if (unlikely(z)) { const u8 *matchPos = buf + ctz32(z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } } for (; buf + 15 < buf_end; buf += 16) { m128 data = load128(buf); u32 z = movemask128(eq128(chars, and128(casemask, data))); if (negate) { z = ~z & 0xffff; } if (unlikely(z)) { const u8 *matchPos = buf + ctz32(z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } } return NULL; } // returns NULL if not found static really_inline const u8 *vermUnalign(m128 chars, const u8 *buf, char negate) { m128 data = loadu128(buf); // unaligned u32 z = movemask128(eq128(chars, data)); if (negate) { z = ~z & 0xffff; } if (unlikely(z)) { const u8 *matchPos = buf + ctz32(z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } return NULL; } // returns NULL if not found static really_inline const u8 *vermUnalignNocase(m128 chars, const u8 *buf, char negate) { m128 casemask = set1_16x8(CASE_CLEAR); m128 data = loadu128(buf); // unaligned u32 z = movemask128(eq128(chars, and128(casemask, data))); if (negate) { z = ~z & 0xffff; } if (unlikely(z)) { const u8 *matchPos = buf + ctz32(z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } return NULL; } static really_inline const u8 *lastMatchOffset(const u8 *buf_end, u32 z) { assert(z); return buf_end - 16 + 31 - clz32(z); } static really_inline const u8 *rvermSearchAligned(m128 chars, const u8 *buf, const u8 *buf_end, char negate) { assert((size_t)buf_end % 16 == 0); for (; buf + 15 < buf_end; buf_end -= 16) { m128 data = load128(buf_end - 16); u32 z = movemask128(eq128(chars, data)); if (negate) { z = ~z & 0xffff; } if (unlikely(z)) { const u8 *matchPos = lastMatchOffset(buf_end, z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } } return NULL; } static really_inline const u8 *rvermSearchAlignedNocase(m128 chars, const u8 *buf, const u8 *buf_end, char negate) { assert((size_t)buf_end % 16 == 0); m128 casemask = set1_16x8(CASE_CLEAR); for (; buf + 15 < buf_end; buf_end -= 16) { m128 data = load128(buf_end - 16); u32 z = movemask128(eq128(chars, and128(casemask, data))); if (negate) { z = ~z & 0xffff; } if (unlikely(z)) { const u8 *matchPos = lastMatchOffset(buf_end, z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } } return NULL; } // returns NULL if not found static really_inline const u8 *rvermUnalign(m128 chars, const u8 *buf, char negate) { m128 data = loadu128(buf); // unaligned u32 z = movemask128(eq128(chars, data)); if (negate) { z = ~z & 0xffff; } if (unlikely(z)) { const u8 *matchPos = lastMatchOffset(buf + 16, z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } return NULL; } // returns NULL if not found static really_inline const u8 *rvermUnalignNocase(m128 chars, const u8 *buf, char negate) { m128 casemask = set1_16x8(CASE_CLEAR); m128 data = loadu128(buf); // unaligned u32 z = movemask128(eq128(chars, and128(casemask, data))); if (negate) { z = ~z & 0xffff; } if (unlikely(z)) { const u8 *matchPos = lastMatchOffset(buf + 16, z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } return NULL; } static really_inline const u8 *dvermSearchAligned(m128 chars1, m128 chars2, u8 c1, u8 c2, const u8 *buf, const u8 *buf_end) { for (; buf + 16 < buf_end; buf += 16) { m128 data = load128(buf); u32 z = movemask128(and128(eq128(chars1, data), rshiftbyte_m128(eq128(chars2, data), 1))); if (buf[15] == c1 && buf[16] == c2) { z |= (1 << 15); } if (unlikely(z)) { const u8 *matchPos = buf + ctz32(z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } } return NULL; } static really_inline const u8 *dvermSearchAlignedNocase(m128 chars1, m128 chars2, u8 c1, u8 c2, const u8 *buf, const u8 *buf_end) { assert((size_t)buf % 16 == 0); m128 casemask = set1_16x8(CASE_CLEAR); for (; buf + 16 < buf_end; buf += 16) { m128 data = load128(buf); m128 v = and128(casemask, data); u32 z = movemask128(and128(eq128(chars1, v), rshiftbyte_m128(eq128(chars2, v), 1))); if ((buf[15] & CASE_CLEAR) == c1 && (buf[16] & CASE_CLEAR) == c2) { z |= (1 << 15); } if (unlikely(z)) { const u8 *matchPos = buf + ctz32(z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } } return NULL; } // returns NULL if not found static really_inline const u8 *dvermPrecondition(m128 chars1, m128 chars2, const u8 *buf) { m128 data = loadu128(buf); // unaligned u32 z = movemask128(and128(eq128(chars1, data), rshiftbyte_m128(eq128(chars2, data), 1))); /* no fixup of the boundary required - the aligned run will pick it up */ if (unlikely(z)) { const u8 *matchPos = buf + ctz32(z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } return NULL; } // returns NULL if not found static really_inline const u8 *dvermPreconditionNocase(m128 chars1, m128 chars2, const u8 *buf) { /* due to laziness, nonalphas and nocase having interesting behaviour */ m128 casemask = set1_16x8(CASE_CLEAR); m128 data = loadu128(buf); // unaligned m128 v = and128(casemask, data); u32 z = movemask128(and128(eq128(chars1, v), rshiftbyte_m128(eq128(chars2, v), 1))); /* no fixup of the boundary required - the aligned run will pick it up */ if (unlikely(z)) { const u8 *matchPos = buf + ctz32(z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } return NULL; } static really_inline const u8 *rdvermSearchAligned(m128 chars1, m128 chars2, u8 c1, u8 c2, const u8 *buf, const u8 *buf_end) { assert((size_t)buf_end % 16 == 0); for (; buf + 16 < buf_end; buf_end -= 16) { m128 data = load128(buf_end - 16); u32 z = movemask128(and128(eq128(chars2, data), lshiftbyte_m128(eq128(chars1, data), 1))); if (buf_end[-17] == c1 && buf_end[-16] == c2) { z |= 1; } if (unlikely(z)) { const u8 *matchPos = lastMatchOffset(buf_end, z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } } return buf_end; } static really_inline const u8 *rdvermSearchAlignedNocase(m128 chars1, m128 chars2, u8 c1, u8 c2, const u8 *buf, const u8 *buf_end) { assert((size_t)buf_end % 16 == 0); m128 casemask = set1_16x8(CASE_CLEAR); for (; buf + 16 < buf_end; buf_end -= 16) { m128 data = load128(buf_end - 16); m128 v = and128(casemask, data); u32 z = movemask128(and128(eq128(chars2, v), lshiftbyte_m128(eq128(chars1, v), 1))); if ((buf_end[-17] & CASE_CLEAR) == c1 && (buf_end[-16] & CASE_CLEAR) == c2) { z |= 1; } if (unlikely(z)) { const u8 *matchPos = lastMatchOffset(buf_end, z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } } return buf_end; } // returns NULL if not found static really_inline const u8 *rdvermPrecondition(m128 chars1, m128 chars2, const u8 *buf) { m128 data = loadu128(buf); u32 z = movemask128(and128(eq128(chars2, data), lshiftbyte_m128(eq128(chars1, data), 1))); /* no fixup of the boundary required - the aligned run will pick it up */ if (unlikely(z)) { const u8 *matchPos = lastMatchOffset(buf + 16, z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } return NULL; } // returns NULL if not found static really_inline const u8 *rdvermPreconditionNocase(m128 chars1, m128 chars2, const u8 *buf) { /* due to laziness, nonalphas and nocase having interesting behaviour */ m128 casemask = set1_16x8(CASE_CLEAR); m128 data = loadu128(buf); m128 v = and128(casemask, data); u32 z = movemask128(and128(eq128(chars2, v), lshiftbyte_m128(eq128(chars1, v), 1))); /* no fixup of the boundary required - the aligned run will pick it up */ if (unlikely(z)) { const u8 *matchPos = lastMatchOffset(buf + 16, z); DEBUG_PRINTF("match pos %p\n", matchPos); return matchPos; } return NULL; } #else // HAVE_AVX512 #define VERM_BOUNDARY 64 #define VERM_TYPE m512 #define VERM_SET_FN set1_64x8 static really_inline const u8 *vermMini(m512 chars, const u8 *buf, const u8 *buf_end, char negate) { uintptr_t len = buf_end - buf; __mmask64 mask = (~0ULL) >> (64 - len); m512 data = loadu_maskz_m512(mask, buf); u64a z = eq512mask(chars, data); if (negate) { z = ~z & mask; } z &= mask; if (unlikely(z)) { return buf + ctz64(z); } return NULL; } static really_inline const u8 *vermMiniNocase(m512 chars, const u8 *buf, const u8 *buf_end, char negate) { uintptr_t len = buf_end - buf; __mmask64 mask = (~0ULL) >> (64 - len); m512 data = loadu_maskz_m512(mask, buf); m512 casemask = set1_64x8(CASE_CLEAR); m512 v = and512(casemask, data); u64a z = eq512mask(chars, v); if (negate) { z = ~z & mask; } z &= mask; if (unlikely(z)) { return buf + ctz64(z); } return NULL; } static really_inline const u8 *vermSearchAligned(m512 chars, const u8 *buf, const u8 *buf_end, char negate) { assert((size_t)buf % 64 == 0); for (; buf + 63 < buf_end; buf += 64) { m512 data = load512(buf); u64a z = eq512mask(chars, data); if (negate) { z = ~z & ~0ULL; } if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } } return NULL; } static really_inline const u8 *vermSearchAlignedNocase(m512 chars, const u8 *buf, const u8 *buf_end, char negate) { assert((size_t)buf % 64 == 0); m512 casemask = set1_64x8(CASE_CLEAR); for (; buf + 63 < buf_end; buf += 64) { m512 data = load512(buf); u64a z = eq512mask(chars, and512(casemask, data)); if (negate) { z = ~z & ~0ULL; } if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } } return NULL; } // returns NULL if not found static really_inline const u8 *vermUnalign(m512 chars, const u8 *buf, char negate) { m512 data = loadu512(buf); // unaligned u64a z = eq512mask(chars, data); if (negate) { z = ~z & ~0ULL; } if (unlikely(z)) { return buf + ctz64(z); } return NULL; } // returns NULL if not found static really_inline const u8 *vermUnalignNocase(m512 chars, const u8 *buf, char negate) { m512 casemask = set1_64x8(CASE_CLEAR); m512 data = loadu512(buf); // unaligned u64a z = eq512mask(chars, and512(casemask, data)); if (negate) { z = ~z & ~0ULL; } if (unlikely(z)) { return buf + ctz64(z); } return NULL; } static really_inline const u8 *dvermMini(m512 chars1, m512 chars2, const u8 *buf, const u8 *buf_end) { uintptr_t len = buf_end - buf; __mmask64 mask = (~0ULL) >> (64 - len); m512 data = loadu_maskz_m512(mask, buf); u64a z = eq512mask(chars1, data) & (eq512mask(chars2, data) >> 1); z &= mask; if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } return NULL; } static really_inline const u8 *dvermMiniNocase(m512 chars1, m512 chars2, const u8 *buf, const u8 *buf_end) { uintptr_t len = buf_end - buf; __mmask64 mask = (~0ULL) >> (64 - len); m512 data = loadu_maskz_m512(mask, buf); m512 casemask = set1_64x8(CASE_CLEAR); m512 v = and512(casemask, data); u64a z = eq512mask(chars1, v) & (eq512mask(chars2, v) >> 1); z &= mask; if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } return NULL; } static really_inline const u8 *dvermMiniMasked(m512 chars1, m512 chars2, m512 mask1, m512 mask2, const u8 *buf, const u8 *buf_end) { uintptr_t len = buf_end - buf; __mmask64 mask = (~0ULL) >> (64 - len); m512 data = loadu_maskz_m512(mask, buf); m512 v1 = and512(data, mask1); m512 v2 = and512(data, mask2); u64a z = eq512mask(chars1, v1) & (eq512mask(chars2, v2) >> 1); z &= mask; if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } return NULL; } static really_inline const u8 *dvermSearchAligned(m512 chars1, m512 chars2, u8 c1, u8 c2, const u8 *buf, const u8 *buf_end) { for (; buf + 64 < buf_end; buf += 64) { m512 data = load512(buf); u64a z = eq512mask(chars1, data) & (eq512mask(chars2, data) >> 1); if (buf[63] == c1 && buf[64] == c2) { z |= (1ULL << 63); } if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } } return NULL; } static really_inline const u8 *dvermSearchAlignedNocase(m512 chars1, m512 chars2, u8 c1, u8 c2, const u8 *buf, const u8 *buf_end) { assert((size_t)buf % 64 == 0); m512 casemask = set1_64x8(CASE_CLEAR); for (; buf + 64 < buf_end; buf += 64) { m512 data = load512(buf); m512 v = and512(casemask, data); u64a z = eq512mask(chars1, v) & (eq512mask(chars2, v) >> 1); if ((buf[63] & CASE_CLEAR) == c1 && (buf[64] & CASE_CLEAR) == c2) { z |= (1ULL << 63); } if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } } return NULL; } static really_inline const u8 *dvermSearchAlignedMasked(m512 chars1, m512 chars2, m512 mask1, m512 mask2, u8 c1, u8 c2, u8 m1, u8 m2, const u8 *buf, const u8 *buf_end) { assert((size_t)buf % 64 == 0); for (; buf + 64 < buf_end; buf += 64) { m512 data = load512(buf); m512 v1 = and512(data, mask1); m512 v2 = and512(data, mask2); u64a z = eq512mask(chars1, v1) & (eq512mask(chars2, v2) >> 1); if ((buf[63] & m1) == c1 && (buf[64] & m2) == c2) { z |= (1ULL << 63); } if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } } return NULL; } // returns NULL if not found static really_inline const u8 *dvermPrecondition(m512 chars1, m512 chars2, const u8 *buf) { m512 data = loadu512(buf); // unaligned u64a z = eq512mask(chars1, data) & (eq512mask(chars2, data) >> 1); /* no fixup of the boundary required - the aligned run will pick it up */ if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } return NULL; } // returns NULL if not found static really_inline const u8 *dvermPreconditionNocase(m512 chars1, m512 chars2, const u8 *buf) { /* due to laziness, nonalphas and nocase having interesting behaviour */ m512 casemask = set1_64x8(CASE_CLEAR); m512 data = loadu512(buf); // unaligned m512 v = and512(casemask, data); u64a z = eq512mask(chars1, v) & (eq512mask(chars2, v) >> 1); /* no fixup of the boundary required - the aligned run will pick it up */ if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } return NULL; } // returns NULL if not found static really_inline const u8 *dvermPreconditionMasked(m512 chars1, m512 chars2, m512 mask1, m512 mask2, const u8 *buf) { m512 data = loadu512(buf); // unaligned m512 v1 = and512(data, mask1); m512 v2 = and512(data, mask2); u64a z = eq512mask(chars1, v1) & (eq512mask(chars2, v2) >> 1); /* no fixup of the boundary required - the aligned run will pick it up */ if (unlikely(z)) { u64a pos = ctz64(z); return buf + pos; } return NULL; } static really_inline const u8 *lastMatchOffset(const u8 *buf_end, u64a z) { assert(z); return buf_end - 64 + 63 - clz64(z); } static really_inline const u8 *rvermMini(m512 chars, const u8 *buf, const u8 *buf_end, char negate) { uintptr_t len = buf_end - buf; __mmask64 mask = (~0ULL) >> (64 - len); m512 data = loadu_maskz_m512(mask, buf); u64a z = eq512mask(chars, data); if (negate) { z = ~z & mask; } z &= mask; if (unlikely(z)) { return lastMatchOffset(buf + 64, z); } return NULL; } static really_inline const u8 *rvermMiniNocase(m512 chars, const u8 *buf, const u8 *buf_end, char negate) { uintptr_t len = buf_end - buf; __mmask64 mask = (~0ULL) >> (64 - len); m512 data = loadu_maskz_m512(mask, buf); m512 casemask = set1_64x8(CASE_CLEAR); m512 v = and512(casemask, data); u64a z = eq512mask(chars, v); if (negate) { z = ~z & mask; } z &= mask; if (unlikely(z)) { return lastMatchOffset(buf + 64, z); } return NULL; } static really_inline const u8 *rvermSearchAligned(m512 chars, const u8 *buf, const u8 *buf_end, char negate) { assert((size_t)buf_end % 64 == 0); for (; buf + 63 < buf_end; buf_end -= 64) { m512 data = load512(buf_end - 64); u64a z = eq512mask(chars, data); if (negate) { z = ~z & ~0ULL; } if (unlikely(z)) { return lastMatchOffset(buf_end, z); } } return NULL; } static really_inline const u8 *rvermSearchAlignedNocase(m512 chars, const u8 *buf, const u8 *buf_end, char negate) { assert((size_t)buf_end % 64 == 0); m512 casemask = set1_64x8(CASE_CLEAR); for (; buf + 63 < buf_end; buf_end -= 64) { m512 data = load512(buf_end - 64); u64a z = eq512mask(chars, and512(casemask, data)); if (negate) { z = ~z & ~0ULL; } if (unlikely(z)) { return lastMatchOffset(buf_end, z); } } return NULL; } // returns NULL if not found static really_inline const u8 *rvermUnalign(m512 chars, const u8 *buf, char negate) { m512 data = loadu512(buf); // unaligned u64a z = eq512mask(chars, data); if (negate) { z = ~z & ~0ULL; } if (unlikely(z)) { return lastMatchOffset(buf + 64, z); } return NULL; } // returns NULL if not found static really_inline const u8 *rvermUnalignNocase(m512 chars, const u8 *buf, char negate) { m512 casemask = set1_64x8(CASE_CLEAR); m512 data = loadu512(buf); // unaligned u64a z = eq512mask(chars, and512(casemask, data)); if (negate) { z = ~z & ~0ULL; } if (unlikely(z)) { return lastMatchOffset(buf + 64, z); } return NULL; } static really_inline const u8 *rdvermMini(m512 chars1, m512 chars2, const u8 *buf, const u8 *buf_end) { uintptr_t len = buf_end - buf; __mmask64 mask = (~0ULL) >> (64 - len); m512 data = loadu_maskz_m512(mask, buf); u64a z = eq512mask(chars2, data) & (eq512mask(chars1, data) << 1); z &= mask; if (unlikely(z)) { return lastMatchOffset(buf + 64, z); } return NULL; } static really_inline const u8 *rdvermMiniNocase(m512 chars1, m512 chars2, const u8 *buf, const u8 *buf_end) { uintptr_t len = buf_end - buf; __mmask64 mask = (~0ULL) >> (64 - len); m512 data = loadu_maskz_m512(mask, buf); m512 casemask = set1_64x8(CASE_CLEAR); m512 v = and512(casemask, data); u64a z = eq512mask(chars2, v) & (eq512mask(chars1, v) << 1); z &= mask; if (unlikely(z)) { return lastMatchOffset(buf + 64, z); } return NULL; } static really_inline const u8 *rdvermSearchAligned(m512 chars1, m512 chars2, u8 c1, u8 c2, const u8 *buf, const u8 *buf_end) { assert((size_t)buf_end % 64 == 0); for (; buf + 64 < buf_end; buf_end -= 64) { m512 data = load512(buf_end - 64); u64a z = eq512mask(chars2, data) & (eq512mask(chars1, data) << 1); if (buf_end[-65] == c1 && buf_end[-64] == c2) { z |= 1; } if (unlikely(z)) { return lastMatchOffset(buf_end, z); } } return buf_end; } static really_inline const u8 *rdvermSearchAlignedNocase(m512 chars1, m512 chars2, u8 c1, u8 c2, const u8 *buf, const u8 *buf_end) { assert((size_t)buf_end % 64 == 0); m512 casemask = set1_64x8(CASE_CLEAR); for (; buf + 64 < buf_end; buf_end -= 64) { m512 data = load512(buf_end - 64); m512 v = and512(casemask, data); u64a z = eq512mask(chars2, v) & (eq512mask(chars1, v) << 1); if ((buf_end[-65] & CASE_CLEAR) == c1 && (buf_end[-64] & CASE_CLEAR) == c2) { z |= 1; } if (unlikely(z)) { return lastMatchOffset(buf_end, z); } } return buf_end; } // returns NULL if not found static really_inline const u8 *rdvermPrecondition(m512 chars1, m512 chars2, const u8 *buf) { m512 data = loadu512(buf); u64a z = eq512mask(chars2, data) & (eq512mask(chars1, data) << 1); // no fixup of the boundary required - the aligned run will pick it up if (unlikely(z)) { return lastMatchOffset(buf + 64, z); } return NULL; } // returns NULL if not found static really_inline const u8 *rdvermPreconditionNocase(m512 chars1, m512 chars2, const u8 *buf) { // due to laziness, nonalphas and nocase having interesting behaviour m512 casemask = set1_64x8(CASE_CLEAR); m512 data = loadu512(buf); m512 v = and512(casemask, data); u64a z = eq512mask(chars2, v) & (eq512mask(chars1, v) << 1); // no fixup of the boundary required - the aligned run will pick it up if (unlikely(z)) { return lastMatchOffset(buf + 64, z); } return NULL; } #endif // HAVE_AVX512 static really_inline const u8 *vermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("verm scan %s\\x%02hhx over %zu bytes\n", nocase ? "nocase " : "", c, (size_t)(buf_end - buf)); assert(buf < buf_end); VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */ // Handle small scans. #ifdef HAVE_AVX512 if (buf_end - buf <= VERM_BOUNDARY) { const u8 *ptr = nocase ? vermMiniNocase(chars, buf, buf_end, 0) : vermMini(chars, buf, buf_end, 0); if (ptr) { return ptr; } return buf_end; } #else if (buf_end - buf < VERM_BOUNDARY) { for (; buf < buf_end; buf++) { char cur = (char)*buf; if (nocase) { cur &= CASE_CLEAR; } if (cur == c) { break; } } return buf; } #endif uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY; if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf forward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? const u8 *ptr = nocase ? vermUnalignNocase(chars, buf, 0) : vermUnalign(chars, buf, 0); if (ptr) { return ptr; } buf += VERM_BOUNDARY - min; assert(buf < buf_end); } // Aligned loops from here on in const u8 *ptr = nocase ? vermSearchAlignedNocase(chars, buf, buf_end - 1, 0) : vermSearchAligned(chars, buf, buf_end - 1, 0); if (ptr) { return ptr; } // Tidy up the mess at the end ptr = nocase ? vermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 0) : vermUnalign(chars, buf_end - VERM_BOUNDARY, 0); return ptr ? ptr : buf_end; } /* like vermicelliExec except returns the address of the first character which * is not c */ static really_inline const u8 *nvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("nverm scan %s\\x%02hhx over %zu bytes\n", nocase ? "nocase " : "", c, (size_t)(buf_end - buf)); assert(buf < buf_end); VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */ // Handle small scans. #ifdef HAVE_AVX512 if (buf_end - buf <= VERM_BOUNDARY) { const u8 *ptr = nocase ? vermMiniNocase(chars, buf, buf_end, 1) : vermMini(chars, buf, buf_end, 1); if (ptr) { return ptr; } return buf_end; } #else if (buf_end - buf < VERM_BOUNDARY) { for (; buf < buf_end; buf++) { char cur = (char)*buf; if (nocase) { cur &= CASE_CLEAR; } if (cur != c) { break; } } return buf; } #endif size_t min = (size_t)buf % VERM_BOUNDARY; if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf forward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? const u8 *ptr = nocase ? vermUnalignNocase(chars, buf, 1) : vermUnalign(chars, buf, 1); if (ptr) { return ptr; } buf += VERM_BOUNDARY - min; assert(buf < buf_end); } // Aligned loops from here on in const u8 *ptr = nocase ? vermSearchAlignedNocase(chars, buf, buf_end - 1, 1) : vermSearchAligned(chars, buf, buf_end - 1, 1); if (ptr) { return ptr; } // Tidy up the mess at the end ptr = nocase ? vermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 1) : vermUnalign(chars, buf_end - VERM_BOUNDARY, 1); return ptr ? ptr : buf_end; } // Reverse vermicelli scan. Provides exact semantics and returns (buf - 1) if // character not found. static really_inline const u8 *rvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("rev verm scan %s\\x%02hhx over %zu bytes\n", nocase ? "nocase " : "", c, (size_t)(buf_end - buf)); assert(buf < buf_end); VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */ // Handle small scans. #ifdef HAVE_AVX512 if (buf_end - buf <= VERM_BOUNDARY) { const u8 *ptr = nocase ? rvermMiniNocase(chars, buf, buf_end, 0) : rvermMini(chars, buf, buf_end, 0); if (ptr) { return ptr; } return buf - 1; } #else if (buf_end - buf < VERM_BOUNDARY) { for (buf_end--; buf_end >= buf; buf_end--) { char cur = (char)*buf_end; if (nocase) { cur &= CASE_CLEAR; } if (cur == c) { break; } } return buf_end; } #endif size_t min = (size_t)buf_end % VERM_BOUNDARY; if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf backward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? const u8 *ptr = nocase ? rvermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 0) : rvermUnalign(chars, buf_end - VERM_BOUNDARY, 0); if (ptr) { return ptr; } buf_end -= min; if (buf >= buf_end) { return buf_end; } } // Aligned loops from here on in. const u8 *ptr = nocase ? rvermSearchAlignedNocase(chars, buf, buf_end, 0) : rvermSearchAligned(chars, buf, buf_end, 0); if (ptr) { return ptr; } // Tidy up the mess at the end, return buf - 1 if not found. ptr = nocase ? rvermUnalignNocase(chars, buf, 0) : rvermUnalign(chars, buf, 0); return ptr ? ptr : buf - 1; } /* like rvermicelliExec except returns the address of the last character which * is not c */ static really_inline const u8 *rnvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("rev verm scan %s\\x%02hhx over %zu bytes\n", nocase ? "nocase " : "", c, (size_t)(buf_end - buf)); assert(buf < buf_end); VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */ // Handle small scans. #ifdef HAVE_AVX512 if (buf_end - buf <= VERM_BOUNDARY) { const u8 *ptr = nocase ? rvermMiniNocase(chars, buf, buf_end, 1) : rvermMini(chars, buf, buf_end, 1); if (ptr) { return ptr; } return buf - 1; } #else if (buf_end - buf < VERM_BOUNDARY) { for (buf_end--; buf_end >= buf; buf_end--) { char cur = (char)*buf_end; if (nocase) { cur &= CASE_CLEAR; } if (cur != c) { break; } } return buf_end; } #endif size_t min = (size_t)buf_end % VERM_BOUNDARY; if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf backward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? const u8 *ptr = nocase ? rvermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 1) : rvermUnalign(chars, buf_end - VERM_BOUNDARY, 1); if (ptr) { return ptr; } buf_end -= min; if (buf >= buf_end) { return buf_end; } } // Aligned loops from here on in. const u8 *ptr = nocase ? rvermSearchAlignedNocase(chars, buf, buf_end, 1) : rvermSearchAligned(chars, buf, buf_end, 1); if (ptr) { return ptr; } // Tidy up the mess at the end, return buf - 1 if not found. ptr = nocase ? rvermUnalignNocase(chars, buf, 1) : rvermUnalign(chars, buf, 1); return ptr ? ptr : buf - 1; } static really_inline const u8 *vermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("double verm scan %s\\x%02hhx%02hhx over %zu bytes\n", nocase ? "nocase " : "", c1, c2, (size_t)(buf_end - buf)); assert(buf < buf_end); VERM_TYPE chars1 = VERM_SET_FN(c1); /* nocase already uppercase */ VERM_TYPE chars2 = VERM_SET_FN(c2); /* nocase already uppercase */ #ifdef HAVE_AVX512 if (buf_end - buf <= VERM_BOUNDARY) { const u8 *ptr = nocase ? dvermMiniNocase(chars1, chars2, buf, buf_end) : dvermMini(chars1, chars2, buf, buf_end); if (ptr) { return ptr; } /* check for partial match at end */ u8 mask = nocase ? CASE_CLEAR : 0xff; if ((buf_end[-1] & mask) == (u8)c1) { DEBUG_PRINTF("partial!!!\n"); return buf_end - 1; } return buf_end; } #endif assert((buf_end - buf) >= VERM_BOUNDARY); uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY; if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf forward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? const u8 *ptr = nocase ? dvermPreconditionNocase(chars1, chars2, buf) : dvermPrecondition(chars1, chars2, buf); if (ptr) { return ptr; } buf += VERM_BOUNDARY - min; assert(buf < buf_end); } // Aligned loops from here on in const u8 *ptr = nocase ? dvermSearchAlignedNocase(chars1, chars2, c1, c2, buf, buf_end) : dvermSearchAligned(chars1, chars2, c1, c2, buf, buf_end); if (ptr) { return ptr; } // Tidy up the mess at the end ptr = nocase ? dvermPreconditionNocase(chars1, chars2, buf_end - VERM_BOUNDARY) : dvermPrecondition(chars1, chars2, buf_end - VERM_BOUNDARY); if (ptr) { return ptr; } /* check for partial match at end */ u8 mask = nocase ? CASE_CLEAR : 0xff; if ((buf_end[-1] & mask) == (u8)c1) { DEBUG_PRINTF("partial!!!\n"); return buf_end - 1; } return buf_end; } /* returns highest offset of c2 (NOTE: not c1) */ static really_inline const u8 *rvermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("rev double verm scan %s\\x%02hhx%02hhx over %zu bytes\n", nocase ? "nocase " : "", c1, c2, (size_t)(buf_end - buf)); assert(buf < buf_end); VERM_TYPE chars1 = VERM_SET_FN(c1); /* nocase already uppercase */ VERM_TYPE chars2 = VERM_SET_FN(c2); /* nocase already uppercase */ #ifdef HAVE_AVX512 if (buf_end - buf <= VERM_BOUNDARY) { const u8 *ptr = nocase ? rdvermMiniNocase(chars1, chars2, buf, buf_end) : rdvermMini(chars1, chars2, buf, buf_end); if (ptr) { return ptr; } // check for partial match at end ??? return buf - 1; } #endif assert((buf_end - buf) >= VERM_BOUNDARY); size_t min = (size_t)buf_end % VERM_BOUNDARY; if (min) { // input not aligned, so we need to run one iteration with an unaligned // load, then skip buf forward to the next aligned address. There's // some small overlap here, but we don't mind scanning it twice if we // can do it quickly, do we? const u8 *ptr = nocase ? rdvermPreconditionNocase(chars1, chars2, buf_end - VERM_BOUNDARY) : rdvermPrecondition(chars1, chars2, buf_end - VERM_BOUNDARY); if (ptr) { return ptr; } buf_end -= min; if (buf >= buf_end) { return buf_end; } } // Aligned loops from here on in if (nocase) { return rdvermSearchAlignedNocase(chars1, chars2, c1, c2, buf, buf_end); } else { return rdvermSearchAligned(chars1, chars2, c1, c2, buf, buf_end); } }