vectorscan/src/util/arch/ppc64el/simd_utils.h
Konstantinos Margaritis 1f55d419eb add initial ppc64el support
(cherry picked from commit 63e26a4b2880eda7b6ac7b49271d83ba3e6143c4)
(cherry picked from commit c214ba253327114c16d0724f75c998ab00d44919)
2021-10-14 13:53:55 +03:00

430 lines
12 KiB
C

/*
* Copyright (c) 2015-2020, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief SIMD types and primitive operations.
*/
#ifndef ARCH_PPC64EL_SIMD_UTILS_H
#define ARCH_PPC64EL_SIMD_UTILS_H
#include <stdio.h>
#include "ue2common.h"
#include "util/simd_types.h"
#include "util/unaligned.h"
#include "util/intrinsics.h"
#include <string.h> // for memcpy
typedef __vector uint64_t uint64x2_t;
typedef __vector int64_t int64x2_t;
typedef __vector uint32_t uint32x4_t;
typedef __vector int32_t int32x4_t;
typedef __vector uint16_t uint16x8_t;
typedef __vector int16_t int16x8_t;
typedef __vector uint8_t uint8x16_t;
typedef __vector int8_t int8x16_t;
static really_inline m128 ones128(void) {
return (m128) vec_splat_s8(0xFF);
}
static really_inline m128 zeroes128(void) {
return (m128) vec_splat_s32(0);
}
/** \brief Bitwise not for m128*/
static really_inline m128 not128(m128 a) {
return (m128) vec_xor(a, a);
}
/** \brief Return 1 if a and b are different otherwise 0 */
static really_inline int diff128(m128 a, m128 b) {
return vec_any_ne(a, b);
}
static really_inline int isnonzero128(m128 a) {
return diff128(a, zeroes128());
}
/**
* "Rich" version of diff128(). Takes two vectors a and b and returns a 4-bit
* mask indicating which 32-bit words contain differences.
*/
static really_inline u32 diffrich128(m128 a, m128 b) {
static const m128 movemask = { 1, 2, 4, 8 };
m128 mask = (m128) vec_cmpeq(a, b);
mask = vec_and(vec_xor(mask, mask), movemask);
m128 sum = vec_sums(mask, zeroes128());
sum = vec_sld(zeroes128(), sum, 4);
s32 ALIGN_ATTR(16) x;
vec_ste(sum, 0, &x);
return x;
}
/**
* "Rich" version of diff128(), 64-bit variant. Takes two vectors a and b and
* returns a 4-bit mask indicating which 64-bit words contain differences.
*/
static really_inline u32 diffrich64_128(m128 a, m128 b) {
static const uint64x2_t movemask = { 1, 4 };
uint64x2_t mask = (uint64x2_t) vec_cmpeq((uint64x2_t)a, (uint64x2_t)b);
mask = vec_and(vec_xor(mask, mask), movemask);
m128 sum = vec_sums((m128)mask, zeroes128());
sum = vec_sld(zeroes128(), sum, 4);
s32 ALIGN_ATTR(16) x;
vec_ste(sum, 0, &x);
return x;
}
static really_really_inline
m128 add_2x64(m128 a, m128 b) {
return (m128) vec_add((uint64x2_t)a, (uint64x2_t)b);
}
static really_really_inline
m128 sub_2x64(m128 a, m128 b) {
return (m128) vec_sub((uint64x2_t)a, (uint64x2_t)b);
}
static really_really_inline
m128 lshift_m128(m128 a, unsigned b) {
return (m128) vshlq_n_s32((int64x2_t)a, b);
}
static really_really_inline
m128 rshift_m128(m128 a, unsigned b) {
return (m128) vshrq_n_s32((int64x2_t)a, b);
}
static really_really_inline
m128 lshift64_m128(m128 a, unsigned b) {
return (m128) vshlq_n_s64((int64x2_t)a, b);
}
static really_really_inline
m128 rshift64_m128(m128 a, unsigned b) {
return (m128) vshrq_n_s64((int64x2_t)a, b);
}
static really_inline m128 eq128(m128 a, m128 b) {
return (m128) vceqq_s8((int8x16_t)a, (int8x16_t)b);
}
static really_inline m128 eq64_m128(m128 a, m128 b) {
return (m128) vceqq_u64((int64x2_t)a, (int64x2_t)b);
}
static really_inline u32 movemask128(m128 a) {
static const uint8x16_t powers = { 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128 };
// Compute the mask from the input
uint64x2_t mask = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(vandq_u8((uint8x16_t)a, powers))));
uint64x2_t mask1 = (m128)vextq_s8(mask, zeroes128(), 7);
mask = vorrq_u8(mask, mask1);
// Get the resulting bytes
uint16_t output;
vst1q_lane_u16((uint16_t*)&output, (uint16x8_t)mask, 0);
return output;
}
static really_inline m128 set1_16x8(u8 c) {
return (m128) vdupq_n_u8(c);
}
static really_inline m128 set1_4x32(u32 c) {
return (m128) vdupq_n_u32(c);
}
static really_inline m128 set1_2x64(u64a c) {
return (m128) vdupq_n_u64(c);
}
static really_inline u32 movd(const m128 in) {
return vgetq_lane_u32((uint32x4_t) in, 0);
}
static really_inline u64a movq(const m128 in) {
return vgetq_lane_u64((uint64x2_t) in, 0);
}
/* another form of movq */
static really_inline
m128 load_m128_from_u64a(const u64a *p) {
return (m128) vsetq_lane_u64(*p, zeroes128(), 0);
}
static really_inline u32 extract32from128(const m128 in, unsigned imm) {
#if defined(HS_OPTIMIZE)
return vgetq_lane_u32((uint32x4_t) in, imm);
#else
switch (imm) {
case 0:
return vgetq_lane_u32((uint32x4_t) in, 0);
break;
case 1:
return vgetq_lane_u32((uint32x4_t) in, 1);
break;
case 2:
return vgetq_lane_u32((uint32x4_t) in, 2);
break;
case 3:
return vgetq_lane_u32((uint32x4_t) in, 3);
break;
default:
return 0;
break;
}
#endif
}
static really_inline u64a extract64from128(const m128 in, unsigned imm) {
#if defined(HS_OPTIMIZE)
return vgetq_lane_u64((uint64x2_t) in, imm);
#else
switch (imm) {
case 0:
return vgetq_lane_u64((uint32x4_t) in, 0);
break;
case 1:
return vgetq_lane_u64((uint32x4_t) in, 1);
break;
default:
return 0;
break;
}
#endif
}
static really_inline m128 low64from128(const m128 in) {
return vcombine_u64(vget_low_u64(in), vdup_n_u64(0));
}
static really_inline m128 high64from128(const m128 in) {
return vcombine_u64(vget_high_u64(in), vdup_n_u64(0));
}
static really_inline m128 add128(m128 a, m128 b) {
return (m128) vaddq_u64((uint64x2_t)a, (uint64x2_t)b);
}
static really_inline m128 and128(m128 a, m128 b) {
return (m128) vandq_s8((int8x16_t)a, (int8x16_t)b);
}
static really_inline m128 xor128(m128 a, m128 b) {
return (m128) veorq_s8((int8x16_t)a, (int8x16_t)b);
}
static really_inline m128 or128(m128 a, m128 b) {
return (m128) vorrq_s8((int8x16_t)a, (int8x16_t)b);
}
static really_inline m128 andnot128(m128 a, m128 b) {
return (m128) (m128) vandq_s8( vmvnq_s8(a), b);
}
// aligned load
static really_inline m128 load128(const void *ptr) {
assert(ISALIGNED_N(ptr, alignof(m128)));
return (m128) vld1q_s32((const int32_t *)ptr);
}
// aligned store
static really_inline void store128(void *ptr, m128 a) {
assert(ISALIGNED_N(ptr, alignof(m128)));
vst1q_s32((int32_t *)ptr, a);
}
// unaligned load
static really_inline m128 loadu128(const void *ptr) {
return (m128) vld1q_s32((const int32_t *)ptr);
}
// unaligned store
static really_inline void storeu128(void *ptr, m128 a) {
vst1q_s32((int32_t *)ptr, a);
}
// packed unaligned store of first N bytes
static really_inline
void storebytes128(void *ptr, m128 a, unsigned int n) {
assert(n <= sizeof(a));
memcpy(ptr, &a, n);
}
// packed unaligned load of first N bytes, pad with zero
static really_inline
m128 loadbytes128(const void *ptr, unsigned int n) {
m128 a = zeroes128();
assert(n <= sizeof(a));
memcpy(&a, ptr, n);
return a;
}
#define CASE_ALIGN_VECTORS(a, b, offset) case offset: return (m128)vextq_s8((int8x16_t)(a), (int8x16_t)(b), (offset)); break;
static really_really_inline
m128 palignr_imm(m128 r, m128 l, int offset) {
switch (offset) {
case 0: return l; break;
CASE_ALIGN_VECTORS(l, r, 1);
CASE_ALIGN_VECTORS(l, r, 2);
CASE_ALIGN_VECTORS(l, r, 3);
CASE_ALIGN_VECTORS(l, r, 4);
CASE_ALIGN_VECTORS(l, r, 5);
CASE_ALIGN_VECTORS(l, r, 6);
CASE_ALIGN_VECTORS(l, r, 7);
CASE_ALIGN_VECTORS(l, r, 8);
CASE_ALIGN_VECTORS(l, r, 9);
CASE_ALIGN_VECTORS(l, r, 10);
CASE_ALIGN_VECTORS(l, r, 11);
CASE_ALIGN_VECTORS(l, r, 12);
CASE_ALIGN_VECTORS(l, r, 13);
CASE_ALIGN_VECTORS(l, r, 14);
CASE_ALIGN_VECTORS(l, r, 15);
case 16: return r; break;
default:
return zeroes128();
break;
}
}
static really_really_inline
m128 palignr(m128 r, m128 l, int offset) {
#if defined(HS_OPTIMIZE)
return (m128)vextq_s8((int8x16_t)l, (int8x16_t)r, offset);
#else
return palignr_imm(r, l, offset);
#endif
}
#undef CASE_ALIGN_VECTORS
static really_really_inline
m128 rshiftbyte_m128(m128 a, unsigned b) {
return palignr(zeroes128(), a, b);
}
static really_really_inline
m128 lshiftbyte_m128(m128 a, unsigned b) {
return palignr(a, zeroes128(), 16 - b);
}
static really_inline
m128 variable_byte_shift_m128(m128 in, s32 amount) {
assert(amount >= -16 && amount <= 16);
static const uint8x16_t vbs_mask = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };
const uint8x16_t outside_mask = set1_16x8(0xf0);
m128 shift_mask = palignr_imm(vbs_mask, outside_mask, 16 - amount);
return vqtbl1q_s8(in, shift_mask);
}
#ifdef __cplusplus
extern "C" {
#endif
extern const u8 simd_onebit_masks[];
#ifdef __cplusplus
}
#endif
static really_inline
m128 mask1bit128(unsigned int n) {
assert(n < sizeof(m128) * 8);
u32 mask_idx = ((n % 8) * 64) + 95;
mask_idx -= n / 8;
return loadu128(&simd_onebit_masks[mask_idx]);
}
// switches on bit N in the given vector.
static really_inline
void setbit128(m128 *ptr, unsigned int n) {
*ptr = or128(mask1bit128(n), *ptr);
}
// switches off bit N in the given vector.
static really_inline
void clearbit128(m128 *ptr, unsigned int n) {
*ptr = andnot128(mask1bit128(n), *ptr);
}
// tests bit N in the given vector.
static really_inline
char testbit128(m128 val, unsigned int n) {
const m128 mask = mask1bit128(n);
return isnonzero128(and128(mask, val));
}
static really_inline
m128 pshufb_m128(m128 a, m128 b) {
/* On Intel, if bit 0x80 is set, then result is zero, otherwise which the lane it is &0xf.
In NEON, if >=16, then the result is zero, otherwise it is that lane.
btranslated is the version that is converted from Intel to NEON. */
int8x16_t btranslated = vandq_s8((int8x16_t)b,vdupq_n_s8(0x8f));
return (m128)vqtbl1q_s8((int8x16_t)a, (uint8x16_t)btranslated);
}
static really_inline
m128 max_u8_m128(m128 a, m128 b) {
return (m128) vmaxq_u8((int8x16_t)a, (int8x16_t)b);
}
static really_inline
m128 min_u8_m128(m128 a, m128 b) {
return (m128) vminq_u8((int8x16_t)a, (int8x16_t)b);
}
static really_inline
m128 sadd_u8_m128(m128 a, m128 b) {
return (m128) vqaddq_u8((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 sub_u8_m128(m128 a, m128 b) {
return (m128) vsubq_u8((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 set4x32(u32 x3, u32 x2, u32 x1, u32 x0) {
uint32_t ALIGN_ATTR(16) data[4] = { x0, x1, x2, x3 };
return (m128) vld1q_u32((uint32_t *) data);
}
static really_inline
m128 set2x64(u64a hi, u64a lo) {
uint64_t ALIGN_ATTR(16) data[2] = { lo, hi };
return (m128) vld1q_u64((uint64_t *) data);
}
#endif // ARCH_ARM_SIMD_UTILS_H