Make key 64 bits where large shifts may be used.

This fixes a long-standing issue with large multibit structures.
This commit is contained in:
Justin Viiret 2015-11-27 13:30:59 +11:00 committed by Matthew Barr
parent 205bc1af7f
commit 15c2980948
3 changed files with 66 additions and 56 deletions

View File

@ -142,23 +142,25 @@ const u32 mmbit_root_offset_from_level[7] = {
u32 mmbit_size(u32 total_bits) {
MDEBUG_PRINTF("%u\n", total_bits);
// UE-2228: multibit has bugs in very, very large cases that we should be
// protected against at compile time by resource limits.
assert(total_bits <= 1U << 30);
// Flat model multibit structures are just stored as a bit vector.
if (total_bits <= MMB_FLAT_MAX_BITS) {
return ROUNDUP_N(total_bits, 8) / 8;
}
u32 current_level = 1;
u32 total = 0;
u64a current_level = 1; // Number of blocks on current level.
u64a total = 0; // Total number of blocks.
while (current_level * MMB_KEY_BITS < total_bits) {
total += current_level;
current_level <<= MMB_KEY_SHIFT;
}
total += (total_bits + MMB_KEY_BITS - 1)/MMB_KEY_BITS;
return sizeof(MMB_TYPE) * total;
// Last level is a one-for-one bit vector. It needs room for total_bits
// elements, rounded up to the nearest block.
u64a last_level = ((u64a)total_bits + MMB_KEY_BITS - 1) / MMB_KEY_BITS;
total += last_level;
assert(total * sizeof(MMB_TYPE) <= UINT32_MAX);
return (u32)(total * sizeof(MMB_TYPE));
}
#ifdef DUMP_SUPPORT

View File

@ -235,18 +235,18 @@ const u8 *mmbit_get_level_root_const(const u8 *bits, u32 level) {
/** \brief get the block for this key on the current level as a u8 ptr */
static really_inline
u8 *mmbit_get_block_ptr(u8 *bits, u32 max_level, u32 level, u32 key) {
return mmbit_get_level_root(bits, level) +
(key >> (mmbit_get_ks(max_level, level) + MMB_KEY_SHIFT)) *
sizeof(MMB_TYPE);
u8 *level_root = mmbit_get_level_root(bits, level);
u32 ks = mmbit_get_ks(max_level, level);
return level_root + ((u64a)key >> (ks + MMB_KEY_SHIFT)) * sizeof(MMB_TYPE);
}
/** \brief get the block for this key on the current level as a const u8 ptr */
static really_inline
const u8 *mmbit_get_block_ptr_const(const u8 *bits, u32 max_level, u32 level,
u32 key) {
return mmbit_get_level_root_const(bits, level) +
(key >> (mmbit_get_ks(max_level, level) + MMB_KEY_SHIFT)) *
sizeof(MMB_TYPE);
const u8 *level_root = mmbit_get_level_root_const(bits, level);
u32 ks = mmbit_get_ks(max_level, level);
return level_root + ((u64a)key >> (ks + MMB_KEY_SHIFT)) * sizeof(MMB_TYPE);
}
/** \brief get the _byte_ for this key on the current level as a u8 ptr */
@ -254,7 +254,7 @@ static really_inline
u8 *mmbit_get_byte_ptr(u8 *bits, u32 max_level, u32 level, u32 key) {
u8 *level_root = mmbit_get_level_root(bits, level);
u32 ks = mmbit_get_ks(max_level, level);
return level_root + (key >> (ks + MMB_KEY_SHIFT - 3));
return level_root + ((u64a)key >> (ks + MMB_KEY_SHIFT - 3));
}
/** \brief get our key value for the current level */
@ -721,11 +721,11 @@ u32 mmbit_iterate_bounded_flat(const u8 *bits, u32 total_bits, u32 begin,
}
static really_inline
MMB_TYPE get_lowhi_masks(u32 level, u32 max_level, u32 block_min, u32 block_max,
u32 block_base) {
MMB_TYPE get_lowhi_masks(u32 level, u32 max_level, u64a block_min, u64a block_max,
u64a block_base) {
const u32 level_shift = (max_level - level) * MMB_KEY_SHIFT;
u32 lshift = (block_min - block_base) >> level_shift;
u32 ushift = (block_max - block_base) >> level_shift;
u64a lshift = (block_min - block_base) >> level_shift;
u64a ushift = (block_max - block_base) >> level_shift;
MMB_TYPE lmask = lshift < 64 ? ~mmb_mask_zero_to_nocheck(lshift) : 0;
MMB_TYPE umask =
ushift < 63 ? mmb_mask_zero_to_nocheck(ushift + 1) : MMB_ALL_ONES;
@ -734,7 +734,7 @@ MMB_TYPE get_lowhi_masks(u32 level, u32 max_level, u32 block_min, u32 block_max,
static really_inline
u32 mmbit_iterate_bounded_big(const u8 *bits, u32 total_bits, u32 it_start, u32 it_end) {
u32 key = 0;
u64a key = 0;
u32 ks = mmbit_keyshift(total_bits);
const u32 max_level = mmbit_maxlevel_from_keyshift(ks);
u32 level = 0;
@ -743,9 +743,9 @@ u32 mmbit_iterate_bounded_big(const u8 *bits, u32 total_bits, u32 it_start, u32
assert(level <= max_level);
u32 block_width = MMB_KEY_BITS << ks;
u32 block_base = key*block_width;
u32 block_min = MAX(it_start, block_base);
u32 block_max = MIN(it_end, block_base + block_width - 1);
u64a block_base = key * block_width;
u64a block_min = MAX(it_start, block_base);
u64a block_max = MIN(it_end, block_base + block_width - 1);
const u8 *block_ptr =
mmbit_get_level_root_const(bits, level) + key * sizeof(MMB_TYPE);
MMB_TYPE block = mmb_load(block_ptr);
@ -761,13 +761,14 @@ u32 mmbit_iterate_bounded_big(const u8 *bits, u32 total_bits, u32 it_start, u32
// No bit found, go up a level
// we know that this block didn't have any answers, so we can push
// our start iterator forward.
it_start = block_base + block_width;
if (it_start > it_end) {
u64a next_start = block_base + block_width;
if (next_start > it_end) {
break;
}
if (level-- == 0) {
break;
}
it_start = next_start;
key >>= MMB_KEY_SHIFT;
ks += MMB_KEY_SHIFT;
}

View File

@ -363,7 +363,9 @@ TEST_P(MultiBitTest, BoundedIteratorSingle) {
ASSERT_TRUE(ba != nullptr);
// Set one bit on and run some checks.
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
SCOPED_TRACE(i);
mmbit_clear(ba, test_size);
mmbit_set(ba, test_size, i);
@ -381,7 +383,12 @@ TEST_P(MultiBitTest, BoundedIteratorSingle) {
// Scanning from one past our bit to the end should find nothing.
if (i != test_size - 1) {
ASSERT_EQ(MMB_INVALID, mmbit_iterate_bounded(ba, test_size, i + 1, test_size));
// Ordinary iterator.
ASSERT_EQ(MMB_INVALID, mmbit_iterate(ba, test_size, i));
// Bounded iterator.
ASSERT_EQ(MMB_INVALID,
mmbit_iterate_bounded(ba, test_size, i + 1, test_size));
}
}
}
@ -393,7 +400,7 @@ TEST_P(MultiBitTest, BoundedIteratorAll) {
// Switch everything on.
fill_mmbit(ba, test_size);
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
if (i != 0) {
ASSERT_EQ(0U, mmbit_iterate_bounded(ba, test_size, 0, i));
}
@ -408,13 +415,13 @@ TEST_P(MultiBitTest, BoundedIteratorEven) {
// Set every even-numbered bit and see what we can see.
mmbit_clear(ba, test_size);
for (u32 i = 0; i < test_size; i += 2) {
for (u64a i = 0; i < test_size; i += 2) {
mmbit_set(ba, test_size, i);
}
u32 even_stride = stride % 2 ? stride + 1 : stride;
for (u32 i = 0; i < test_size; i += even_stride) {
for (u64a i = 0; i < test_size; i += even_stride) {
// Scanning from each even bit to the end should find itself.
ASSERT_EQ(i, mmbit_iterate_bounded(ba, test_size, i, test_size));
@ -439,13 +446,13 @@ TEST_P(MultiBitTest, BoundedIteratorOdd) {
// Set every odd-numbered bit and see what we can see.
mmbit_clear(ba, test_size);
for (u32 i = 1; i < test_size; i += 2) {
for (u64a i = 1; i < test_size; i += 2) {
mmbit_set(ba, test_size, i);
}
u32 even_stride = stride % 2 ? stride + 1 : stride;
for (u32 i = 0; i < test_size; i += even_stride) {
for (u64a i = 0; i < test_size; i += even_stride) {
// Scanning from each even bit to the end should find i+1.
if (i+1 < test_size) {
ASSERT_EQ(i+1, mmbit_iterate_bounded(ba, test_size, i, test_size));
@ -473,7 +480,7 @@ TEST_P(MultiBitTest, Set) {
mmbit_clear(ba, test_size);
ASSERT_FALSE(mmbit_any(ba, test_size));
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
SCOPED_TRACE(i);
// set a bit that wasn't set before
@ -500,7 +507,7 @@ TEST_P(MultiBitTest, Iter) {
mmbit_clear(ba, test_size);
ASSERT_EQ(MMB_INVALID, mmbit_iterate(ba, test_size, MMB_INVALID));
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
SCOPED_TRACE(i);
mmbit_clear(ba, test_size);
mmbit_set(ba, test_size, i);
@ -517,13 +524,13 @@ TEST_P(MultiBitTest, IterAll) {
ASSERT_EQ(MMB_INVALID, mmbit_iterate(ba, test_size, MMB_INVALID));
// Set all bits.
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
mmbit_set(ba, test_size, i);
}
// Find all bits.
u32 it = MMB_INVALID;
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
ASSERT_EQ(i, mmbit_iterate(ba, test_size, it));
it = i;
}
@ -536,7 +543,7 @@ TEST_P(MultiBitTest, AnyPrecise) {
mmbit_clear(ba, test_size);
ASSERT_FALSE(mmbit_any_precise(ba, test_size));
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
SCOPED_TRACE(i);
mmbit_clear(ba, test_size);
mmbit_set(ba, test_size, i);
@ -551,7 +558,7 @@ TEST_P(MultiBitTest, Any) {
mmbit_clear(ba, test_size);
ASSERT_FALSE(mmbit_any(ba, test_size));
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
SCOPED_TRACE(i);
mmbit_clear(ba, test_size);
mmbit_set(ba, test_size, i);
@ -567,7 +574,7 @@ TEST_P(MultiBitTest, UnsetRange1) {
fill_mmbit(ba, test_size);
// Use mmbit_unset_range to switch off any single bit.
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
SCOPED_TRACE(i);
ASSERT_TRUE(mmbit_isset(ba, test_size, i));
mmbit_unset_range(ba, test_size, i, i + 1);
@ -590,7 +597,7 @@ TEST_P(MultiBitTest, UnsetRange2) {
// Use mmbit_unset_range to switch off all bits.
mmbit_unset_range(ba, test_size, 0, test_size);
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
SCOPED_TRACE(i);
ASSERT_FALSE(mmbit_isset(ba, test_size, i));
}
@ -601,12 +608,12 @@ TEST_P(MultiBitTest, UnsetRange3) {
ASSERT_TRUE(ba != nullptr);
// Use mmbit_unset_range to switch off bits in chunks of 3.
for (u32 i = 0; i < test_size - 3; i += stride) {
for (u64a i = 0; i < test_size - 3; i += stride) {
// Switch on the bit before, the bits in question, and the bit after.
if (i > 0) {
mmbit_set(ba, test_size, i - 1);
}
for (u32 j = i; j < min(i + 4, test_size); j++) {
for (u64a j = i; j < min(i + 4, (u64a)test_size); j++) {
mmbit_set(ba, test_size, j);
}
@ -635,7 +642,7 @@ TEST_P(MultiBitTest, InitRangeAll) {
mmbit_init_range(ba, test_size, 0, test_size);
// Make sure they're all set.
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
SCOPED_TRACE(i);
ASSERT_TRUE(mmbit_isset(ba, test_size, i));
}
@ -656,7 +663,7 @@ TEST_P(MultiBitTest, InitRangeOne) {
SCOPED_TRACE(test_size);
ASSERT_TRUE(ba != nullptr);
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
mmbit_init_range(ba, test_size, i, i + 1);
// Only bit 'i' should be on.
@ -685,7 +692,7 @@ TEST_P(MultiBitTest, InitRangeChunked) {
ASSERT_EQ(chunk_begin, mmbit_iterate(ba, test_size, MMB_INVALID));
// All bits in the chunk should be on.
for (u32 i = chunk_begin; i < chunk_end; i += stride) {
for (u64a i = chunk_begin; i < chunk_end; i += stride) {
SCOPED_TRACE(i);
ASSERT_TRUE(mmbit_isset(ba, test_size, i));
}
@ -985,7 +992,7 @@ TEST_P(MultiBitTest, SparseIteratorBeginAll) {
vector<mmbit_sparse_iter> it;
vector<u32> bits;
bits.reserve(test_size / stride);
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
bits.push_back(i);
}
mmbBuildSparseIterator(it, bits, test_size);
@ -1032,7 +1039,7 @@ TEST_P(MultiBitTest, SparseIteratorBeginThirds) {
// Switch every third bits on in state
mmbit_clear(ba, test_size);
ASSERT_FALSE(mmbit_any(ba, test_size));
for (u32 i = 0; i < test_size; i += 3) {
for (u64a i = 0; i < test_size; i += 3) {
mmbit_set(ba, test_size, i);
}
@ -1044,7 +1051,7 @@ TEST_P(MultiBitTest, SparseIteratorBeginThirds) {
ASSERT_EQ(0U, val);
ASSERT_EQ(0U, idx);
for (u32 i = 0; i < test_size - 3; i += 3) {
for (u64a i = 0; i < test_size - 3; i += 3) {
mmbit_unset(ba, test_size, i);
val = mmbit_sparse_iter_begin(ba, test_size, &idx, &it[0], &state[0]);
ASSERT_EQ(i+3, val);
@ -1060,7 +1067,7 @@ TEST_P(MultiBitTest, SparseIteratorNextAll) {
vector<mmbit_sparse_iter> it;
vector<u32> bits;
bits.reserve(test_size / stride);
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
bits.push_back(i);
}
mmbBuildSparseIterator(it, bits, test_size);
@ -1103,7 +1110,7 @@ TEST_P(MultiBitTest, SparseIteratorNextExactStrided) {
vector<mmbit_sparse_iter> it;
vector<u32> bits;
bits.reserve(test_size / stride);
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
bits.push_back(i);
mmbit_set(ba, test_size, i);
}
@ -1135,7 +1142,7 @@ TEST_P(MultiBitTest, SparseIteratorNextNone) {
vector<mmbit_sparse_iter> it;
vector<u32> bits;
bits.reserve(test_size / stride);
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
bits.push_back(i);
}
mmbBuildSparseIterator(it, bits, test_size);
@ -1164,7 +1171,7 @@ TEST_P(MultiBitTest, SparseIteratorUnsetAll) {
vector<mmbit_sparse_iter> it;
vector<u32> bits;
bits.reserve(test_size / stride);
for (u32 i = 0; i < test_size; i += stride) {
for (u64a i = 0; i < test_size; i += stride) {
bits.push_back(i);
}
mmbBuildSparseIterator(it, bits, test_size);
@ -1194,10 +1201,10 @@ TEST_P(MultiBitTest, SparseIteratorUnsetHalves) {
// Two sparse iterators: one for even bits, one for odd ones
vector<u32> even, odd;
for (u32 i = 0; i < test_size; i += 2) {
for (u64a i = 0; i < test_size; i += 2) {
even.push_back(i);
}
for (u32 i = 1; i < test_size; i += 2) {
for (u64a i = 1; i < test_size; i += 2) {
odd.push_back(i);
}
@ -1277,9 +1284,9 @@ static const MultiBitTestParam multibitTests[] = {
{ 1U << 28, 15073 },
{ 1U << 29, 24413 },
{ 1U << 30, 50377 },
{ 1U << 31, 104729 },
// XXX: cases this large segfault in mmbit_set, FIXME NOW
//{ 1U << 31, 3701 },
// { UINT32_MAX, 104729 }, // Very slow
};
INSTANTIATE_TEST_CASE_P(MultiBit, MultiBitTest, ValuesIn(multibitTests));