mirror of
https://github.com/VectorCamp/vectorscan.git
synced 2025-06-28 16:41:01 +03:00
477 lines
15 KiB
C++
477 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2015-2017, Intel Corporation
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** \file
|
|
* \brief Region analysis.
|
|
*
|
|
* Definition: a \a region is a subset of vertices in a graph such that:
|
|
* - the edges entering the region are a cutset of the graph
|
|
* - for every in-edge (u, v) to the region there exist edges (u, w) for all
|
|
* w in {w : w in region and w has an in-edge}
|
|
* - the regions in a graph partition the graph
|
|
*
|
|
* Note:
|
|
* - we partition a graph into the maximal number of regions
|
|
* - similar properties for exit edges should hold as a consequence
|
|
* - graph == sequence of regions
|
|
* - a region is considered to have an epsilon vertex to allow jumps
|
|
* - vertices which only lead to back edges need to be floated up in the topo
|
|
* order
|
|
*
|
|
* Algorithm overview:
|
|
* -# topo-order over the DAG skeleton;
|
|
* -# incrementally add vertices to the current region until the boundary edges
|
|
* form a valid cut-set;
|
|
* -# for each back-edge, if the source and target are in different regions,
|
|
* merge the regions (and all intervening regions) into a common region.
|
|
*/
|
|
#include "ng_region.h"
|
|
|
|
#include "ng_holder.h"
|
|
#include "ng_util.h"
|
|
#include "ue2common.h"
|
|
#include "util/container.h"
|
|
#include "util/ue2_containers.h"
|
|
#include "util/graph_range.h"
|
|
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <boost/graph/filtered_graph.hpp>
|
|
#include <boost/graph/topological_sort.hpp>
|
|
|
|
using namespace std;
|
|
|
|
namespace ue2 {
|
|
|
|
typedef ue2::unordered_set<NFAEdge> BackEdgeSet;
|
|
typedef boost::filtered_graph<NGHolder, bad_edge_filter<BackEdgeSet>>
|
|
AcyclicGraph;
|
|
|
|
namespace {
|
|
struct exit_info {
|
|
explicit exit_info(NFAVertex v) : exit(v) {}
|
|
|
|
NFAVertex exit;
|
|
flat_set<NFAVertex> open;
|
|
};
|
|
}
|
|
|
|
static
|
|
void checkAndAddExitCandidate(const AcyclicGraph &g,
|
|
const ue2::unordered_set<NFAVertex> &r,
|
|
NFAVertex v, vector<exit_info> &exits) {
|
|
exit_info v_exit(v);
|
|
auto &open = v_exit.open;
|
|
|
|
/* find the set of vertices reachable from v which are not in r */
|
|
for (auto w : adjacent_vertices_range(v, g)) {
|
|
if (!contains(r, w)) {
|
|
open.insert(w);
|
|
}
|
|
}
|
|
|
|
if (!open.empty()) {
|
|
DEBUG_PRINTF("exit %zu\n", g[v].index);
|
|
exits.push_back(move(v_exit));
|
|
}
|
|
}
|
|
|
|
static
|
|
vector<exit_info> findExits(const AcyclicGraph &g,
|
|
const ue2::unordered_set<NFAVertex> &r) {
|
|
vector<exit_info> exits;
|
|
|
|
for (auto v : r) {
|
|
checkAndAddExitCandidate(g, r, v, exits);
|
|
}
|
|
|
|
return exits;
|
|
}
|
|
|
|
static
|
|
void refineExits(const AcyclicGraph &g, const ue2::unordered_set<NFAVertex> &r,
|
|
NFAVertex new_v, vector<exit_info> &exits) {
|
|
/* new_v is no long an open edge */
|
|
for (auto &exit : exits) {
|
|
exit.open.erase(new_v);
|
|
}
|
|
|
|
/* no open edges: no longer an exit */
|
|
exits.erase(
|
|
remove_if(exits.begin(), exits.end(),
|
|
[&](const exit_info &exit) { return exit.open.empty(); }),
|
|
exits.end());
|
|
|
|
checkAndAddExitCandidate(g, r, new_v, exits);
|
|
}
|
|
|
|
/** the set of exits from a candidate region are valid if: FIXME: document
|
|
*/
|
|
static
|
|
bool exitValid(UNUSED const AcyclicGraph &g, const vector<exit_info> &exits,
|
|
const flat_set<NFAVertex> &open_jumps) {
|
|
if (exits.empty() || (exits.size() < 2 && open_jumps.empty())) {
|
|
return true;
|
|
}
|
|
if (exits.size() == 1 && open_jumps.size() == 1) {
|
|
DEBUG_PRINTF("oj %zu, e %zu\n", g[*open_jumps.begin()].index,
|
|
g[exits[0].exit].index);
|
|
if (*open_jumps.begin() == exits[0].exit) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
assert(!exits.empty());
|
|
const auto &enters = exits.front().open;
|
|
|
|
if (!open_jumps.empty() && enters != open_jumps) {
|
|
return false;
|
|
}
|
|
|
|
for (auto it = begin(exits) + 1; it != end(exits); ++it) {
|
|
if (it->open != enters) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static
|
|
void setRegion(const ue2::unordered_set<NFAVertex> &r, u32 rid,
|
|
ue2::unordered_map<NFAVertex, u32> ®ions) {
|
|
for (auto v : r) {
|
|
regions[v] = rid;
|
|
}
|
|
}
|
|
|
|
static
|
|
void buildInitialCandidate(const AcyclicGraph &g,
|
|
vector<NFAVertex>::const_reverse_iterator &it,
|
|
const vector<NFAVertex>::const_reverse_iterator &ite,
|
|
ue2::unordered_set<NFAVertex> *candidate,
|
|
/* in exits of prev region;
|
|
* out exits from candidate */
|
|
vector<exit_info> *exits,
|
|
flat_set<NFAVertex> *open_jumps) {
|
|
if (it == ite) {
|
|
candidate->clear();
|
|
exits->clear();
|
|
return;
|
|
}
|
|
|
|
if (exits->empty()) {
|
|
DEBUG_PRINTF("odd\n");
|
|
candidate->clear();
|
|
DEBUG_PRINTF("adding %zu to initial\n", g[*it].index);
|
|
candidate->insert(*it);
|
|
open_jumps->erase(*it);
|
|
checkAndAddExitCandidate(g, *candidate, *it, *exits);
|
|
++it;
|
|
return;
|
|
}
|
|
|
|
auto enters = (*exits)[0].open; // copy
|
|
candidate->clear();
|
|
|
|
for (; it != ite; ++it) {
|
|
DEBUG_PRINTF("adding %zu to initial\n", g[*it].index);
|
|
candidate->insert(*it);
|
|
if (contains(enters, *it)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (it != ite) {
|
|
enters.erase(*it);
|
|
*open_jumps = move(enters);
|
|
DEBUG_PRINTF("oj size = %zu\n", open_jumps->size());
|
|
++it;
|
|
} else {
|
|
open_jumps->clear();
|
|
}
|
|
|
|
*exits = findExits(g, *candidate);
|
|
}
|
|
|
|
static
|
|
void findDagLeaders(const NGHolder &h, const AcyclicGraph &g,
|
|
const vector<NFAVertex> &topo,
|
|
ue2::unordered_map<NFAVertex, u32> ®ions) {
|
|
assert(!topo.empty());
|
|
u32 curr_id = 0;
|
|
vector<NFAVertex>::const_reverse_iterator t_it = topo.rbegin();
|
|
ue2::unordered_set<NFAVertex> candidate;
|
|
flat_set<NFAVertex> open_jumps;
|
|
DEBUG_PRINTF("adding %zu to current\n", g[*t_it].index);
|
|
assert(t_it != topo.rend());
|
|
candidate.insert(*t_it++);
|
|
DEBUG_PRINTF("adding %zu to current\n", g[*t_it].index);
|
|
assert(t_it != topo.rend());
|
|
candidate.insert(*t_it++);
|
|
|
|
auto exits = findExits(g, candidate);
|
|
|
|
while (t_it != topo.rend()) {
|
|
assert(!candidate.empty());
|
|
|
|
if (exitValid(g, exits, open_jumps)) {
|
|
if (contains(candidate, h.accept) && !open_jumps.empty()) {
|
|
/* we have tried to make an optional region containing accept as
|
|
* we have an open jump to eod. This candidate region needs to
|
|
* be put in with the previous region. */
|
|
curr_id--;
|
|
DEBUG_PRINTF("merging in with region %u\n", curr_id);
|
|
} else {
|
|
DEBUG_PRINTF("setting region %u\n", curr_id);
|
|
}
|
|
setRegion(candidate, curr_id++, regions);
|
|
buildInitialCandidate(g, t_it, topo.rend(), &candidate, &exits,
|
|
&open_jumps);
|
|
} else {
|
|
NFAVertex curr = *t_it;
|
|
DEBUG_PRINTF("adding %zu to current\n", g[curr].index);
|
|
candidate.insert(curr);
|
|
open_jumps.erase(curr);
|
|
refineExits(g, candidate, *t_it, exits);
|
|
DEBUG_PRINTF(" open jumps %zu exits %zu\n", open_jumps.size(),
|
|
exits.size());
|
|
++t_it;
|
|
}
|
|
}
|
|
/* assert exits valid */
|
|
setRegion(candidate, curr_id, regions);
|
|
}
|
|
|
|
static
|
|
void mergeUnderBackEdges(const NGHolder &g, const vector<NFAVertex> &topo,
|
|
const BackEdgeSet &backEdges,
|
|
ue2::unordered_map<NFAVertex, u32> ®ions) {
|
|
for (const auto &e : backEdges) {
|
|
NFAVertex u = source(e, g);
|
|
NFAVertex v = target(e, g);
|
|
|
|
u32 ru = regions[u];
|
|
u32 rv = regions[v];
|
|
if (ru == rv) {
|
|
continue;
|
|
}
|
|
|
|
DEBUG_PRINTF("merging v = %zu(%u), u = %zu(%u)\n", g[v].index, rv,
|
|
g[u].index, ru);
|
|
assert(rv < ru);
|
|
|
|
for (auto t : topo) {
|
|
u32 r = regions[t];
|
|
if (r <= ru && r > rv) {
|
|
regions[t] = rv;
|
|
} else if (r > ru) {
|
|
regions[t] = rv + r - ru;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static
|
|
void reorderSpecials(const NGHolder &w, const AcyclicGraph &acyclic_g,
|
|
vector<NFAVertex> &topoOrder) {
|
|
// Start is last element of reverse topo ordering.
|
|
auto it = find(topoOrder.begin(), topoOrder.end(), w.start);
|
|
if (it != topoOrder.end() - 1) {
|
|
DEBUG_PRINTF("repositioning start\n");
|
|
assert(it != topoOrder.end());
|
|
topoOrder.erase(it);
|
|
topoOrder.insert(topoOrder.end(), w.start);
|
|
}
|
|
|
|
// StartDs is second-to-last element of reverse topo ordering.
|
|
it = find(topoOrder.begin(), topoOrder.end(), w.startDs);
|
|
if (it != topoOrder.end() - 2) {
|
|
DEBUG_PRINTF("repositioning start ds\n");
|
|
assert(it != topoOrder.end());
|
|
topoOrder.erase(it);
|
|
topoOrder.insert(topoOrder.end() - 1, w.startDs);
|
|
}
|
|
|
|
// AcceptEOD is first element of reverse topo ordering.
|
|
it = find(topoOrder.begin(), topoOrder.end(), w.acceptEod);
|
|
if (it != topoOrder.begin()) {
|
|
DEBUG_PRINTF("repositioning accept\n");
|
|
assert(it != topoOrder.end());
|
|
topoOrder.erase(it);
|
|
topoOrder.insert(topoOrder.begin(), w.acceptEod);
|
|
}
|
|
|
|
// Accept is second element of reverse topo ordering, if it's connected.
|
|
it = find(topoOrder.begin(), topoOrder.end(), w.accept);
|
|
if (it != topoOrder.begin() + 1) {
|
|
DEBUG_PRINTF("repositioning accept\n");
|
|
assert(it != topoOrder.end());
|
|
topoOrder.erase(it);
|
|
if (in_degree(w.accept, acyclic_g) != 0) {
|
|
topoOrder.insert(topoOrder.begin() + 1, w.accept);
|
|
}
|
|
}
|
|
}
|
|
|
|
static
|
|
void liftSinks(const AcyclicGraph &acyclic_g, vector<NFAVertex> &topoOrder) {
|
|
ue2::unordered_set<NFAVertex> sinks;
|
|
for (auto v : vertices_range(acyclic_g)) {
|
|
if (is_special(v, acyclic_g)) {
|
|
continue;
|
|
}
|
|
|
|
if (isLeafNode(v, acyclic_g)) {
|
|
DEBUG_PRINTF("sink found %zu\n", acyclic_g[v].index);
|
|
sinks.insert(NFAVertex(v));
|
|
}
|
|
}
|
|
|
|
if (sinks.empty()) {
|
|
DEBUG_PRINTF("no sinks found\n");
|
|
return;
|
|
}
|
|
|
|
bool changed;
|
|
do {
|
|
DEBUG_PRINTF("look\n");
|
|
changed = false;
|
|
for (auto v : vertices_range(acyclic_g)) {
|
|
if (is_special(v, acyclic_g) || contains(sinks, NFAVertex(v))) {
|
|
continue;
|
|
}
|
|
|
|
for (auto w : adjacent_vertices_range(v, acyclic_g)) {
|
|
if (!contains(sinks, NFAVertex(w))) {
|
|
goto next;
|
|
}
|
|
}
|
|
|
|
DEBUG_PRINTF("sink found %zu\n", acyclic_g[v].index);
|
|
sinks.insert(NFAVertex(v));
|
|
changed = true;
|
|
next:;
|
|
}
|
|
} while (changed);
|
|
|
|
for (auto ri = topoOrder.rbegin() + 1; ri != topoOrder.rend(); ++ri) {
|
|
if (!contains(sinks, *ri)) {
|
|
continue;
|
|
}
|
|
NFAVertex s = *ri;
|
|
DEBUG_PRINTF("handling sink %zu\n", acyclic_g[s].index);
|
|
ue2::unordered_set<NFAVertex> parents;
|
|
for (const auto &e : in_edges_range(s, acyclic_g)) {
|
|
parents.insert(NFAVertex(source(e, acyclic_g)));
|
|
}
|
|
|
|
/* vertex has no children not reachable on a back edge, bubble the
|
|
* vertex up the topo order to be near its parents */
|
|
vector<NFAVertex>::reverse_iterator rj = ri;
|
|
--rj;
|
|
while (rj != topoOrder.rbegin() && !contains(parents, *rj)) {
|
|
/* sink is in rj + 1 */
|
|
assert(*(rj + 1) == s);
|
|
DEBUG_PRINTF("lifting\n");
|
|
using std::swap;
|
|
swap(*rj, *(rj + 1));
|
|
--rj;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Build a reverse topo ordering (with only the specials that are in use). We
|
|
* also want to ensure vertices which only lead to back edges are placed near
|
|
* their parents. */
|
|
static
|
|
vector<NFAVertex> buildTopoOrder(const NGHolder &w,
|
|
const AcyclicGraph &acyclic_g,
|
|
vector<boost::default_color_type> &colours) {
|
|
vector<NFAVertex> topoOrder;
|
|
topoOrder.reserve(num_vertices(w));
|
|
|
|
topological_sort(acyclic_g, back_inserter(topoOrder),
|
|
color_map(make_iterator_property_map(colours.begin(),
|
|
get(vertex_index, acyclic_g))));
|
|
|
|
reorderSpecials(w, acyclic_g, topoOrder);
|
|
|
|
if (topoOrder.empty()) {
|
|
return topoOrder;
|
|
}
|
|
|
|
liftSinks(acyclic_g, topoOrder);
|
|
|
|
DEBUG_PRINTF("TOPO ORDER\n");
|
|
for (auto ri = topoOrder.rbegin(); ri != topoOrder.rend(); ++ri) {
|
|
DEBUG_PRINTF("[%zu]\n", acyclic_g[*ri].index);
|
|
}
|
|
DEBUG_PRINTF("----------\n");
|
|
|
|
return topoOrder;
|
|
}
|
|
|
|
ue2::unordered_map<NFAVertex, u32> assignRegions(const NGHolder &g) {
|
|
assert(hasCorrectlyNumberedVertices(g));
|
|
const u32 numVertices = num_vertices(g);
|
|
DEBUG_PRINTF("assigning regions for %u vertices in holder\n", numVertices);
|
|
|
|
vector<boost::default_color_type> colours(numVertices);
|
|
|
|
// Build an acyclic graph for this NGHolder.
|
|
BackEdgeSet deadEdges;
|
|
depth_first_search(g,
|
|
visitor(BackEdges<BackEdgeSet>(deadEdges))
|
|
.root_vertex(g.start)
|
|
.color_map(make_iterator_property_map(colours.begin(),
|
|
get(vertex_index, g))));
|
|
|
|
auto af = make_bad_edge_filter(&deadEdges);
|
|
AcyclicGraph acyclic_g(g, af);
|
|
|
|
// Build a (reverse) topological ordering.
|
|
vector<NFAVertex> topoOrder = buildTopoOrder(g, acyclic_g, colours);
|
|
|
|
// Everybody starts in region 0.
|
|
ue2::unordered_map<NFAVertex, u32> regions;
|
|
regions.reserve(numVertices);
|
|
for (auto v : vertices_range(g)) {
|
|
regions.emplace(v, 0);
|
|
}
|
|
|
|
findDagLeaders(g, acyclic_g, topoOrder, regions);
|
|
mergeUnderBackEdges(g, topoOrder, deadEdges, regions);
|
|
|
|
return regions;
|
|
}
|
|
|
|
} // namespace ue2
|