/* * Copyright (c) 2015-2020, Intel Corporation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \file * \brief SIMD types and primitive operations. */ #ifndef ARCH_PPC64EL_SIMD_UTILS_H #define ARCH_PPC64EL_SIMD_UTILS_H #include #include "ue2common.h" #include "util/simd_types.h" #include "util/unaligned.h" #include "util/intrinsics.h" #include // for memcpy typedef __vector uint64_t uint64x2_t; typedef __vector int64_t int64x2_t; typedef __vector uint32_t uint32x4_t; typedef __vector int32_t int32x4_t; typedef __vector uint16_t uint16x8_t; typedef __vector int16_t int16x8_t; typedef __vector uint8_t uint8x16_t; typedef __vector int8_t int8x16_t; static really_inline m128 ones128(void) { return (m128) vec_splat_s8(0xFF); } static really_inline m128 zeroes128(void) { return (m128) vec_splat_s32(0); } /** \brief Bitwise not for m128*/ static really_inline m128 not128(m128 a) { return (m128) vec_xor(a, a); } /** \brief Return 1 if a and b are different otherwise 0 */ static really_inline int diff128(m128 a, m128 b) { return vec_any_ne(a, b); } static really_inline int isnonzero128(m128 a) { return diff128(a, zeroes128()); } /** * "Rich" version of diff128(). Takes two vectors a and b and returns a 4-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich128(m128 a, m128 b) { static const m128 movemask = { 1, 2, 4, 8 }; m128 mask = (m128) vec_cmpeq(a, b); mask = vec_and(vec_xor(mask, mask), movemask); m128 sum = vec_sums(mask, zeroes128()); sum = vec_sld(zeroes128(), sum, 4); s32 ALIGN_ATTR(16) x; vec_ste(sum, 0, &x); return x; } /** * "Rich" version of diff128(), 64-bit variant. Takes two vectors a and b and * returns a 4-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_128(m128 a, m128 b) { static const uint64x2_t movemask = { 1, 4 }; uint64x2_t mask = (uint64x2_t) vec_cmpeq((uint64x2_t)a, (uint64x2_t)b); mask = vec_and(vec_xor(mask, mask), movemask); m128 sum = vec_sums((m128)mask, zeroes128()); sum = vec_sld(zeroes128(), sum, 4); s32 ALIGN_ATTR(16) x; vec_ste(sum, 0, &x); return x; } static really_really_inline m128 add_2x64(m128 a, m128 b) { return (m128) vec_add((uint64x2_t)a, (uint64x2_t)b); } static really_really_inline m128 sub_2x64(m128 a, m128 b) { return (m128) vec_sub((uint64x2_t)a, (uint64x2_t)b); } static really_really_inline m128 lshift_m128(m128 a, unsigned b) { return (m128) vshlq_n_s32((int64x2_t)a, b); } static really_really_inline m128 rshift_m128(m128 a, unsigned b) { return (m128) vshrq_n_s32((int64x2_t)a, b); } static really_really_inline m128 lshift64_m128(m128 a, unsigned b) { return (m128) vshlq_n_s64((int64x2_t)a, b); } static really_really_inline m128 rshift64_m128(m128 a, unsigned b) { return (m128) vshrq_n_s64((int64x2_t)a, b); } static really_inline m128 eq128(m128 a, m128 b) { return (m128) vceqq_s8((int8x16_t)a, (int8x16_t)b); } static really_inline m128 eq64_m128(m128 a, m128 b) { return (m128) vceqq_u64((int64x2_t)a, (int64x2_t)b); } static really_inline u32 movemask128(m128 a) { static const uint8x16_t powers = { 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128 }; // Compute the mask from the input uint64x2_t mask = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(vandq_u8((uint8x16_t)a, powers)))); uint64x2_t mask1 = (m128)vextq_s8(mask, zeroes128(), 7); mask = vorrq_u8(mask, mask1); // Get the resulting bytes uint16_t output; vst1q_lane_u16((uint16_t*)&output, (uint16x8_t)mask, 0); return output; } static really_inline m128 set1_16x8(u8 c) { return (m128) vdupq_n_u8(c); } static really_inline m128 set1_4x32(u32 c) { return (m128) vdupq_n_u32(c); } static really_inline m128 set1_2x64(u64a c) { return (m128) vdupq_n_u64(c); } static really_inline u32 movd(const m128 in) { return vgetq_lane_u32((uint32x4_t) in, 0); } static really_inline u64a movq(const m128 in) { return vgetq_lane_u64((uint64x2_t) in, 0); } /* another form of movq */ static really_inline m128 load_m128_from_u64a(const u64a *p) { return (m128) vsetq_lane_u64(*p, zeroes128(), 0); } static really_inline u32 extract32from128(const m128 in, unsigned imm) { #if defined(HS_OPTIMIZE) return vgetq_lane_u32((uint32x4_t) in, imm); #else switch (imm) { case 0: return vgetq_lane_u32((uint32x4_t) in, 0); break; case 1: return vgetq_lane_u32((uint32x4_t) in, 1); break; case 2: return vgetq_lane_u32((uint32x4_t) in, 2); break; case 3: return vgetq_lane_u32((uint32x4_t) in, 3); break; default: return 0; break; } #endif } static really_inline u64a extract64from128(const m128 in, unsigned imm) { #if defined(HS_OPTIMIZE) return vgetq_lane_u64((uint64x2_t) in, imm); #else switch (imm) { case 0: return vgetq_lane_u64((uint32x4_t) in, 0); break; case 1: return vgetq_lane_u64((uint32x4_t) in, 1); break; default: return 0; break; } #endif } static really_inline m128 low64from128(const m128 in) { return vcombine_u64(vget_low_u64(in), vdup_n_u64(0)); } static really_inline m128 high64from128(const m128 in) { return vcombine_u64(vget_high_u64(in), vdup_n_u64(0)); } static really_inline m128 add128(m128 a, m128 b) { return (m128) vaddq_u64((uint64x2_t)a, (uint64x2_t)b); } static really_inline m128 and128(m128 a, m128 b) { return (m128) vandq_s8((int8x16_t)a, (int8x16_t)b); } static really_inline m128 xor128(m128 a, m128 b) { return (m128) veorq_s8((int8x16_t)a, (int8x16_t)b); } static really_inline m128 or128(m128 a, m128 b) { return (m128) vorrq_s8((int8x16_t)a, (int8x16_t)b); } static really_inline m128 andnot128(m128 a, m128 b) { return (m128) (m128) vandq_s8( vmvnq_s8(a), b); } // aligned load static really_inline m128 load128(const void *ptr) { assert(ISALIGNED_N(ptr, alignof(m128))); return (m128) vld1q_s32((const int32_t *)ptr); } // aligned store static really_inline void store128(void *ptr, m128 a) { assert(ISALIGNED_N(ptr, alignof(m128))); vst1q_s32((int32_t *)ptr, a); } // unaligned load static really_inline m128 loadu128(const void *ptr) { return (m128) vld1q_s32((const int32_t *)ptr); } // unaligned store static really_inline void storeu128(void *ptr, m128 a) { vst1q_s32((int32_t *)ptr, a); } // packed unaligned store of first N bytes static really_inline void storebytes128(void *ptr, m128 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m128 loadbytes128(const void *ptr, unsigned int n) { m128 a = zeroes128(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } #define CASE_ALIGN_VECTORS(a, b, offset) case offset: return (m128)vextq_s8((int8x16_t)(a), (int8x16_t)(b), (offset)); break; static really_really_inline m128 palignr_imm(m128 r, m128 l, int offset) { switch (offset) { case 0: return l; break; CASE_ALIGN_VECTORS(l, r, 1); CASE_ALIGN_VECTORS(l, r, 2); CASE_ALIGN_VECTORS(l, r, 3); CASE_ALIGN_VECTORS(l, r, 4); CASE_ALIGN_VECTORS(l, r, 5); CASE_ALIGN_VECTORS(l, r, 6); CASE_ALIGN_VECTORS(l, r, 7); CASE_ALIGN_VECTORS(l, r, 8); CASE_ALIGN_VECTORS(l, r, 9); CASE_ALIGN_VECTORS(l, r, 10); CASE_ALIGN_VECTORS(l, r, 11); CASE_ALIGN_VECTORS(l, r, 12); CASE_ALIGN_VECTORS(l, r, 13); CASE_ALIGN_VECTORS(l, r, 14); CASE_ALIGN_VECTORS(l, r, 15); case 16: return r; break; default: return zeroes128(); break; } } static really_really_inline m128 palignr(m128 r, m128 l, int offset) { #if defined(HS_OPTIMIZE) return (m128)vextq_s8((int8x16_t)l, (int8x16_t)r, offset); #else return palignr_imm(r, l, offset); #endif } #undef CASE_ALIGN_VECTORS static really_really_inline m128 rshiftbyte_m128(m128 a, unsigned b) { return palignr(zeroes128(), a, b); } static really_really_inline m128 lshiftbyte_m128(m128 a, unsigned b) { return palignr(a, zeroes128(), 16 - b); } static really_inline m128 variable_byte_shift_m128(m128 in, s32 amount) { assert(amount >= -16 && amount <= 16); static const uint8x16_t vbs_mask = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }; const uint8x16_t outside_mask = set1_16x8(0xf0); m128 shift_mask = palignr_imm(vbs_mask, outside_mask, 16 - amount); return vqtbl1q_s8(in, shift_mask); } #ifdef __cplusplus extern "C" { #endif extern const u8 simd_onebit_masks[]; #ifdef __cplusplus } #endif static really_inline m128 mask1bit128(unsigned int n) { assert(n < sizeof(m128) * 8); u32 mask_idx = ((n % 8) * 64) + 95; mask_idx -= n / 8; return loadu128(&simd_onebit_masks[mask_idx]); } // switches on bit N in the given vector. static really_inline void setbit128(m128 *ptr, unsigned int n) { *ptr = or128(mask1bit128(n), *ptr); } // switches off bit N in the given vector. static really_inline void clearbit128(m128 *ptr, unsigned int n) { *ptr = andnot128(mask1bit128(n), *ptr); } // tests bit N in the given vector. static really_inline char testbit128(m128 val, unsigned int n) { const m128 mask = mask1bit128(n); return isnonzero128(and128(mask, val)); } static really_inline m128 pshufb_m128(m128 a, m128 b) { /* On Intel, if bit 0x80 is set, then result is zero, otherwise which the lane it is &0xf. In NEON, if >=16, then the result is zero, otherwise it is that lane. btranslated is the version that is converted from Intel to NEON. */ int8x16_t btranslated = vandq_s8((int8x16_t)b,vdupq_n_s8(0x8f)); return (m128)vqtbl1q_s8((int8x16_t)a, (uint8x16_t)btranslated); } static really_inline m128 max_u8_m128(m128 a, m128 b) { return (m128) vmaxq_u8((int8x16_t)a, (int8x16_t)b); } static really_inline m128 min_u8_m128(m128 a, m128 b) { return (m128) vminq_u8((int8x16_t)a, (int8x16_t)b); } static really_inline m128 sadd_u8_m128(m128 a, m128 b) { return (m128) vqaddq_u8((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 sub_u8_m128(m128 a, m128 b) { return (m128) vsubq_u8((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 set4x32(u32 x3, u32 x2, u32 x1, u32 x0) { uint32_t ALIGN_ATTR(16) data[4] = { x0, x1, x2, x3 }; return (m128) vld1q_u32((uint32_t *) data); } static really_inline m128 set2x64(u64a hi, u64a lo) { uint64_t ALIGN_ATTR(16) data[2] = { lo, hi }; return (m128) vld1q_u64((uint64_t *) data); } #endif // ARCH_ARM_SIMD_UTILS_H