mirror of
https://github.com/VectorCamp/vectorscan.git
synced 2025-07-13 22:14:45 +03:00
424 lines
14 KiB
C
424 lines
14 KiB
C
/*
|
|
* Copyright (c) 2015-2016, Intel Corporation
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** \file
|
|
* \brief Vermicelli: single-byte and double-byte acceleration.
|
|
*/
|
|
|
|
#ifndef VERMICELLI_H
|
|
#define VERMICELLI_H
|
|
|
|
#include "util/bitutils.h"
|
|
#include "util/simd_utils.h"
|
|
#include "util/unaligned.h"
|
|
|
|
#include "vermicelli_sse.h"
|
|
|
|
static really_inline
|
|
const u8 *vermicelliExec(char c, char nocase, const u8 *buf,
|
|
const u8 *buf_end) {
|
|
DEBUG_PRINTF("verm scan %s\\x%02hhx over %zu bytes\n",
|
|
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
|
|
assert(buf < buf_end);
|
|
|
|
// Handle small scans.
|
|
if (buf_end - buf < VERM_BOUNDARY) {
|
|
for (; buf < buf_end; buf++) {
|
|
char cur = (char)*buf;
|
|
if (nocase) {
|
|
cur &= CASE_CLEAR;
|
|
}
|
|
if (cur == c) {
|
|
break;
|
|
}
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */
|
|
uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY;
|
|
if (min) {
|
|
// Input isn't aligned, so we need to run one iteration with an
|
|
// unaligned load, then skip buf forward to the next aligned address.
|
|
// There's some small overlap here, but we don't mind scanning it twice
|
|
// if we can do it quickly, do we?
|
|
const u8 *ptr = nocase ? vermUnalignNocase(chars, buf, 0)
|
|
: vermUnalign(chars, buf, 0);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
buf += VERM_BOUNDARY - min;
|
|
assert(buf < buf_end);
|
|
}
|
|
|
|
// Aligned loops from here on in
|
|
const u8 *ptr = nocase ? vermSearchAlignedNocase(chars, buf, buf_end - 1, 0)
|
|
: vermSearchAligned(chars, buf, buf_end - 1, 0);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
// Tidy up the mess at the end
|
|
ptr = nocase ? vermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 0)
|
|
: vermUnalign(chars, buf_end - VERM_BOUNDARY, 0);
|
|
return ptr ? ptr : buf_end;
|
|
}
|
|
|
|
/* like vermicelliExec except returns the address of the first character which
|
|
* is not c */
|
|
static really_inline
|
|
const u8 *nvermicelliExec(char c, char nocase, const u8 *buf,
|
|
const u8 *buf_end) {
|
|
DEBUG_PRINTF("nverm scan %s\\x%02hhx over %zu bytes\n",
|
|
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
|
|
assert(buf < buf_end);
|
|
|
|
// Handle small scans.
|
|
if (buf_end - buf < VERM_BOUNDARY) {
|
|
for (; buf < buf_end; buf++) {
|
|
char cur = (char)*buf;
|
|
if (nocase) {
|
|
cur &= CASE_CLEAR;
|
|
}
|
|
if (cur != c) {
|
|
break;
|
|
}
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */
|
|
size_t min = (size_t)buf % VERM_BOUNDARY;
|
|
if (min) {
|
|
// Input isn't aligned, so we need to run one iteration with an
|
|
// unaligned load, then skip buf forward to the next aligned address.
|
|
// There's some small overlap here, but we don't mind scanning it twice
|
|
// if we can do it quickly, do we?
|
|
const u8 *ptr = nocase ? vermUnalignNocase(chars, buf, 1)
|
|
: vermUnalign(chars, buf, 1);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
buf += VERM_BOUNDARY - min;
|
|
assert(buf < buf_end);
|
|
}
|
|
|
|
// Aligned loops from here on in
|
|
const u8 *ptr = nocase ? vermSearchAlignedNocase(chars, buf, buf_end - 1, 1)
|
|
: vermSearchAligned(chars, buf, buf_end - 1, 1);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
// Tidy up the mess at the end
|
|
ptr = nocase ? vermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 1)
|
|
: vermUnalign(chars, buf_end - VERM_BOUNDARY, 1);
|
|
return ptr ? ptr : buf_end;
|
|
}
|
|
|
|
static really_inline
|
|
const u8 *vermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf,
|
|
const u8 *buf_end) {
|
|
DEBUG_PRINTF("double verm scan %s\\x%02hhx%02hhx over %zu bytes\n",
|
|
nocase ? "nocase " : "", c1, c2, (size_t)(buf_end - buf));
|
|
assert(buf < buf_end);
|
|
assert((buf_end - buf) >= VERM_BOUNDARY);
|
|
|
|
uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY;
|
|
VERM_TYPE chars1 = VERM_SET_FN(c1); /* nocase already uppercase */
|
|
VERM_TYPE chars2 = VERM_SET_FN(c2); /* nocase already uppercase */
|
|
|
|
if (min) {
|
|
// Input isn't aligned, so we need to run one iteration with an
|
|
// unaligned load, then skip buf forward to the next aligned address.
|
|
// There's some small overlap here, but we don't mind scanning it twice
|
|
// if we can do it quickly, do we?
|
|
const u8 *ptr = nocase
|
|
? dvermPreconditionNocase(chars1, chars2, buf)
|
|
: dvermPrecondition(chars1, chars2, buf);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
buf += VERM_BOUNDARY - min;
|
|
assert(buf < buf_end);
|
|
}
|
|
|
|
// Aligned loops from here on in
|
|
const u8 *ptr = nocase ? dvermSearchAlignedNocase(chars1, chars2, c1, c2,
|
|
buf, buf_end)
|
|
: dvermSearchAligned(chars1, chars2, c1, c2, buf,
|
|
buf_end);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
// Tidy up the mess at the end
|
|
ptr = nocase ? dvermPreconditionNocase(chars1, chars2,
|
|
buf_end - VERM_BOUNDARY)
|
|
: dvermPrecondition(chars1, chars2, buf_end - VERM_BOUNDARY);
|
|
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
/* check for partial match at end */
|
|
u8 mask = nocase ? CASE_CLEAR : 0xff;
|
|
if ((buf_end[-1] & mask) == (u8)c1) {
|
|
DEBUG_PRINTF("partial!!!\n");
|
|
return buf_end - 1;
|
|
}
|
|
|
|
return buf_end;
|
|
}
|
|
|
|
static really_inline
|
|
const u8 *vermicelliDoubleMaskedExec(char c1, char c2, char m1, char m2,
|
|
const u8 *buf, const u8 *buf_end) {
|
|
DEBUG_PRINTF("double verm scan (\\x%02hhx&\\x%02hhx)(\\x%02hhx&\\x%02hhx) "
|
|
"over %zu bytes\n", c1, m1, c2, m2, (size_t)(buf_end - buf));
|
|
assert(buf < buf_end);
|
|
assert((buf_end - buf) >= VERM_BOUNDARY);
|
|
|
|
uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY;
|
|
VERM_TYPE chars1 = VERM_SET_FN(c1);
|
|
VERM_TYPE chars2 = VERM_SET_FN(c2);
|
|
VERM_TYPE mask1 = VERM_SET_FN(m1);
|
|
VERM_TYPE mask2 = VERM_SET_FN(m2);
|
|
|
|
if (min) {
|
|
// Input isn't aligned, so we need to run one iteration with an
|
|
// unaligned load, then skip buf forward to the next aligned address.
|
|
// There's some small overlap here, but we don't mind scanning it twice
|
|
// if we can do it quickly, do we?
|
|
const u8 *p = dvermPreconditionMasked(chars1, chars2, mask1, mask2, buf);
|
|
if (p) {
|
|
return p;
|
|
}
|
|
|
|
buf += VERM_BOUNDARY - min;
|
|
assert(buf < buf_end);
|
|
}
|
|
|
|
// Aligned loops from here on in
|
|
const u8 *ptr = dvermSearchAlignedMasked(chars1, chars2, mask1, mask2, c1,
|
|
c2, m1, m2, buf, buf_end);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
// Tidy up the mess at the end
|
|
ptr = dvermPreconditionMasked(chars1, chars2, mask1, mask2,
|
|
buf_end - VERM_BOUNDARY);
|
|
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
/* check for partial match at end */
|
|
if ((buf_end[-1] & m1) == (u8)c1) {
|
|
return buf_end - 1;
|
|
}
|
|
|
|
return buf_end;
|
|
}
|
|
|
|
// Reverse vermicelli scan. Provides exact semantics and returns (buf - 1) if
|
|
// character not found.
|
|
static really_inline
|
|
const u8 *rvermicelliExec(char c, char nocase, const u8 *buf,
|
|
const u8 *buf_end) {
|
|
DEBUG_PRINTF("rev verm scan %s\\x%02hhx over %zu bytes\n",
|
|
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
|
|
assert(buf < buf_end);
|
|
|
|
// Handle small scans.
|
|
if (buf_end - buf < VERM_BOUNDARY) {
|
|
for (buf_end--; buf_end >= buf; buf_end--) {
|
|
char cur = (char)*buf_end;
|
|
if (nocase) {
|
|
cur &= CASE_CLEAR;
|
|
}
|
|
if (cur == c) {
|
|
break;
|
|
}
|
|
}
|
|
return buf_end;
|
|
}
|
|
|
|
VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */
|
|
size_t min = (size_t)buf_end % VERM_BOUNDARY;
|
|
|
|
if (min) {
|
|
// Input isn't aligned, so we need to run one iteration with an
|
|
// unaligned load, then skip buf backward to the next aligned address.
|
|
// There's some small overlap here, but we don't mind scanning it twice
|
|
// if we can do it quickly, do we?
|
|
if (nocase) {
|
|
const u8 *ptr =
|
|
rvermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 0);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
} else {
|
|
const u8 *ptr = rvermUnalign(chars, buf_end - VERM_BOUNDARY, 0);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
}
|
|
|
|
buf_end -= min;
|
|
if (buf >= buf_end) {
|
|
return buf_end;
|
|
}
|
|
}
|
|
|
|
// Aligned loops from here on in.
|
|
const u8 *ptr = nocase ? rvermSearchAlignedNocase(chars, buf, buf_end, 0)
|
|
: rvermSearchAligned(chars, buf, buf_end, 0);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
// Tidy up the mess at the end, return buf - 1 if not found.
|
|
ptr = nocase ? rvermUnalignNocase(chars, buf, 0)
|
|
: rvermUnalign(chars, buf, 0);
|
|
return ptr ? ptr : buf - 1;
|
|
}
|
|
|
|
/* like rvermicelliExec except returns the address of the last character which
|
|
* is not c */
|
|
static really_inline
|
|
const u8 *rnvermicelliExec(char c, char nocase, const u8 *buf,
|
|
const u8 *buf_end) {
|
|
DEBUG_PRINTF("rev verm scan %s\\x%02hhx over %zu bytes\n",
|
|
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
|
|
assert(buf < buf_end);
|
|
|
|
// Handle small scans.
|
|
if (buf_end - buf < VERM_BOUNDARY) {
|
|
for (buf_end--; buf_end >= buf; buf_end--) {
|
|
char cur = (char)*buf_end;
|
|
if (nocase) {
|
|
cur &= CASE_CLEAR;
|
|
}
|
|
if (cur != c) {
|
|
break;
|
|
}
|
|
}
|
|
return buf_end;
|
|
}
|
|
|
|
VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */
|
|
size_t min = (size_t)buf_end % VERM_BOUNDARY;
|
|
|
|
if (min) {
|
|
// Input isn't aligned, so we need to run one iteration with an
|
|
// unaligned load, then skip buf backward to the next aligned address.
|
|
// There's some small overlap here, but we don't mind scanning it twice
|
|
// if we can do it quickly, do we?
|
|
if (nocase) {
|
|
const u8 *ptr =
|
|
rvermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 1);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
} else {
|
|
const u8 *ptr = rvermUnalign(chars, buf_end - VERM_BOUNDARY, 1);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
}
|
|
|
|
buf_end -= min;
|
|
if (buf >= buf_end) {
|
|
return buf_end;
|
|
}
|
|
}
|
|
|
|
// Aligned loops from here on in.
|
|
const u8 *ptr = nocase ? rvermSearchAlignedNocase(chars, buf, buf_end, 1)
|
|
: rvermSearchAligned(chars, buf, buf_end, 1);
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
// Tidy up the mess at the end, return buf - 1 if not found.
|
|
ptr = nocase ? rvermUnalignNocase(chars, buf, 1)
|
|
: rvermUnalign(chars, buf, 1);
|
|
return ptr ? ptr : buf - 1;
|
|
}
|
|
|
|
/* returns highest offset of c2 (NOTE: not c1) */
|
|
static really_inline
|
|
const u8 *rvermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf,
|
|
const u8 *buf_end) {
|
|
DEBUG_PRINTF("rev double verm scan %s\\x%02hhx%02hhx over %zu bytes\n",
|
|
nocase ? "nocase " : "", c1, c2, (size_t)(buf_end - buf));
|
|
assert(buf < buf_end);
|
|
assert((buf_end - buf) >= VERM_BOUNDARY);
|
|
|
|
size_t min = (size_t)buf_end % VERM_BOUNDARY;
|
|
VERM_TYPE chars1 = VERM_SET_FN(c1); /* nocase already uppercase */
|
|
VERM_TYPE chars2 = VERM_SET_FN(c2); /* nocase already uppercase */
|
|
|
|
if (min) {
|
|
// input not aligned, so we need to run one iteration with an unaligned
|
|
// load, then skip buf forward to the next aligned address. There's
|
|
// some small overlap here, but we don't mind scanning it twice if we
|
|
// can do it quickly, do we?
|
|
const u8 *ptr;
|
|
if (nocase) {
|
|
ptr = rdvermPreconditionNocase(chars1, chars2,
|
|
buf_end - VERM_BOUNDARY);
|
|
} else {
|
|
ptr = rdvermPrecondition(chars1, chars2, buf_end - VERM_BOUNDARY);
|
|
}
|
|
|
|
if (ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
buf_end -= min;
|
|
if (buf >= buf_end) {
|
|
return buf_end;
|
|
}
|
|
}
|
|
|
|
// Aligned loops from here on in
|
|
if (nocase) {
|
|
return rdvermSearchAlignedNocase(chars1, chars2, c1, c2, buf, buf_end);
|
|
} else {
|
|
return rdvermSearchAligned(chars1, chars2, c1, c2, buf, buf_end);
|
|
}
|
|
}
|
|
|
|
#endif /* VERMICELLI_H */
|