mirror of
https://github.com/VectorCamp/vectorscan.git
synced 2025-06-28 16:41:01 +03:00
397 lines
14 KiB
C++
397 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2015-2017, Intel Corporation
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "fdr_internal.h"
|
|
#include "fdr_compile_internal.h"
|
|
#include "fdr_confirm.h"
|
|
#include "engine_description.h"
|
|
#include "teddy_engine_description.h"
|
|
#include "ue2common.h"
|
|
#include "util/alloc.h"
|
|
#include "util/bitutils.h"
|
|
#include "util/compare.h"
|
|
#include "util/verify_types.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <set>
|
|
|
|
using namespace std;
|
|
|
|
namespace ue2 {
|
|
|
|
using BC2CONF = map<BucketIndex, bytecode_ptr<FDRConfirm>>;
|
|
|
|
// return the number of bytes beyond a length threshold in all strings in lits
|
|
static
|
|
size_t thresholdedSize(const vector<hwlmLiteral> &lits, size_t threshold) {
|
|
size_t tot = 0;
|
|
for (const auto &lit : lits) {
|
|
size_t sz = lit.s.size();
|
|
if (sz > threshold) {
|
|
tot += ROUNDUP_N(sz - threshold, 8);
|
|
}
|
|
}
|
|
return tot;
|
|
}
|
|
|
|
static
|
|
u64a make_u64a_mask(const vector<u8> &v) {
|
|
assert(v.size() <= sizeof(u64a));
|
|
if (v.size() > sizeof(u64a)) {
|
|
throw std::exception();
|
|
}
|
|
|
|
u64a mask = 0;
|
|
size_t vlen = v.size();
|
|
size_t len = std::min(vlen, sizeof(mask));
|
|
unsigned char *m = (unsigned char *)&mask;
|
|
memcpy(m + sizeof(mask) - len, &v[vlen - len], len);
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* Build a temporary vector of LitInfo structures (without the corresponding
|
|
* pointers to the actual strings; these cannot be laid out yet). These
|
|
* stay in 1:1 correspondence with the lits[] vector as that's the only
|
|
* place we have to obtain our full strings.
|
|
*/
|
|
static
|
|
void fillLitInfo(const vector<hwlmLiteral> &lits, vector<LitInfo> &tmpLitInfo,
|
|
CONF_TYPE &andmsk) {
|
|
const CONF_TYPE all_ones = ~(u64a)0;
|
|
andmsk = all_ones; // fill in with 'and' of all literal masks
|
|
|
|
for (LiteralIndex i = 0; i < lits.size(); i++) {
|
|
const hwlmLiteral &lit = lits[i];
|
|
LitInfo &info = tmpLitInfo[i];
|
|
memset(&info, 0, sizeof(info));
|
|
info.id = lit.id;
|
|
u8 flags = NoFlags;
|
|
if (lit.nocase) {
|
|
flags |= Caseless;
|
|
}
|
|
if (lit.noruns) {
|
|
flags |= NoRepeat;
|
|
}
|
|
if (lit.msk.size() > lit.s.size()) {
|
|
flags |= ComplexConfirm;
|
|
info.extended_size = verify_u8(lit.msk.size());
|
|
}
|
|
info.flags = flags;
|
|
info.size = verify_u8(lit.s.size());
|
|
info.groups = lit.groups;
|
|
|
|
// these are built up assuming a LE machine
|
|
CONF_TYPE msk = all_ones;
|
|
CONF_TYPE val = 0;
|
|
for (u32 j = 0; j < sizeof(CONF_TYPE); j++) {
|
|
u32 shiftLoc = (sizeof(CONF_TYPE) - j - 1) * 8;
|
|
if (j >= lit.s.size()) {
|
|
msk &= ~((CONF_TYPE)0xff << shiftLoc);
|
|
} else {
|
|
u8 c = lit.s[lit.s.size() - j - 1];
|
|
if (lit.nocase && ourisalpha(c)) {
|
|
msk &= ~((CONF_TYPE)CASE_BIT << shiftLoc);
|
|
val |= (CONF_TYPE)(c & CASE_CLEAR) << shiftLoc;
|
|
} else {
|
|
val |= (CONF_TYPE)c << shiftLoc;
|
|
}
|
|
}
|
|
}
|
|
|
|
info.v = val;
|
|
info.msk = msk;
|
|
if (!lit.msk.empty()) {
|
|
u64a l_msk = make_u64a_mask(lit.msk);
|
|
u64a l_cmp = make_u64a_mask(lit.cmp);
|
|
|
|
// test for consistency - if there's intersection, then v and msk
|
|
// values must line up
|
|
UNUSED u64a intersection = l_msk & info.msk;
|
|
assert((info.v & intersection) == (l_cmp & intersection));
|
|
|
|
// incorporate lit.msk, lit.cmp into v and msk
|
|
info.msk |= l_msk;
|
|
info.v |= l_cmp;
|
|
}
|
|
|
|
andmsk &= info.msk;
|
|
}
|
|
}
|
|
|
|
//#define FDR_CONFIRM_DUMP 1
|
|
|
|
static
|
|
bytecode_ptr<FDRConfirm> getFDRConfirm(const vector<hwlmLiteral> &lits,
|
|
bool make_small, bool make_confirm) {
|
|
vector<LitInfo> tmpLitInfo(lits.size());
|
|
CONF_TYPE andmsk;
|
|
fillLitInfo(lits, tmpLitInfo, andmsk);
|
|
|
|
#ifdef FDR_CONFIRM_DUMP
|
|
printf("-------------------\n");
|
|
#endif
|
|
|
|
// just magic numbers and crude measures for now
|
|
u32 nBits;
|
|
if (make_small) {
|
|
nBits = min(10U, lg2(lits.size()) + 1);
|
|
} else {
|
|
nBits = lg2(lits.size()) + 4;
|
|
}
|
|
|
|
CONF_TYPE mult = (CONF_TYPE)0x0b4e0ef37bc32127ULL;
|
|
u32 flags = 0;
|
|
// we use next three variables for 'confirmless' case to speed-up
|
|
// confirmation process
|
|
u32 soleLitSize = 0;
|
|
u32 soleLitCmp = 0;
|
|
u32 soleLitMsk = 0;
|
|
|
|
if (!make_confirm) {
|
|
flags = FDRC_FLAG_NO_CONFIRM;
|
|
if (lits[0].noruns) {
|
|
flags |= NoRepeat; // messy - need to clean this up later as flags is sorta kinda obsoleted
|
|
}
|
|
mult = 0;
|
|
soleLitSize = lits[0].s.size() - 1;
|
|
// we can get to this point only in confirmless case;
|
|
// it means that we have only one literal per FDRConfirm (no packing),
|
|
// with no literal mask and size of literal is less or equal
|
|
// to the number of masks of Teddy engine;
|
|
// maximum number of masks for Teddy is 4, so the size of
|
|
// literal is definitely less or equal to size of u32
|
|
assert(lits[0].s.size() <= sizeof(u32));
|
|
for (u32 i = 0; i < lits[0].s.size(); i++) {
|
|
u32 shiftLoc = (sizeof(u32) - i - 1) * 8;
|
|
u8 c = lits[0].s[lits[0].s.size() - i - 1];
|
|
if (lits[0].nocase && ourisalpha(c)) {
|
|
soleLitCmp |= (u32)(c & CASE_CLEAR) << shiftLoc;
|
|
soleLitMsk |= (u32)CASE_CLEAR << shiftLoc;
|
|
}
|
|
else {
|
|
soleLitCmp |= (u32)c << shiftLoc;
|
|
soleLitMsk |= (u32)0xff << shiftLoc;
|
|
}
|
|
}
|
|
}
|
|
|
|
// we can walk the vector and assign elements from the vectors to a
|
|
// map by hash value
|
|
map<u32, vector<LiteralIndex> > res2lits;
|
|
hwlm_group_t gm = 0;
|
|
for (LiteralIndex i = 0; i < lits.size(); i++) {
|
|
LitInfo & li = tmpLitInfo[i];
|
|
u32 hash = CONF_HASH_CALL(li.v, andmsk, mult, nBits);
|
|
DEBUG_PRINTF("%016llx --> %u\n", li.v, hash);
|
|
res2lits[hash].push_back(i);
|
|
gm |= li.groups;
|
|
}
|
|
|
|
#ifdef FDR_CONFIRM_DUMP
|
|
// print out the literals reversed - makes it easier to line up analyses
|
|
// that are end-offset based
|
|
for (const auto &m : res2lits) {
|
|
const u32 &hash = m.first;
|
|
const vector<LiteralIndex> &vlidx = m.second;
|
|
if (vlidx.size() <= 1) {
|
|
continue;
|
|
}
|
|
printf("%x -> %zu literals\n", hash, vlidx.size());
|
|
size_t min_len = lits[vlidx.front()].s.size();
|
|
|
|
vector<set<u8>> vsl; // contains the set of chars at each location
|
|
// reversed from the end
|
|
|
|
for (const auto &litIdx : vlidx) {
|
|
const auto &lit = lits[litIdx];
|
|
if (lit.s.size() > vsl.size()) {
|
|
vsl.resize(lit.s.size());
|
|
}
|
|
for (size_t j = lit.s.size(); j != 0; j--) {
|
|
vsl[lit.s.size() - j].insert(lit.s[j - 1]);
|
|
}
|
|
min_len = min(min_len, lit.s.size());
|
|
}
|
|
printf("common ");
|
|
for (size_t j = 0; j < min_len; j++) {
|
|
if (vsl[j].size() == 1) {
|
|
printf("%02x", *vsl[j].begin());
|
|
} else {
|
|
printf("__");
|
|
}
|
|
}
|
|
printf("\n");
|
|
for (const auto &litIdx : vlidx) {
|
|
const auto &lit = lits[litIdx];
|
|
printf("%8x %c", lit.id, lit.nocase ? '!' : ' ');
|
|
for (size_t j = lit.s.size(); j != 0; j--) {
|
|
size_t dist_from_end = lit.s.size() - j;
|
|
if (dist_from_end < min_len && vsl[dist_from_end].size() == 1) {
|
|
printf("__");
|
|
} else {
|
|
printf("%02x", lit.s[j - 1]);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
size_t total_compares = 0;
|
|
for (const auto &v : vsl) {
|
|
total_compares += v.size();
|
|
}
|
|
size_t total_string_size = 0;
|
|
for (const auto &litIdx : vlidx) {
|
|
const auto &lit = lits[litIdx];
|
|
total_string_size += lit.s.size();
|
|
}
|
|
printf("Total compare load: %zu Total string size: %zu\n\n",
|
|
total_compares, total_string_size);
|
|
}
|
|
#endif
|
|
|
|
const size_t bitsToLitIndexSize = (1U << nBits) * sizeof(u32);
|
|
const size_t totalLitSize = thresholdedSize(lits, sizeof(CONF_TYPE));
|
|
|
|
// this size can now be a worst-case as we can always be a bit smaller
|
|
size_t size = ROUNDUP_N(sizeof(FDRConfirm), alignof(u32)) +
|
|
ROUNDUP_N(bitsToLitIndexSize, alignof(LitInfo)) +
|
|
sizeof(LitInfo) * lits.size() + totalLitSize;
|
|
size = ROUNDUP_N(size, alignof(FDRConfirm));
|
|
|
|
auto fdrc = make_zeroed_bytecode_ptr<FDRConfirm>(size);
|
|
assert(fdrc); // otherwise would have thrown std::bad_alloc
|
|
|
|
fdrc->andmsk = andmsk;
|
|
fdrc->mult = mult;
|
|
fdrc->nBitsOrSoleID = (flags & FDRC_FLAG_NO_CONFIRM) ? lits[0].id : nBits;
|
|
fdrc->flags = flags;
|
|
fdrc->soleLitSize = soleLitSize;
|
|
fdrc->soleLitCmp = soleLitCmp;
|
|
fdrc->soleLitMsk = soleLitMsk;
|
|
|
|
fdrc->groups = gm;
|
|
|
|
// After the FDRConfirm, we have the lit index array.
|
|
u8 *fdrc_base = (u8 *)fdrc.get();
|
|
u8 *ptr = fdrc_base + sizeof(*fdrc);
|
|
ptr = ROUNDUP_PTR(ptr, alignof(u32));
|
|
u32 *bitsToLitIndex = (u32 *)ptr;
|
|
ptr += bitsToLitIndexSize;
|
|
|
|
// After the lit index array, we have the LitInfo structures themselves,
|
|
// which vary in size (as each may have a variable-length string after it).
|
|
ptr = ROUNDUP_PTR(ptr, alignof(LitInfo));
|
|
|
|
// Walk the map by hash value assigning indexes and laying out the
|
|
// elements (and their associated string confirm material) in memory.
|
|
for (const auto &m : res2lits) {
|
|
const u32 hash = m.first;
|
|
const vector<LiteralIndex> &vlidx = m.second;
|
|
bitsToLitIndex[hash] = verify_u32(ptr - fdrc_base);
|
|
for (auto i = vlidx.begin(), e = vlidx.end(); i != e; ++i) {
|
|
LiteralIndex litIdx = *i;
|
|
|
|
// Write LitInfo header.
|
|
LitInfo &finalLI = *(LitInfo *)ptr;
|
|
finalLI = tmpLitInfo[litIdx];
|
|
|
|
ptr += sizeof(LitInfo); // String starts directly after LitInfo.
|
|
assert(lits[litIdx].s.size() <= sizeof(CONF_TYPE));
|
|
if (next(i) == e) {
|
|
finalLI.next = 0;
|
|
} else {
|
|
finalLI.next = 1;
|
|
}
|
|
}
|
|
assert((size_t)(ptr - fdrc_base) <= size);
|
|
}
|
|
|
|
// Return actual used size, not worst-case size. Must be rounded up to
|
|
// FDRConfirm alignment so that the caller can lay out a sequence of these.
|
|
size_t actual_size = ROUNDUP_N((size_t)(ptr - fdrc_base),
|
|
alignof(FDRConfirm));
|
|
assert(actual_size <= size);
|
|
fdrc.shrink(actual_size);
|
|
|
|
return fdrc;
|
|
}
|
|
|
|
bytecode_ptr<u8>
|
|
setupFullConfs(const vector<hwlmLiteral> &lits,
|
|
const EngineDescription &eng,
|
|
map<BucketIndex, vector<LiteralIndex>> &bucketToLits,
|
|
bool make_small) {
|
|
bool makeConfirm = true;
|
|
unique_ptr<TeddyEngineDescription> teddyDescr =
|
|
getTeddyDescription(eng.getID());
|
|
if (teddyDescr) {
|
|
makeConfirm = teddyDescr->needConfirm(lits);
|
|
}
|
|
|
|
BC2CONF bc2Conf;
|
|
u32 totalConfirmSize = 0;
|
|
for (BucketIndex b = 0; b < eng.getNumBuckets(); b++) {
|
|
if (!bucketToLits[b].empty()) {
|
|
vector<hwlmLiteral> vl;
|
|
for (const LiteralIndex &lit_idx : bucketToLits[b]) {
|
|
vl.push_back(lits[lit_idx]);
|
|
}
|
|
|
|
DEBUG_PRINTF("b %d sz %zu\n", b, vl.size());
|
|
auto fc = getFDRConfirm(vl, make_small, makeConfirm);
|
|
totalConfirmSize += fc.size();
|
|
bc2Conf.emplace(b, move(fc));
|
|
}
|
|
}
|
|
|
|
u32 nBuckets = eng.getNumBuckets();
|
|
u32 totalConfSwitchSize = nBuckets * sizeof(u32);
|
|
u32 totalSize = ROUNDUP_16(totalConfSwitchSize + totalConfirmSize);
|
|
|
|
auto buf = make_zeroed_bytecode_ptr<u8>(totalSize, 16);
|
|
assert(buf); // otherwise would have thrown std::bad_alloc
|
|
|
|
u32 *confBase = (u32 *)buf.get();
|
|
u8 *ptr = buf.get() + totalConfSwitchSize;
|
|
|
|
for (const auto &m : bc2Conf) {
|
|
const BucketIndex &idx = m.first;
|
|
const bytecode_ptr<FDRConfirm> &p = m.second;
|
|
// confirm offset is relative to the base of this structure, now
|
|
u32 confirm_offset = verify_u32(ptr - buf.get());
|
|
memcpy(ptr, p.get(), p.size());
|
|
ptr += p.size();
|
|
confBase[idx] = confirm_offset;
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
} // namespace ue2
|