vectorscan/src/nfa/shufti_simd.hpp

315 lines
11 KiB
C++

/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2023, VectorCamp PC
* Copyright (c) 2021, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Shufti: character class acceleration.
*
* Utilises the SSSE3 pshufb shuffle instruction
*/
#include <algorithm>
#include "shufti.h"
#include "ue2common.h"
#include "util/arch.h"
#include "util/bitutils.h"
#include "util/unaligned.h"
#include "util/supervector/supervector.hpp"
#include "util/match.hpp"
template <uint16_t S>
static really_inline
const SuperVector<S> blockSingleMask(SuperVector<S> mask_lo, SuperVector<S> mask_hi, SuperVector<S> chars);
template <uint16_t S>
static really_inline
SuperVector<S> blockDoubleMask(SuperVector<S> mask1_lo, SuperVector<S> mask1_hi, SuperVector<S> mask2_lo, SuperVector<S> mask2_hi, SuperVector<S> *inout_first_char_mask, SuperVector<S> chars);
#if defined(VS_SIMDE_BACKEND)
#include "x86/shufti.hpp"
#else
#if defined(ARCH_IA32) || defined(ARCH_X86_64)
#include "x86/shufti.hpp"
#elif (defined(ARCH_ARM32) || defined(ARCH_AARCH64))
#include "arm/shufti.hpp"
#elif defined(ARCH_PPC64EL)
#include "ppc64el/shufti.hpp"
#elif defined(ARCH_LOONGARCH64)
#include "loongarch64/shufti.hpp"
#endif
#endif
template <uint16_t S>
static really_inline
const u8 *fwdBlock(SuperVector<S> mask_lo, SuperVector<S> mask_hi, SuperVector<S> chars, const u8 *buf) {
SuperVector<S> v = blockSingleMask(mask_lo, mask_hi, chars);
return first_zero_match_inverted<S>(buf, v);
}
template <uint16_t S>
static really_inline
const u8 *revBlock(SuperVector<S> mask_lo, SuperVector<S> mask_hi, SuperVector<S> chars, const u8 *buf) {
SuperVector<S> v = blockSingleMask(mask_lo, mask_hi, chars);
return last_zero_match_inverted<S>(buf, v);
}
template <uint16_t S>
static really_inline
const u8 *fwdBlockDouble(SuperVector<S> mask1_lo, SuperVector<S> mask1_hi, SuperVector<S> mask2_lo, SuperVector<S> mask2_hi, SuperVector<S> *prev_first_char_mask, SuperVector<S> chars, const u8 *buf) {
SuperVector<S> mask = blockDoubleMask(mask1_lo, mask1_hi, mask2_lo, mask2_hi, prev_first_char_mask, chars);
// By shifting first_char_mask instead of the legacy t2 mask, we would report
// on the second char instead of the first. we offset the buf to compensate.
return first_zero_match_inverted<S>(buf-1, mask);
}
template <uint16_t S>
const u8 *shuftiExecReal(m128 mask_lo, m128 mask_hi, const u8 *buf, const u8 *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("shufti %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const SuperVector<S> wide_mask_lo(mask_lo);
const SuperVector<S> wide_mask_hi(mask_hi);
const u8 *d = buf;
const u8 *rv;
__builtin_prefetch(d + 64);
__builtin_prefetch(d + 2*64);
__builtin_prefetch(d + 3*64);
__builtin_prefetch(d + 4*64);
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
assert(d < buf_end);
if (d + S <= buf_end) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
SuperVector<S> chars = SuperVector<S>::loadu(d);
rv = fwdBlock(wide_mask_lo, wide_mask_hi, chars, d);
if (rv) return rv;
d = ROUNDUP_PTR(d, S);
}
while(d + S <= buf_end) {
__builtin_prefetch(d + 64);
DEBUG_PRINTF("d %p \n", d);
SuperVector<S> chars = SuperVector<S>::load(d);
rv = fwdBlock(wide_mask_lo, wide_mask_hi, chars, d);
if (rv) return rv;
d += S;
}
}
DEBUG_PRINTF("d %p e %p \n", d, buf_end);
// finish off tail
if (d != buf_end) {
SuperVector<S> chars = SuperVector<S>::loadu(buf_end - S);
rv = fwdBlock(wide_mask_lo, wide_mask_hi, chars, buf_end - S);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
return buf_end;
}
template <uint16_t S>
const u8 *rshuftiExecReal(m128 mask_lo, m128 mask_hi, const u8 *buf, const u8 *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("rshufti %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const SuperVector<S> wide_mask_lo(mask_lo);
const SuperVector<S> wide_mask_hi(mask_hi);
const u8 *d = buf_end;
const u8 *rv;
__builtin_prefetch(d - 64);
__builtin_prefetch(d - 2*64);
__builtin_prefetch(d - 3*64);
__builtin_prefetch(d - 4*64);
DEBUG_PRINTF("start %p end %p \n", buf, d);
assert(d > buf);
if (d - S >= buf) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDDOWN_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
SuperVector<S> chars = SuperVector<S>::loadu(d - S);
rv = revBlock(wide_mask_lo, wide_mask_hi, chars, d - S);
DEBUG_PRINTF("rv %p \n", rv);
if (rv) return rv;
d = ROUNDDOWN_PTR(d, S);
}
while (d - S >= buf) {
DEBUG_PRINTF("aligned %p \n", d);
// On large packet buffers, this prefetch appears to get us about 2%.
__builtin_prefetch(d - 64);
d -= S;
SuperVector<S> chars = SuperVector<S>::load(d);
rv = revBlock(wide_mask_lo, wide_mask_hi, chars, d);
if (rv) return rv;
}
}
DEBUG_PRINTF("tail d %p e %p \n", buf, d);
// finish off head
if (d != buf) {
SuperVector<S> chars = SuperVector<S>::loadu(buf);
rv = revBlock(wide_mask_lo, wide_mask_hi, chars, buf);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
return buf - 1;
}
// A match on the last char is valid if and only if it match a single char
// pattern, not a char pair. So we manually check the last match with the
// wildcard patterns.
template <uint16_t S>
static really_inline
const u8 *check_last_byte(SuperVector<S> mask2_lo, SuperVector<S> mask2_hi,
SuperVector<S> mask, uint8_t mask_len, const u8 *buf_end) {
uint8_t last_elem = mask.u.u8[mask_len - 1];
SuperVector<S> reduce = mask2_lo | mask2_hi;
for(uint16_t i = S; i > 2; i/=2) {
reduce = reduce | reduce.vshr(i/2);
}
uint8_t match_inverted = reduce.u.u8[0] | last_elem;
// if 0xff, then no match
int match = match_inverted != 0xff;
if(match) {
return buf_end - 1;
}
return NULL;
}
template <uint16_t S>
const u8 *shuftiDoubleExecReal(m128 mask1_lo, m128 mask1_hi, m128 mask2_lo, m128 mask2_hi,
const u8 *buf, const u8 *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("shufti %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const SuperVector<S> wide_mask1_lo(mask1_lo);
const SuperVector<S> wide_mask1_hi(mask1_hi);
const SuperVector<S> wide_mask2_lo(mask2_lo);
const SuperVector<S> wide_mask2_hi(mask2_hi);
const u8 *d = buf;
const u8 *rv;
__builtin_prefetch(d + 64);
__builtin_prefetch(d + 2*64);
__builtin_prefetch(d + 3*64);
__builtin_prefetch(d + 4*64);
SuperVector<S> first_char_mask = SuperVector<S>::Ones();
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
assert(d < buf_end);
if (d + S <= buf_end) {
// peel off first part to cacheline boundary
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
SuperVector<S> chars = SuperVector<S>::loadu(d);
rv = fwdBlockDouble(wide_mask1_lo, wide_mask1_hi, wide_mask2_lo, wide_mask2_hi, &first_char_mask, chars, d);
DEBUG_PRINTF("rv %p \n", rv);
if (rv) return rv;
d = ROUNDUP_PTR(d, S);
ptrdiff_t offset = d - buf;
first_char_mask.print8("inout_c1");
first_char_mask = first_char_mask.vshl(S - offset);
first_char_mask.print8("inout_c1 shifted");
}
first_char_mask = SuperVector<S>::Ones();
while(d + S <= buf_end) {
__builtin_prefetch(d + 64);
DEBUG_PRINTF("d %p \n", d);
SuperVector<S> chars = SuperVector<S>::load(d);
rv = fwdBlockDouble(wide_mask1_lo, wide_mask1_hi, wide_mask2_lo, wide_mask2_hi, &first_char_mask, chars, d);
if (rv && rv < buf_end - 1) return rv;
d += S;
}
}
ptrdiff_t last_mask_len = S;
DEBUG_PRINTF("tail d %p e %p \n", d, buf_end);
// finish off tail
if (d != buf_end) {
SuperVector<S> chars = SuperVector<S>::loadu(d);
rv = fwdBlockDouble(wide_mask1_lo, wide_mask1_hi, wide_mask2_lo, wide_mask2_hi, &first_char_mask, chars, d);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end - 1) return rv;
last_mask_len = buf_end - d;
}
rv = check_last_byte(wide_mask2_lo, wide_mask2_hi, first_char_mask, last_mask_len, buf_end);
if (rv) return rv;
return buf_end;
}
const u8 *shuftiExec(m128 mask_lo, m128 mask_hi, const u8 *buf,
const u8 *buf_end) {
if (buf_end - buf < VECTORSIZE) {
return shuftiFwdSlow(reinterpret_cast<const u8 *>(&mask_lo), reinterpret_cast<const u8 *>(&mask_hi), buf, buf_end);
}
return shuftiExecReal<VECTORSIZE>(mask_lo, mask_hi, buf, buf_end);
}
const u8 *rshuftiExec(m128 mask_lo, m128 mask_hi, const u8 *buf,
const u8 *buf_end) {
if (buf_end - buf < VECTORSIZE) {
return shuftiRevSlow(reinterpret_cast<const u8 *>(&mask_lo), reinterpret_cast<const u8 *>(&mask_hi), buf, buf_end);
}
return rshuftiExecReal<VECTORSIZE>(mask_lo, mask_hi, buf, buf_end);
}
const u8 *shuftiDoubleExec(m128 mask1_lo, m128 mask1_hi,
m128 mask2_lo, m128 mask2_hi,
const u8 *buf, const u8 *buf_end) {
return shuftiDoubleExecReal<VECTORSIZE>(mask1_lo, mask1_hi, mask2_lo, mask2_hi, buf, buf_end);
}