move x86 bitutils.h implementations to util/arch/x86/bitutils.h

This commit is contained in:
Konstantinos Margaritis 2020-09-22 11:02:07 +03:00
parent 8ed5f4ac75
commit aac1f0f1dc
3 changed files with 688 additions and 353 deletions

View File

@ -0,0 +1,353 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Bit-twiddling primitives (ctz, compress etc)
*/
#ifndef BITUTILS_ARCH_COMMON_H
#define BITUTILS_ARCH_COMMON_H
#include "util/popcount.h"
static really_inline
u32 clz32_impl_c(u32 x) {
return (u32)__builtin_clz(x);
}
static really_inline
u32 clz64_impl_c(u64a x) {
return (u32)__builtin_clzll(x);
}
// CTZ (count trailing zero) implementations.
static really_inline
u32 ctz32_impl_c(u32 x) {
return (u32)__builtin_ctz(x);
}
static really_inline
u32 ctz64_impl_c(u64a x) {
return (u32)__builtin_ctzll(x);
}
static really_inline
u32 lg2_impl_c(u32 x) {
if (!x) {
return 0;
}
return 31 - clz32_impl_c(x);
}
static really_inline
u64a lg2_64_impl_c(u64a x) {
if (!x) {
return 0;
}
return 63 - clz64_impl_c(x);
}
static really_inline
u32 findAndClearLSB_32_impl_c(u32 *v) {
u32 val = *v;
u32 offset = ctz32_impl_c(val);
*v = val & (val - 1);
assert(offset < 32);
return offset;
}
static really_inline
u32 findAndClearLSB_64_impl_c(u64a *v) {
#ifdef ARCH_64_BIT
// generic variant using gcc's builtin on 64-bit
u64a val = *v, offset;
offset = ctz64_impl_c(val);
*v = val & (val - 1);
#else
// fall back to doing things with two 32-bit cases, since gcc-4.1 doesn't
// inline calls to __builtin_ctzll
u32 v1 = (u32)*v;
u32 v2 = (u32)(*v >> 32);
u32 offset;
if (v1) {
offset = findAndClearLSB_32_impl_c(&v1);
*v = (u64a)v1 | ((u64a)v2 << 32);
} else {
offset = findAndClearLSB_32_impl_c(&v2) + 32;
*v = (u64a)v2 << 32;
}
#endif
assert(offset < 64);
return (u32)offset;
}
static really_inline
u32 findAndClearMSB_32_impl_c(u32 *v) {
u32 val = *v;
u32 offset = 31 - clz32_impl_c(val);
*v = val & ~(1 << offset);
assert(offset < 32);
return offset;
}
static really_inline
u32 findAndClearMSB_64_impl_c(u64a *v) {
#ifdef ARCH_64_BIT
// generic variant using gcc's builtin on 64-bit
u64a val = *v, offset;
offset = 63 - clz64_impl_c(val);
*v = val & ~(1ULL << offset);
#else
// fall back to doing things with two 32-bit cases, since gcc-4.1 doesn't
// inline calls to __builtin_ctzll
u32 v1 = (u32)*v;
u32 v2 = (*v >> 32);
u32 offset;
if (v2) {
offset = findAndClearMSB_32_impl_c(&v2) + 32;
*v = ((u64a)v2 << 32) | (u64a)v1;
} else {
offset = findAndClearMSB_32_impl_c(&v1);
*v = (u64a)v1;
}
#endif
assert(offset < 64);
return (u32)offset;
}
static really_inline
u32 compress32_impl_c(u32 x, u32 m) {
// Return zero quickly on trivial cases
if ((x & m) == 0) {
return 0;
}
u32 mk, mp, mv, t;
x &= m; // clear irrelevant bits
mk = ~m << 1; // we will count 0's to right
for (u32 i = 0; i < 5; i++) {
mp = mk ^ (mk << 1);
mp ^= mp << 2;
mp ^= mp << 4;
mp ^= mp << 8;
mp ^= mp << 16;
mv = mp & m; // bits to move
m = (m ^ mv) | (mv >> (1 << i)); // compress m
t = x & mv;
x = (x ^ t) | (t >> (1 << i)); // compress x
mk = mk & ~mp;
}
return x;
}
static really_inline
u64a compress64_impl_c(u64a x, u64a m) {
// Return zero quickly on trivial cases
if ((x & m) == 0) {
return 0;
}
u64a mk, mp, mv, t;
x &= m; // clear irrelevant bits
mk = ~m << 1; // we will count 0's to right
for (u32 i = 0; i < 6; i++) {
mp = mk ^ (mk << 1);
mp ^= mp << 2;
mp ^= mp << 4;
mp ^= mp << 8;
mp ^= mp << 16;
mp ^= mp << 32;
mv = mp & m; // bits to move
m = (m ^ mv) | (mv >> (1 << i)); // compress m
t = x & mv;
x = (x ^ t) | (t >> (1 << i)); // compress x
mk = mk & ~mp;
}
return x;
}
static really_inline
u32 expand32_impl_c(u32 x, u32 m) {
// Return zero quickly on trivial cases
if (!x || !m) {
return 0;
}
u32 m0, mk, mp, mv, t;
u32 array[5];
m0 = m; // save original mask
mk = ~m << 1; // we will count 0's to right
for (int i = 0; i < 5; i++) {
mp = mk ^ (mk << 1); // parallel suffix
mp = mp ^ (mp << 2);
mp = mp ^ (mp << 4);
mp = mp ^ (mp << 8);
mp = mp ^ (mp << 16);
mv = mp & m; // bits to move
array[i] = mv;
m = (m ^ mv) | (mv >> (1 << i)); // compress m
mk = mk & ~mp;
}
for (int i = 4; i >= 0; i--) {
mv = array[i];
t = x << (1 << i);
x = (x & ~mv) | (t & mv);
}
return x & m0; // clear out extraneous bits
}
static really_inline
u64a expand64_impl_c(u64a x, u64a m) {
// Return zero quickly on trivial cases
if (!x || !m) {
return 0;
}
u64a m0, mk, mp, mv, t;
u64a array[6];
m0 = m; // save original mask
mk = ~m << 1; // we will count 0's to right
for (int i = 0; i < 6; i++) {
mp = mk ^ (mk << 1); // parallel suffix
mp = mp ^ (mp << 2);
mp = mp ^ (mp << 4);
mp = mp ^ (mp << 8);
mp = mp ^ (mp << 16);
mp = mp ^ (mp << 32);
mv = mp & m; // bits to move
array[i] = mv;
m = (m ^ mv) | (mv >> (1 << i)); // compress m
mk = mk & ~mp;
}
for (int i = 5; i >= 0; i--) {
mv = array[i];
t = x << (1 << i);
x = (x & ~mv) | (t & mv);
}
return x & m0; // clear out extraneous bits
}
/* returns the first set bit after begin (if not ~0U). If no bit is set after
* begin returns ~0U
*/
static really_inline
u32 bf64_iterate_impl_c(u64a bitfield, u32 begin) {
if (begin != ~0U) {
/* switch off all bits at or below begin. Note: not legal to shift by
* by size of the datatype or larger. */
assert(begin <= 63);
bitfield &= ~((2ULL << begin) - 1);
}
if (!bitfield) {
return ~0U;
}
return ctz64_impl_c(bitfield);
}
static really_inline
char bf64_set_impl_c(u64a *bitfield, u32 i) {
u64a mask = 1ULL << i;
char was_set = !!(*bitfield & mask);
*bitfield |= mask;
return was_set;
}
static really_inline
void bf64_unset_impl_c(u64a *bitfield, u32 i) {
*bitfield &= ~(1ULL << i);
}
static really_inline
u32 rank_in_mask32_impl_c(u32 mask, u32 bit) {
mask &= (u32)(1U << bit) - 1;
return popcount32(mask);
}
static really_inline
u32 rank_in_mask64_impl_c(u64a mask, u32 bit) {
mask &= (u64a)(1ULL << bit) - 1;
return popcount64(mask);
}
static really_inline
u32 pext32_impl_c(u32 x, u32 mask) {
u32 result = 0, num = 1;
while (mask != 0) {
u32 bit = findAndClearLSB_32_impl_c(&mask);
if (x & (1U << bit)) {
assert(num != 0); // more than 32 bits!
result |= num;
}
num <<= 1;
}
return result;
}
static really_inline
u64a pext64_impl_c(u64a x, u64a mask) {
u32 result = 0, num = 1;
while (mask != 0) {
u32 bit = findAndClearLSB_64_impl_c(&mask);
if (x & (1ULL << bit)) {
assert(num != 0); // more than 32 bits!
result |= num;
}
num <<= 1;
}
return result;
}
#endif // BITUTILS_ARCH_COMMON_H

View File

@ -0,0 +1,304 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Bit-twiddling primitives (ctz, compress etc)
*/
#ifndef BITUTILS_ARCH_X86_H
#define BITUTILS_ARCH_X86_H
#include "ue2common.h"
#include "util/popcount.h"
#include "util/arch.h"
#include "util/intrinsics.h"
#include "util/arch/common/bitutils.h"
static really_inline
u32 clz32_impl(u32 x) {
#if defined(_WIN32)
unsigned long r;
_BitScanReverse(&r, x);
return 31 - r;
#else
return clz32_impl_c(x);
#endif
}
static really_inline
u32 clz64_impl(u64a x) {
#if defined(_WIN64)
unsigned long r;
_BitScanReverse64(&r, x);
return 63 - r;
#elif defined(_WIN32)
unsigned long x1 = (u32)x;
unsigned long x2 = (u32)(x >> 32);
unsigned long r;
if (x2) {
_BitScanReverse(&r, x2);
return (u32)(31 - r);
}
_BitScanReverse(&r, (u32)x1);
return (u32)(63 - r);
#else
return clz64_impl_c(x);
#endif
}
// CTZ (count trailing zero) implementations.
static really_inline
u32 ctz32_impl(u32 x) {
#if defined(_WIN32)
unsigned long r;
_BitScanForward(&r, x);
return r;
#else
return ctz32_impl_c(x);
#endif
}
static really_inline
u32 ctz64_impl(u64a x) {
#if defined(_WIN64)
unsigned long r;
_BitScanForward64(&r, x);
return r;
#elif defined(_WIN32)
unsigned long r;
if (_BitScanForward(&r, (u32)x)) {
return (u32)r;
}
_BitScanForward(&r, x >> 32);
return (u32)(r + 32);
#else
return ctz64_impl_c(x);
#endif
}
static really_inline
u32 lg2_impl(u32 x) {
return lg2_impl_c(x);
}
static really_inline
u64a lg2_64_impl(u64a x) {
return lg2_64_impl_c(x);
}
static really_inline
u32 findAndClearLSB_32_impl(u32 *v) {
#ifndef NO_ASM
u32 val = *v, offset;
__asm__ ("bsf %1, %0\n"
"btr %0, %1\n"
: "=r" (offset), "=r" (val)
: "1" (val));
*v = val;
assert(offset < 32);
return offset;
#else
return findAndClearLSB_32_impl_c(v);
#endif
}
static really_inline
u32 findAndClearLSB_64_impl(u64a *v) {
#ifdef ARCH_64_BIT
#if !defined(NO_ASM)
u64a val = *v, offset;
__asm__ ("bsfq %1, %0\n"
"btrq %0, %1\n"
: "=r" (offset), "=r" (val)
: "1" (val));
*v = val;
#else
// generic variant using gcc's builtin on 64-bit
u64a val = *v, offset;
offset = ctz64(val);
*v = val & (val - 1);
#endif // ARCH_X86_64
assert(offset < 64);
return (u32)offset;
#else
return findAndClearLSB_64_impl_c(v);
#endif
}
static really_inline
u32 findAndClearMSB_32_impl(u32 *v) {
#if !defined(NO_ASM)
u32 val = *v, offset;
__asm__ ("bsr %1, %0\n"
"btr %0, %1\n"
: "=r" (offset), "=r" (val)
: "1" (val));
*v = val;
#else
u32 val = *v;
u32 offset = 31 - clz32_impl(val);
*v = val & ~(1 << offset);
#endif
assert(offset < 32);
return offset;
}
static really_inline
u32 findAndClearMSB_64_impl(u64a *v) {
#ifdef ARCH_64_BIT
#if !defined(NO_ASM)
u64a val = *v, offset;
__asm__ ("bsrq %1, %0\n"
"btrq %0, %1\n"
: "=r" (offset), "=r" (val)
: "1" (val));
*v = val;
#else
// generic variant using gcc's builtin on 64-bit
u64a val = *v, offset;
offset = 63 - clz64_impl(val);
*v = val & ~(1ULL << offset);
#endif // ARCH_X86_64
assert(offset < 64);
return (u32)offset;
#else
return findAndClearMSB_64_impl_c(v);
#endif
}
static really_inline
u32 compress32_impl(u32 x, u32 m) {
#if defined(HAVE_BMI2)
// BMI2 has a single instruction for this operation.
return _pext_u32(x, m);
#else
return compress32_impl_c(x, m);
#endif
}
static really_inline
u64a compress64_impl(u64a x, u64a m) {
#if defined(ARCH_X86_64) && defined(HAVE_BMI2)
// BMI2 has a single instruction for this operation.
return _pext_u64(x, m);
#else
return compress64_impl_c(x, m);
#endif
}
static really_inline
u32 expand32_impl(u32 x, u32 m) {
#if defined(HAVE_BMI2)
// BMI2 has a single instruction for this operation.
return _pdep_u32(x, m);
#else
return expand32_impl_c(x, m);
#endif
}
static really_inline
u64a expand64_impl(u64a x, u64a m) {
#if defined(ARCH_X86_64) && defined(HAVE_BMI2)
// BMI2 has a single instruction for this operation.
return _pdep_u64(x, m);
#else
return expand64_impl_c(x, m);
#endif
}
/* returns the first set bit after begin (if not ~0U). If no bit is set after
* begin returns ~0U
*/
static really_inline
u32 bf64_iterate_impl(u64a bitfield, u32 begin) {
if (begin != ~0U) {
/* switch off all bits at or below begin. Note: not legal to shift by
* by size of the datatype or larger. */
assert(begin <= 63);
bitfield &= ~((2ULL << begin) - 1);
}
if (!bitfield) {
return ~0U;
}
return ctz64_impl(bitfield);
}
static really_inline
char bf64_set_impl(u64a *bitfield, u32 i) {
return bf64_set_impl_c(bitfield, i);
}
static really_inline
void bf64_unset_impl(u64a *bitfield, u32 i) {
return bf64_unset_impl_c(bitfield, i);
}
static really_inline
u32 rank_in_mask32_impl(u32 mask, u32 bit) {
return rank_in_mask32_impl_c(mask, bit);
}
static really_inline
u32 rank_in_mask64_impl(u64a mask, u32 bit) {
return rank_in_mask64_impl_c(mask, bit);
}
static really_inline
u32 pext32_impl(u32 x, u32 mask) {
#if defined(HAVE_BMI2)
// Intel BMI2 can do this operation in one instruction.
return _pext_u32(x, mask);
#else
return pext32_impl_c(x, mask);
#endif
}
static really_inline
u64a pext64_impl(u64a x, u64a mask) {
#if defined(HAVE_BMI2) && defined(ARCH_64_BIT)
// Intel BMI2 can do this operation in one instruction.
return _pext_u64(x, mask);
#else
return pext64_impl_c(x, mask);
#endif
}
#if defined(HAVE_BMI2) && defined(ARCH_64_BIT)
static really_inline
u64a pdep64(u64a x, u64a mask) {
return _pdep_u64(x, mask);
}
#endif
#endif // BITUTILS_ARCH_X86_H

View File

@ -33,6 +33,7 @@
#ifndef BITUTILS_H
#define BITUTILS_H
#include "config.h"
#include "ue2common.h"
#include "popcount.h"
#include "util/arch.h"
@ -43,351 +44,88 @@
#define DOUBLE_CASE_CLEAR 0xdfdf
#define OCTO_CASE_CLEAR 0xdfdfdfdfdfdfdfdfULL
#if defined(_WIN32) || defined(_WIN64) || defined(ARCH_IA32) || defined(ARCH_X86_64)
#include "util/arch/x86/bitutils.h"
#endif
static really_inline
u32 clz32(u32 x) {
assert(x); // behaviour not defined for x == 0
#if defined(_WIN32)
unsigned long r;
_BitScanReverse(&r, x);
return 31 - r;
#else
return (u32)__builtin_clz(x);
#endif
return clz32_impl(x);
}
static really_inline
u32 clz64(u64a x) {
assert(x); // behaviour not defined for x == 0
#if defined(_WIN64)
unsigned long r;
_BitScanReverse64(&r, x);
return 63 - r;
#elif defined(_WIN32)
unsigned long x1 = (u32)x;
unsigned long x2 = (u32)(x >> 32);
unsigned long r;
if (x2) {
_BitScanReverse(&r, x2);
return (u32)(31 - r);
}
_BitScanReverse(&r, (u32)x1);
return (u32)(63 - r);
#else
return (u32)__builtin_clzll(x);
#endif
return clz64_impl(x);
}
// CTZ (count trailing zero) implementations.
static really_inline
u32 ctz32(u32 x) {
assert(x); // behaviour not defined for x == 0
#if defined(_WIN32)
unsigned long r;
_BitScanForward(&r, x);
return r;
#else
return (u32)__builtin_ctz(x);
#endif
return ctz32_impl(x);
}
static really_inline
u32 ctz64(u64a x) {
assert(x); // behaviour not defined for x == 0
#if defined(_WIN64)
unsigned long r;
_BitScanForward64(&r, x);
return r;
#elif defined(_WIN32)
unsigned long r;
if (_BitScanForward(&r, (u32)x)) {
return (u32)r;
}
_BitScanForward(&r, x >> 32);
return (u32)(r + 32);
#else
return (u32)__builtin_ctzll(x);
#endif
return ctz64_impl(x);
}
static really_inline
u32 lg2(u32 x) {
if (!x) {
return 0;
}
return 31 - clz32(x);
return lg2_impl(x);
}
static really_inline
u64a lg2_64(u64a x) {
if (!x) {
return 0;
}
return 63 - clz64(x);
return lg2_64_impl(x);
}
static really_inline
u32 findAndClearLSB_32(u32 *v) {
assert(*v != 0); // behaviour not defined in this case
#ifndef NO_ASM
u32 val = *v, offset;
__asm__ ("bsf %1, %0\n"
"btr %0, %1\n"
: "=r" (offset), "=r" (val)
: "1" (val));
*v = val;
#else
u32 val = *v;
u32 offset = ctz32(val);
*v = val & (val - 1);
#endif
assert(offset < 32);
return offset;
return findAndClearLSB_32_impl(v);
}
static really_inline
u32 findAndClearLSB_64(u64a *v) {
assert(*v != 0); // behaviour not defined in this case
#ifdef ARCH_64_BIT
#if defined(ARCH_X86_64) && !defined(NO_ASM)
u64a val = *v, offset;
__asm__ ("bsfq %1, %0\n"
"btrq %0, %1\n"
: "=r" (offset), "=r" (val)
: "1" (val));
*v = val;
#else
// generic variant using gcc's builtin on 64-bit
u64a val = *v, offset;
offset = ctz64(val);
*v = val & (val - 1);
#endif // ARCH_X86_64
#else
// fall back to doing things with two 32-bit cases, since gcc-4.1 doesn't
// inline calls to __builtin_ctzll
u32 v1 = (u32)*v;
u32 v2 = (u32)(*v >> 32);
u32 offset;
if (v1) {
offset = findAndClearLSB_32(&v1);
*v = (u64a)v1 | ((u64a)v2 << 32);
} else {
offset = findAndClearLSB_32(&v2) + 32;
*v = (u64a)v2 << 32;
}
#endif
assert(offset < 64);
return (u32)offset;
return findAndClearLSB_64_impl(v);
}
static really_inline
u32 findAndClearMSB_32(u32 *v) {
assert(*v != 0); // behaviour not defined in this case
#ifndef NO_ASM
u32 val = *v, offset;
__asm__ ("bsr %1, %0\n"
"btr %0, %1\n"
: "=r" (offset), "=r" (val)
: "1" (val));
*v = val;
#else
u32 val = *v;
u32 offset = 31 - clz32(val);
*v = val & ~(1 << offset);
#endif
assert(offset < 32);
return offset;
return findAndClearMSB_32_impl(v);
}
static really_inline
u32 findAndClearMSB_64(u64a *v) {
assert(*v != 0); // behaviour not defined in this case
#ifdef ARCH_64_BIT
#if defined(ARCH_X86_64) && !defined(NO_ASM)
u64a val = *v, offset;
__asm__ ("bsrq %1, %0\n"
"btrq %0, %1\n"
: "=r" (offset), "=r" (val)
: "1" (val));
*v = val;
#else
// generic variant using gcc's builtin on 64-bit
u64a val = *v, offset;
offset = 63 - clz64(val);
*v = val & ~(1ULL << offset);
#endif // ARCH_X86_64
#else
// fall back to doing things with two 32-bit cases, since gcc-4.1 doesn't
// inline calls to __builtin_ctzll
u32 v1 = (u32)*v;
u32 v2 = (*v >> 32);
u32 offset;
if (v2) {
offset = findAndClearMSB_32(&v2) + 32;
*v = ((u64a)v2 << 32) | (u64a)v1;
} else {
offset = findAndClearMSB_32(&v1);
*v = (u64a)v1;
}
#endif
assert(offset < 64);
return (u32)offset;
return findAndClearMSB_64_impl(v);
}
static really_inline
u32 compress32(u32 x, u32 m) {
#if defined(HAVE_BMI2)
// BMI2 has a single instruction for this operation.
return _pext_u32(x, m);
#else
// Return zero quickly on trivial cases
if ((x & m) == 0) {
return 0;
}
u32 mk, mp, mv, t;
x &= m; // clear irrelevant bits
mk = ~m << 1; // we will count 0's to right
for (u32 i = 0; i < 5; i++) {
mp = mk ^ (mk << 1);
mp ^= mp << 2;
mp ^= mp << 4;
mp ^= mp << 8;
mp ^= mp << 16;
mv = mp & m; // bits to move
m = (m ^ mv) | (mv >> (1 << i)); // compress m
t = x & mv;
x = (x ^ t) | (t >> (1 << i)); // compress x
mk = mk & ~mp;
}
return x;
#endif
return compress32_impl(x, m);
}
static really_inline
u64a compress64(u64a x, u64a m) {
#if defined(ARCH_X86_64) && defined(HAVE_BMI2)
// BMI2 has a single instruction for this operation.
return _pext_u64(x, m);
#else
// Return zero quickly on trivial cases
if ((x & m) == 0) {
return 0;
}
u64a mk, mp, mv, t;
x &= m; // clear irrelevant bits
mk = ~m << 1; // we will count 0's to right
for (u32 i = 0; i < 6; i++) {
mp = mk ^ (mk << 1);
mp ^= mp << 2;
mp ^= mp << 4;
mp ^= mp << 8;
mp ^= mp << 16;
mp ^= mp << 32;
mv = mp & m; // bits to move
m = (m ^ mv) | (mv >> (1 << i)); // compress m
t = x & mv;
x = (x ^ t) | (t >> (1 << i)); // compress x
mk = mk & ~mp;
}
return x;
#endif
return compress64_impl(x, m);
}
static really_inline
u32 expand32(u32 x, u32 m) {
#if defined(HAVE_BMI2)
// BMI2 has a single instruction for this operation.
return _pdep_u32(x, m);
#else
// Return zero quickly on trivial cases
if (!x || !m) {
return 0;
}
u32 m0, mk, mp, mv, t;
u32 array[5];
m0 = m; // save original mask
mk = ~m << 1; // we will count 0's to right
for (int i = 0; i < 5; i++) {
mp = mk ^ (mk << 1); // parallel suffix
mp = mp ^ (mp << 2);
mp = mp ^ (mp << 4);
mp = mp ^ (mp << 8);
mp = mp ^ (mp << 16);
mv = mp & m; // bits to move
array[i] = mv;
m = (m ^ mv) | (mv >> (1 << i)); // compress m
mk = mk & ~mp;
}
for (int i = 4; i >= 0; i--) {
mv = array[i];
t = x << (1 << i);
x = (x & ~mv) | (t & mv);
}
return x & m0; // clear out extraneous bits
#endif
return expand32_impl(x, m);
}
static really_inline
u64a expand64(u64a x, u64a m) {
#if defined(ARCH_X86_64) && defined(HAVE_BMI2)
// BMI2 has a single instruction for this operation.
return _pdep_u64(x, m);
#else
// Return zero quickly on trivial cases
if (!x || !m) {
return 0;
}
u64a m0, mk, mp, mv, t;
u64a array[6];
m0 = m; // save original mask
mk = ~m << 1; // we will count 0's to right
for (int i = 0; i < 6; i++) {
mp = mk ^ (mk << 1); // parallel suffix
mp = mp ^ (mp << 2);
mp = mp ^ (mp << 4);
mp = mp ^ (mp << 8);
mp = mp ^ (mp << 16);
mp = mp ^ (mp << 32);
mv = mp & m; // bits to move
array[i] = mv;
m = (m ^ mv) | (mv >> (1 << i)); // compress m
mk = mk & ~mp;
}
for (int i = 5; i >= 0; i--) {
mv = array[i];
t = x << (1 << i);
x = (x & ~mv) | (t & mv);
}
return x & m0; // clear out extraneous bits
#endif
return expand64_impl(x, m);
}
@ -396,97 +134,37 @@ u64a expand64(u64a x, u64a m) {
*/
static really_inline
u32 bf64_iterate(u64a bitfield, u32 begin) {
if (begin != ~0U) {
/* switch off all bits at or below begin. Note: not legal to shift by
* by size of the datatype or larger. */
assert(begin <= 63);
bitfield &= ~((2ULL << begin) - 1);
}
if (!bitfield) {
return ~0U;
}
return ctz64(bitfield);
return bf64_iterate_impl(bitfield, begin);
}
static really_inline
char bf64_set(u64a *bitfield, u32 i) {
assert(i < 64);
u64a mask = 1ULL << i;
char was_set = !!(*bitfield & mask);
*bitfield |= mask;
return was_set;
return bf64_set_impl(bitfield, i);
}
static really_inline
void bf64_unset(u64a *bitfield, u32 i) {
assert(i < 64);
*bitfield &= ~(1ULL << i);
return bf64_unset_impl(bitfield, i);
}
static really_inline
u32 rank_in_mask32(u32 mask, u32 bit) {
assert(bit < sizeof(u32) * 8);
assert(mask & (u32)(1U << bit));
mask &= (u32)(1U << bit) - 1;
return popcount32(mask);
return rank_in_mask32_impl(mask, bit);
}
static really_inline
u32 rank_in_mask64(u64a mask, u32 bit) {
assert(bit < sizeof(u64a) * 8);
assert(mask & (u64a)(1ULL << bit));
mask &= (u64a)(1ULL << bit) - 1;
return popcount64(mask);
return rank_in_mask64_impl(mask, bit);
}
static really_inline
u32 pext32(u32 x, u32 mask) {
#if defined(HAVE_BMI2)
// Intel BMI2 can do this operation in one instruction.
return _pext_u32(x, mask);
#else
u32 result = 0, num = 1;
while (mask != 0) {
u32 bit = findAndClearLSB_32(&mask);
if (x & (1U << bit)) {
assert(num != 0); // more than 32 bits!
result |= num;
}
num <<= 1;
}
return result;
#endif
return pext32_impl(x, mask);
}
static really_inline
u64a pext64(u64a x, u64a mask) {
#if defined(HAVE_BMI2) && defined(ARCH_64_BIT)
// Intel BMI2 can do this operation in one instruction.
return _pext_u64(x, mask);
#else
u32 result = 0, num = 1;
while (mask != 0) {
u32 bit = findAndClearLSB_64(&mask);
if (x & (1ULL << bit)) {
assert(num != 0); // more than 32 bits!
result |= num;
}
num <<= 1;
}
return result;
#endif
return pext64_impl(x, mask);
}
#if defined(HAVE_BMI2) && defined(ARCH_64_BIT)
static really_inline
u64a pdep64(u64a x, u64a mask) {
return _pdep_u64(x, mask);
}
#endif
#endif // BITUTILS_H