/* * Copyright (c) 2015-2016, Intel Corporation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \file * \brief Vermicelli: single-byte and double-byte acceleration. */ #ifndef VERMICELLI_H #define VERMICELLI_H #include "util/bitutils.h" #include "util/simd_utils.h" #include "util/unaligned.h" #include "vermicelli_sse.h" static really_inline const u8 *vermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("verm scan %s\\x%02hhx over %zu bytes\n", nocase ? "nocase " : "", c, (size_t)(buf_end - buf)); assert(buf < buf_end); // Handle small scans. if (buf_end - buf < VERM_BOUNDARY) { for (; buf < buf_end; buf++) { char cur = (char)*buf; if (nocase) { cur &= CASE_CLEAR; } if (cur == c) { break; } } return buf; } VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */ uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY; if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf forward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? const u8 *ptr = nocase ? vermUnalignNocase(chars, buf, 0) : vermUnalign(chars, buf, 0); if (ptr) { return ptr; } buf += VERM_BOUNDARY - min; assert(buf < buf_end); } // Aligned loops from here on in const u8 *ptr = nocase ? vermSearchAlignedNocase(chars, buf, buf_end - 1, 0) : vermSearchAligned(chars, buf, buf_end - 1, 0); if (ptr) { return ptr; } // Tidy up the mess at the end ptr = nocase ? vermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 0) : vermUnalign(chars, buf_end - VERM_BOUNDARY, 0); return ptr ? ptr : buf_end; } /* like vermicelliExec except returns the address of the first character which * is not c */ static really_inline const u8 *nvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("nverm scan %s\\x%02hhx over %zu bytes\n", nocase ? "nocase " : "", c, (size_t)(buf_end - buf)); assert(buf < buf_end); // Handle small scans. if (buf_end - buf < VERM_BOUNDARY) { for (; buf < buf_end; buf++) { char cur = (char)*buf; if (nocase) { cur &= CASE_CLEAR; } if (cur != c) { break; } } return buf; } VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */ size_t min = (size_t)buf % VERM_BOUNDARY; if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf forward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? const u8 *ptr = nocase ? vermUnalignNocase(chars, buf, 1) : vermUnalign(chars, buf, 1); if (ptr) { return ptr; } buf += VERM_BOUNDARY - min; assert(buf < buf_end); } // Aligned loops from here on in const u8 *ptr = nocase ? vermSearchAlignedNocase(chars, buf, buf_end - 1, 1) : vermSearchAligned(chars, buf, buf_end - 1, 1); if (ptr) { return ptr; } // Tidy up the mess at the end ptr = nocase ? vermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 1) : vermUnalign(chars, buf_end - VERM_BOUNDARY, 1); return ptr ? ptr : buf_end; } static really_inline const u8 *vermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("double verm scan %s\\x%02hhx%02hhx over %zu bytes\n", nocase ? "nocase " : "", c1, c2, (size_t)(buf_end - buf)); assert(buf < buf_end); assert((buf_end - buf) >= VERM_BOUNDARY); uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY; VERM_TYPE chars1 = VERM_SET_FN(c1); /* nocase already uppercase */ VERM_TYPE chars2 = VERM_SET_FN(c2); /* nocase already uppercase */ if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf forward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? const u8 *ptr = nocase ? dvermPreconditionNocase(chars1, chars2, buf) : dvermPrecondition(chars1, chars2, buf); if (ptr) { return ptr; } buf += VERM_BOUNDARY - min; assert(buf < buf_end); } // Aligned loops from here on in const u8 *ptr = nocase ? dvermSearchAlignedNocase(chars1, chars2, c1, c2, buf, buf_end) : dvermSearchAligned(chars1, chars2, c1, c2, buf, buf_end); if (ptr) { return ptr; } // Tidy up the mess at the end ptr = nocase ? dvermPreconditionNocase(chars1, chars2, buf_end - VERM_BOUNDARY) : dvermPrecondition(chars1, chars2, buf_end - VERM_BOUNDARY); if (ptr) { return ptr; } /* check for partial match at end */ u8 mask = nocase ? CASE_CLEAR : 0xff; if ((buf_end[-1] & mask) == (u8)c1) { DEBUG_PRINTF("partial!!!\n"); return buf_end - 1; } return buf_end; } static really_inline const u8 *vermicelliDoubleMaskedExec(char c1, char c2, char m1, char m2, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("double verm scan (\\x%02hhx&\\x%02hhx)(\\x%02hhx&\\x%02hhx) " "over %zu bytes\n", c1, m1, c2, m2, (size_t)(buf_end - buf)); assert(buf < buf_end); assert((buf_end - buf) >= VERM_BOUNDARY); uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY; VERM_TYPE chars1 = VERM_SET_FN(c1); VERM_TYPE chars2 = VERM_SET_FN(c2); VERM_TYPE mask1 = VERM_SET_FN(m1); VERM_TYPE mask2 = VERM_SET_FN(m2); if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf forward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? const u8 *p = dvermPreconditionMasked(chars1, chars2, mask1, mask2, buf); if (p) { return p; } buf += VERM_BOUNDARY - min; assert(buf < buf_end); } // Aligned loops from here on in const u8 *ptr = dvermSearchAlignedMasked(chars1, chars2, mask1, mask2, c1, c2, m1, m2, buf, buf_end); if (ptr) { return ptr; } // Tidy up the mess at the end ptr = dvermPreconditionMasked(chars1, chars2, mask1, mask2, buf_end - VERM_BOUNDARY); if (ptr) { return ptr; } /* check for partial match at end */ if ((buf_end[-1] & m1) == (u8)c1) { return buf_end - 1; } return buf_end; } // Reverse vermicelli scan. Provides exact semantics and returns (buf - 1) if // character not found. static really_inline const u8 *rvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("rev verm scan %s\\x%02hhx over %zu bytes\n", nocase ? "nocase " : "", c, (size_t)(buf_end - buf)); assert(buf < buf_end); // Handle small scans. if (buf_end - buf < VERM_BOUNDARY) { for (buf_end--; buf_end >= buf; buf_end--) { char cur = (char)*buf_end; if (nocase) { cur &= CASE_CLEAR; } if (cur == c) { break; } } return buf_end; } VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */ size_t min = (size_t)buf_end % VERM_BOUNDARY; if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf backward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? if (nocase) { const u8 *ptr = rvermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 0); if (ptr) { return ptr; } } else { const u8 *ptr = rvermUnalign(chars, buf_end - VERM_BOUNDARY, 0); if (ptr) { return ptr; } } buf_end -= min; if (buf >= buf_end) { return buf_end; } } // Aligned loops from here on in. const u8 *ptr = nocase ? rvermSearchAlignedNocase(chars, buf, buf_end, 0) : rvermSearchAligned(chars, buf, buf_end, 0); if (ptr) { return ptr; } // Tidy up the mess at the end, return buf - 1 if not found. ptr = nocase ? rvermUnalignNocase(chars, buf, 0) : rvermUnalign(chars, buf, 0); return ptr ? ptr : buf - 1; } /* like rvermicelliExec except returns the address of the last character which * is not c */ static really_inline const u8 *rnvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("rev verm scan %s\\x%02hhx over %zu bytes\n", nocase ? "nocase " : "", c, (size_t)(buf_end - buf)); assert(buf < buf_end); // Handle small scans. if (buf_end - buf < VERM_BOUNDARY) { for (buf_end--; buf_end >= buf; buf_end--) { char cur = (char)*buf_end; if (nocase) { cur &= CASE_CLEAR; } if (cur != c) { break; } } return buf_end; } VERM_TYPE chars = VERM_SET_FN(c); /* nocase already uppercase */ size_t min = (size_t)buf_end % VERM_BOUNDARY; if (min) { // Input isn't aligned, so we need to run one iteration with an // unaligned load, then skip buf backward to the next aligned address. // There's some small overlap here, but we don't mind scanning it twice // if we can do it quickly, do we? if (nocase) { const u8 *ptr = rvermUnalignNocase(chars, buf_end - VERM_BOUNDARY, 1); if (ptr) { return ptr; } } else { const u8 *ptr = rvermUnalign(chars, buf_end - VERM_BOUNDARY, 1); if (ptr) { return ptr; } } buf_end -= min; if (buf >= buf_end) { return buf_end; } } // Aligned loops from here on in. const u8 *ptr = nocase ? rvermSearchAlignedNocase(chars, buf, buf_end, 1) : rvermSearchAligned(chars, buf, buf_end, 1); if (ptr) { return ptr; } // Tidy up the mess at the end, return buf - 1 if not found. ptr = nocase ? rvermUnalignNocase(chars, buf, 1) : rvermUnalign(chars, buf, 1); return ptr ? ptr : buf - 1; } /* returns highest offset of c2 (NOTE: not c1) */ static really_inline const u8 *rvermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf, const u8 *buf_end) { DEBUG_PRINTF("rev double verm scan %s\\x%02hhx%02hhx over %zu bytes\n", nocase ? "nocase " : "", c1, c2, (size_t)(buf_end - buf)); assert(buf < buf_end); assert((buf_end - buf) >= VERM_BOUNDARY); size_t min = (size_t)buf_end % VERM_BOUNDARY; VERM_TYPE chars1 = VERM_SET_FN(c1); /* nocase already uppercase */ VERM_TYPE chars2 = VERM_SET_FN(c2); /* nocase already uppercase */ if (min) { // input not aligned, so we need to run one iteration with an unaligned // load, then skip buf forward to the next aligned address. There's // some small overlap here, but we don't mind scanning it twice if we // can do it quickly, do we? const u8 *ptr; if (nocase) { ptr = rdvermPreconditionNocase(chars1, chars2, buf_end - VERM_BOUNDARY); } else { ptr = rdvermPrecondition(chars1, chars2, buf_end - VERM_BOUNDARY); } if (ptr) { return ptr; } buf_end -= min; if (buf >= buf_end) { return buf_end; } } // Aligned loops from here on in if (nocase) { return rdvermSearchAlignedNocase(chars1, chars2, c1, c2, buf, buf_end); } else { return rdvermSearchAligned(chars1, chars2, c1, c2, buf, buf_end); } } #endif /* VERMICELLI_H */