Add truffle SVE implementation

Signed-off-by: Yoan Picchi <yoan.picchi@arm.com>
This commit is contained in:
Yoan Picchi 2023-12-07 14:29:29 +00:00
parent 17fb9f41f6
commit 8e5abfebf0
5 changed files with 314 additions and 14 deletions

View File

@ -1,6 +1,7 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
* Copyright (c) 2023, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@ -32,6 +33,76 @@
*
*/
#ifdef HAVE_SVE
/*
* blockSingleMask takes in a character set (as masks) and a string and return for each character
* of the string weither or not it is part of the set.
*
* 'shuf_mask_lo_highclear' and 'shuf_mask_lo_highset' are 128-bit masks where each bit
* represents whether or not a character is in the character set. The 'highclear' and
* 'highset' in the name refers to the MSb of the byte of the character (allowing two
* 128-bit masks to cover all 256 values).
*
* The masks are arrays of 16 bytes each and are encoded this way:
* Let C be a character in the set. The bit describing that character is at byte[C%16] and
* within that byte, it's at bit[C/16]
* As example, 'a' = 0x61, so the resulting mask will be: 0x00 0x40 0x00 0x00 0x00 ...
*
* Assume both mask are 128b wide. If they are larger, the additional bits must be zero
*/
static really_inline
svuint8_t blockSingleMask(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars) {
const svuint8_t highconst = svdup_u8(0x80);
const svuint8_t pshub_mask = svdup_u8(0x8f);
const svuint8_t unique_bit_per_lane_mask = svreinterpret_u8(svdup_u64(0x8040201008040201));
/*
* svtbl does a table lookup. Each byte in the second argument indexes into the array of bytes
* in shuf_mask_lo_highclear and saves the result in the corresponding byte of byte_select_low.
* We mask the chars so that we are using the low nibble of char as the index but we keep the
* MSb so that high characters (not represented by the highclear mask) become an index out of
* bounds and result in a 0.
*/
svuint8_t byte_select_low = svtbl(shuf_mask_lo_highclear, svand_x(svptrue_b8(), chars, pshub_mask));
/*
* We flip the MSb of the chars and do the same table lookup with the highset mask.
* This way it's the characters with MSb cleared that will result in out of bands indexes.
* This allows us to cover the full range (0-127 and 128-255)
*/
svuint8_t char_high_flipped = sveor_x(svptrue_b8(), chars, highconst);
svuint8_t byte_select_high = svtbl(shuf_mask_lo_highset, svand_x(svptrue_b8(), char_high_flipped, pshub_mask));
/*
* We now have selected the byte that contain the bit corresponding to the char. We need to
* further filter it, otherwise we'd get a match for any character % 16 to a searched character
*
* The low nibble was used previously to select the byte out of the mask. The high nibble is
* used to select the bit out of the byte. So we shift everything right by 4.
*
* Using svtbl, we can make an array where each element is a different bit. Using the high
* nibble we can get a mask selecting only the bit out of a byte that may have the relevant
* charset char.
*/
svuint8_t char_high_nibble = svlsr_x(svptrue_b8(), chars, 4);
svuint8_t bit_select = svtbl(unique_bit_per_lane_mask, char_high_nibble);
/*
* For every lane, only one of the byte selected may have a value, so we can OR them. We
* then apply the bit_select mask. What is left is the bit in the charset encoding the
* character in char. A non zero value means the char was in the charset
*
* The _x suffix only works if we process a full char vector. If we were to use a partial
* vector, then _z and a mask would be required on this svand only. Otherwise, the disabled
* lanes may have arbitrary values
*/
svuint8_t res = svand_x(svptrue_b8(), svorr_x(svptrue_b8(), byte_select_low, byte_select_high), bit_select);
return res;
}
#else
template <uint16_t S>
static really_inline
const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, SuperVector<S> shuf_mask_lo_highset, SuperVector<S> chars) {
@ -60,3 +131,4 @@ const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, Supe
return !res.eq(SuperVector<S>::Zeroes());
}
#endif //HAVE_SVE

View File

@ -1,6 +1,7 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020, 2021, VectorCamp PC
* Copyright (c) 2023, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@ -37,7 +38,17 @@
#include "util/bitutils.h"
#include "truffle_simd.hpp"
#ifdef HAVE_SVE
const u8 *truffleExec(m128 mask_lo, m128 mask_hi, const u8 *buf,
const u8 *buf_end) {
return truffleExecSVE(mask_lo, mask_hi, buf, buf_end);
}
const u8 *rtruffleExec(m128 mask_lo, m128 mask_hi, const u8 *buf,
const u8 *buf_end) {
return rtruffleExecSVE(mask_lo, mask_hi, buf, buf_end);
}
#else
const u8 *truffleExec(m128 mask_lo, m128 mask_hi, const u8 *buf,
const u8 *buf_end) {
return truffleExecReal<VECTORSIZE>(mask_lo, mask_hi, buf, buf_end);
@ -47,3 +58,4 @@ const u8 *rtruffleExec(m128 mask_lo, m128 mask_hi, const u8 *buf,
const u8 *buf_end) {
return rtruffleExecReal<VECTORSIZE>(mask_lo, mask_hi, buf, buf_end);
}
#endif //HAVE_SVE

View File

@ -1,6 +1,7 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2023, VectorCamp PC
* Copyright (c) 2023, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@ -41,9 +42,14 @@
#include "util/supervector/supervector.hpp"
#include "util/match.hpp"
#ifdef HAVE_SVE
static really_inline
svuint8_t blockSingleMask(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars);
#else
template <uint16_t S>
static really_inline
const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, SuperVector<S> shuf_mask_lo_highset, SuperVector<S> chars);
#endif //HAVE_SVE
#if defined(VS_SIMDE_BACKEND)
#include "x86/truffle.hpp"
@ -57,6 +63,162 @@ const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, Supe
#endif
#endif
#ifdef HAVE_SVE
const u8 *truffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset,
const u8 *buf, const u8 *buf_end);
const u8 *rtruffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset,
const u8 *buf, const u8 *buf_end);
static really_inline
const u8 *scanBlock(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars, const u8 *buf, bool forward) {
const size_t vector_size_int_8 = svcntb();
const svuint8_t result_mask = blockSingleMask(shuf_mask_lo_highclear, shuf_mask_lo_highset, chars);
uint64_t index;
if (forward) {
index = first_non_zero(vector_size_int_8, result_mask);
} else {
index = last_non_zero(vector_size_int_8, result_mask);
}
if(index < vector_size_int_8) {
return buf+index;
} else {
return NULL;
}
}
really_inline
const u8 *truffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset, const u8 *buf, const u8 *buf_end) {
const int vect_size_int8 = svcntb();
// Activate only 16 lanes to read the m128 buffers
const svbool_t lane_pred_16 = svwhilelt_b8(0, 16);
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("truffle %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
svuint8_t wide_shuf_mask_lo_highclear = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highclear);
svuint8_t wide_shuf_mask_lo_highset = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highset);
const u8 *work_buffer = buf;
const u8 *ret_val;
DEBUG_PRINTF("start %p end %p \n", work_buffer, buf_end);
assert(work_buffer < buf_end);
__builtin_prefetch(work_buffer + 16*64);
if (work_buffer + vect_size_int8 <= buf_end) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(work_buffer, vect_size_int8));
if (!ISALIGNED_N(work_buffer, vect_size_int8)) {
svuint8_t chars = svld1(svptrue_b8(), work_buffer);
const u8 *alligned_buffer = ROUNDUP_PTR(work_buffer, vect_size_int8);
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, true);
if (ret_val && ret_val < alligned_buffer) return ret_val;
work_buffer = alligned_buffer;
}
while(work_buffer + vect_size_int8 <= buf_end) {
__builtin_prefetch(work_buffer + 16*64);
DEBUG_PRINTF("work_buffer %p \n", work_buffer);
svuint8_t chars = svld1(svptrue_b8(), work_buffer);
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, true);
if (ret_val) return ret_val;
work_buffer += vect_size_int8;
}
}
DEBUG_PRINTF("work_buffer %p e %p \n", work_buffer, buf_end);
// finish off tail
if (work_buffer != buf_end) {
svuint8_t chars;
const u8* end_buf;
if (buf_end - buf < vect_size_int8) {
const svbool_t remaining_lanes = svwhilelt_b8(0ll, buf_end - buf);
chars = svld1(remaining_lanes, buf);
end_buf = buf;
} else {
chars = svld1(svptrue_b8(), buf_end - vect_size_int8);
end_buf = buf_end - vect_size_int8;
}
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, end_buf, true);
DEBUG_PRINTF("ret_val %p \n", ret_val);
if (ret_val && ret_val < buf_end) return ret_val;
}
return buf_end;
}
really_inline
const u8 *rtruffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset, const u8 *buf, const u8 *buf_end){
const int vect_size_int8 = svcntb();
// Activate only 16 lanes to read the m128 buffers
const svbool_t lane_pred_16 = svwhilelt_b8(0, 16);
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("truffle %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
svuint8_t wide_shuf_mask_lo_highclear = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highclear);
svuint8_t wide_shuf_mask_lo_highset = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highset);
const u8 *work_buffer = buf_end;
const u8 *ret_val;
DEBUG_PRINTF("start %p end %p \n", buf, work_buffer);
assert(work_buffer > buf);
__builtin_prefetch(work_buffer - 16*64);
if (work_buffer - vect_size_int8 >= buf) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDDOWN_PTR(work_buffer, vect_size_int8));
if (!ISALIGNED_N(work_buffer, vect_size_int8)) {
svuint8_t chars = svld1(svptrue_b8(), work_buffer - vect_size_int8);
const u8 *alligned_buffer = ROUNDDOWN_PTR(work_buffer, vect_size_int8);
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer - vect_size_int8, false);
DEBUG_PRINTF("ret_val %p \n", ret_val);
if (ret_val >= alligned_buffer) return ret_val;
work_buffer = alligned_buffer;
}
while (work_buffer - vect_size_int8 >= buf) {
DEBUG_PRINTF("aligned %p \n", work_buffer);
// On large packet buffers, this prefetch appears to get us about 2%.
__builtin_prefetch(work_buffer - 16*64);
work_buffer -= vect_size_int8;
svuint8_t chars = svld1(svptrue_b8(), work_buffer);
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, false);
if (ret_val) return ret_val;
}
}
DEBUG_PRINTF("tail work_buffer %p e %p \n", buf, work_buffer);
// finish off head
if (work_buffer != buf) {
svuint8_t chars;
if (buf_end - buf < vect_size_int8) {
const svbool_t remaining_lanes = svwhilele_b8(0ll, buf_end - buf);
chars = svld1(remaining_lanes, buf);
} else {
chars = svld1(svptrue_b8(), buf);
}
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, buf, false);
DEBUG_PRINTF("ret_val %p \n", ret_val);
if (ret_val && ret_val < buf_end) return ret_val;
}
return buf - 1;
}
#else
template <uint16_t S>
static really_inline
const u8 *fwdBlock(SuperVector<S> shuf_mask_lo_highclear, SuperVector<S> shuf_mask_lo_highset, SuperVector<S> chars, const u8 *buf) {
@ -77,13 +239,7 @@ const u8 *truffleExecReal(m128 &shuf_mask_lo_highclear, m128 shuf_mask_lo_highse
const u8 *d = buf;
const u8 *rv;
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
assert(d < buf_end);
__builtin_prefetch(d + 64);
__builtin_prefetch(d + 2*64);
__builtin_prefetch(d + 3*64);
__builtin_prefetch(d + 4*64);
__builtin_prefetch(d + 16*64);
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
assert(d < buf_end);
if (d + S <= buf_end) {
@ -98,7 +254,7 @@ const u8 *truffleExecReal(m128 &shuf_mask_lo_highclear, m128 shuf_mask_lo_highse
}
while(d + S <= buf_end) {
__builtin_prefetch(d + 64);
__builtin_prefetch(d + 16*64);
DEBUG_PRINTF("d %p \n", d);
SuperVector<S> chars = SuperVector<S>::load(d);
rv = fwdBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, d);
@ -149,10 +305,7 @@ const u8 *rtruffleExecReal(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highse
const u8 *d = buf_end;
const u8 *rv;
__builtin_prefetch(d - 64);
__builtin_prefetch(d - 2*64);
__builtin_prefetch(d - 3*64);
__builtin_prefetch(d - 4*64);
__builtin_prefetch(d - 16*64);
DEBUG_PRINTF("start %p end %p \n", buf, d);
assert(d > buf);
if (d - S >= buf) {
@ -170,7 +323,7 @@ const u8 *rtruffleExecReal(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highse
while (d - S >= buf) {
DEBUG_PRINTF("aligned %p \n", d);
// On large packet buffers, this prefetch appears to get us about 2%.
__builtin_prefetch(d - 64);
__builtin_prefetch(d - 16*64);
d -= S;
SuperVector<S> chars = SuperVector<S>::load(d);
@ -196,3 +349,4 @@ const u8 *rtruffleExecReal(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highse
return buf - 1;
}
#endif //HAVE_SVE

View File

@ -1,6 +1,7 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
* Copyright (c) 2023, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@ -99,3 +100,64 @@ const u8 *last_zero_match_inverted<16>(const u8 *buf, SuperVector<16> mask, u16
}
}
#ifdef HAVE_SVE
static really_inline
uint64_t last_non_zero_real(svuint8_t mask) {
const svuint64_t leading_zeros = svclz_x(svptrue_b64(), svreinterpret_u64(mask));
uint64_t last_active_lane;
svbool_t remaining_mask = svptrue_b64();
uint64_t i = 0;
while(svptest_any(svptrue_b64(), remaining_mask)) {
svbool_t single_lane_mask = svpnext_b64(remaining_mask, svpfalse());
remaining_mask = sveor_z(svptrue_b64(), remaining_mask, single_lane_mask);
uint64_t active_element = svlastb(single_lane_mask, leading_zeros);
if(active_element<64) {
uint64_t lane_index = (i+1)*8 - (active_element/8) - 1;
last_active_lane = lane_index;
}
i++;
}
return last_active_lane;
}
/*
* It is assumed mask have the value 0 for all inactive lanes, if any.
*/
static really_inline
uint64_t last_non_zero(const size_t vector_size_int_8, svuint8_t mask) {
const svbool_t result_pred = svcmpne(svptrue_b8(), mask, 0);
if (svptest_any(svptrue_b8(), result_pred)) {
return last_non_zero_real(mask);
} else {
return vector_size_int_8;
}
}
/*
* It is assumed mask have the value 0 for all inactive lanes, if any.
*/
static really_inline
uint64_t first_non_zero(const size_t vector_size_int_8, svuint8_t mask) {
const svbool_t result_pred = svcmpne(svptrue_b8(), mask, 0);
if (svptest_any(svptrue_b8(), result_pred)) {
// We don't have a CTZ instruction but we can work around by reversing the lane order
const svuint64_t rev_large_res = svreinterpret_u64(svrev(mask));
// Now each pack of 8 leading 0 means one empty lane. So if we have 18 leading 0,
// that means the third lane have a matching character.
uint64_t first_active_lane = last_non_zero_real(svreinterpret_u8(rev_large_res));
// We reversed the lanes, so we reverse back the index
first_active_lane = (vector_size_int_8-1) - first_active_lane;
return first_active_lane;
} else {
return vector_size_int_8;
}
}
#endif //HAVE_SVE

View File

@ -138,7 +138,7 @@ struct BaseVector<64>
static constexpr u16 previous_size = 32;
};
// 128 bit implementation
// 256 bit implementation
template <>
struct BaseVector<32>
{