mirror of
https://github.com/VectorCamp/vectorscan.git
synced 2025-06-28 16:41:01 +03:00
915 lines
30 KiB
C++
915 lines
30 KiB
C++
/*
|
|
* Copyright (c) 2015-2017, Intel Corporation
|
|
* Copyright (c) 2024, VectorCamp PC
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Hyperscan pattern benchmarker.
|
|
*
|
|
* This program allows users to detect which signatures may be the most
|
|
* expensive in a set of patterns. It is designed for use with small to medium
|
|
* pattern set sizes (e.g. 5-500). If used with very large pattern sets it may
|
|
* take a very long time - the number of recompiles done is g * O(lg2(n)) where
|
|
* g is the number of generations and n is the number of patterns (assuming
|
|
* that n >> g).
|
|
*
|
|
* This utility will return a cumulative series of removed patterns. The first
|
|
* generation will find and remove a single pattern. The second generation will
|
|
* begin with the first pattern removed and find another pattern to remove,
|
|
* etc. So if we have 100 patterns and 15 generations, the final generation's
|
|
* score will be a run over 85 patterns.
|
|
*
|
|
* This utility is probabilistic. It is possible that the pattern removed in a
|
|
* generation is not a particularly expensive pattern. To reduce noise in the
|
|
* results use 'taskset' and set the number of repeats to a level that still
|
|
* completes in reasonable time (this will reduce the effect of random
|
|
* measurement noise).
|
|
*
|
|
* The criterion for performance can be altered by use of the -C<x> flag where
|
|
* <x> can be t,r,s,c,b, selecting pattern matching throughput, scratch size,
|
|
* stream state size (only available in streaming mode), compile time and
|
|
* bytecode size respectively.
|
|
*
|
|
* This utility will also not produce good results if all the patterns are
|
|
* roughly equally expensive.
|
|
*
|
|
* Factor Group Size:
|
|
*
|
|
* If there are multiple expensive patterns that are very similar on the
|
|
* left-hand-side or identical, this utility will typically not find these
|
|
* groups unless the -F flag is used to search for a group size that is equal
|
|
* to or larger than the size of the group of similar patterns.
|
|
*
|
|
* Otherwise, removing a portion of the similar patterns will have no or almost
|
|
* no effect, and the search procedure used relies on the ability to remove all
|
|
* of the similar patterns in at least one search case, something which will
|
|
* only happen if the factor_group_size is large enough.
|
|
*
|
|
* This alters the operation of our tool so that instead of trying to find the
|
|
* single pattern whose removal has the most effect by binary search (the
|
|
* default with factor_group_size == 1), we attempt to find the N patterns
|
|
* whose removal has the most effect by searching over N+1 evenly sized groups,
|
|
* removing only 1/(N+1) of the search signatures per iteration.
|
|
*
|
|
* Note that the number of recompiles done greatly increases with increased
|
|
* factor group size. For example, with factor_group_size = 1, we do g * 2 *
|
|
* lg2(n) recompiles, while with factor_group_size = 4, we do g * 4 *
|
|
* log(5/4)(n). Informally the number of generations we require goes up as we
|
|
* eliminate a smaller number of signatures and the we have to do more work per
|
|
* generation.
|
|
*
|
|
*
|
|
* Build instructions:
|
|
*
|
|
* g++ -o patbench patbench.cc $(pkg-config --cflags --libs libhs) -lpcap
|
|
*
|
|
* Usage:
|
|
*
|
|
* ./patbench [ -n repeats] [ -G generations] [ -C criterion ]
|
|
* [ -F factor_group_size ] [ -N | -S ] <pattern file> <pcap file>
|
|
*
|
|
* -n repeats sets the number of times the PCAP is repeatedly scanned
|
|
* with the pattern
|
|
* -G generations sets the number of generations that the algorithm is
|
|
* run for
|
|
* -N sets non-streaming mode, -S sets streaming mode (default)
|
|
* -F sets the factor group size (must be >0); this allows the detection
|
|
* of multiple interacting factors
|
|
*
|
|
* -C sets the "criterion", which can be either:
|
|
* t throughput (the default) - this requires a pcap file
|
|
* r scratch size
|
|
* s stream state size
|
|
* c compile time
|
|
* b bytecode size
|
|
*
|
|
* We recommend the use of a utility like 'taskset' on multiprocessor hosts to
|
|
* lock execution to a single processor: this will remove processor migration
|
|
* by the scheduler as a source of noise in the results.
|
|
*
|
|
*/
|
|
|
|
#include <random>
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <chrono>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <set>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <unordered_map>
|
|
|
|
#include <unistd.h>
|
|
|
|
// We use the BSD primitives throughout as they exist on both BSD and Linux.
|
|
#define __FAVOR_BSD
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
#include <netinet/ip_icmp.h>
|
|
#ifdef __NetBSD__
|
|
#include <net/ethertypes.h>
|
|
#include <net/if_ether.h>
|
|
#else
|
|
#include <net/ethernet.h>
|
|
#endif /* __NetBSD__ */
|
|
#include <arpa/inet.h>
|
|
|
|
#include <pcap.h>
|
|
|
|
#include <hs.h>
|
|
|
|
using std::cerr;
|
|
using std::cout;
|
|
using std::endl;
|
|
using std::ifstream;
|
|
using std::string;
|
|
using std::unordered_map;
|
|
using std::vector;
|
|
using std::set;
|
|
using std::min;
|
|
using std::max;
|
|
using std::copy;
|
|
using std::random_device;
|
|
using std::mt19937;
|
|
|
|
enum Criterion {
|
|
CRITERION_THROUGHPUT,
|
|
CRITERION_BYTECODE_SIZE,
|
|
CRITERION_COMPILE_TIME,
|
|
CRITERION_STREAM_STATE,
|
|
CRITERION_SCRATCH_SIZE
|
|
};
|
|
|
|
static bool higher_is_better(Criterion c) {
|
|
return c == CRITERION_THROUGHPUT;
|
|
}
|
|
|
|
static void print_criterion(Criterion c, double val) {
|
|
std::ios::fmtflags f(cout.flags());
|
|
switch (c) {
|
|
case CRITERION_THROUGHPUT:
|
|
cout << std::fixed << std::setprecision(3) << val << " Megabits/s";
|
|
break;
|
|
case CRITERION_COMPILE_TIME:
|
|
cout << std::fixed << std::setprecision(3) << val << " seconds";
|
|
break;
|
|
case CRITERION_BYTECODE_SIZE:
|
|
case CRITERION_STREAM_STATE:
|
|
case CRITERION_SCRATCH_SIZE:
|
|
default:
|
|
cout << static_cast<size_t>(val) << " bytes";
|
|
break;
|
|
}
|
|
cout.flags(f);
|
|
}
|
|
|
|
// Key for identifying a stream in our pcap input data, using data from its IP
|
|
// headers.
|
|
struct FiveTuple {
|
|
unsigned int protocol;
|
|
unsigned int srcAddr;
|
|
unsigned int srcPort;
|
|
unsigned int dstAddr;
|
|
unsigned int dstPort;
|
|
|
|
// Construct a FiveTuple from a TCP or UDP packet.
|
|
FiveTuple(const struct ip *iphdr) {
|
|
// IP fields
|
|
protocol = iphdr->ip_p;
|
|
srcAddr = iphdr->ip_src.s_addr;
|
|
dstAddr = iphdr->ip_dst.s_addr;
|
|
|
|
// UDP/TCP ports
|
|
const struct udphdr *uh = (const struct udphdr *)
|
|
(((const char *)iphdr) + (iphdr->ip_hl * 4));
|
|
srcPort = uh->uh_sport;
|
|
dstPort = uh->uh_dport;
|
|
}
|
|
|
|
bool operator==(const FiveTuple &a) const {
|
|
return protocol == a.protocol && srcAddr == a.srcAddr &&
|
|
srcPort == a.srcPort && dstAddr == a.dstAddr &&
|
|
dstPort == a.dstPort;
|
|
}
|
|
};
|
|
|
|
// A *very* simple hash function, used when we create an unordered_map of
|
|
// FiveTuple objects.
|
|
struct FiveTupleHash {
|
|
size_t operator()(const FiveTuple &x) const {
|
|
return x.srcAddr ^ x.dstAddr ^ x.protocol ^ x.srcPort ^ x.dstPort;
|
|
}
|
|
};
|
|
|
|
// Helper function. See end of file.
|
|
static bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset,
|
|
unsigned int *length);
|
|
|
|
// Match event handler: called every time Hyperscan finds a match.
|
|
static
|
|
int onMatch(unsigned int id, unsigned long long from, unsigned long long to,
|
|
unsigned int flags, void *ctx) {
|
|
// Our context points to a size_t storing the match count
|
|
size_t *matches = (size_t *)ctx;
|
|
(*matches)++;
|
|
return 0; // continue matching
|
|
}
|
|
|
|
// Simple timing class
|
|
class Clock {
|
|
public:
|
|
void start() {
|
|
time_start = std::chrono::system_clock::now();
|
|
}
|
|
|
|
void stop() {
|
|
time_end = std::chrono::system_clock::now();
|
|
}
|
|
|
|
double seconds() const {
|
|
std::chrono::duration<double> delta = time_end - time_start;
|
|
return delta.count();
|
|
}
|
|
private:
|
|
std::chrono::time_point<std::chrono::system_clock> time_start, time_end;
|
|
};
|
|
|
|
// Class wrapping all state associated with the benchmark
|
|
class Benchmark {
|
|
private:
|
|
// Packet data to be scanned
|
|
vector<string> packets;
|
|
|
|
// Stream ID for each packet
|
|
vector<size_t> stream_ids;
|
|
|
|
// Map used to construct stream_ids
|
|
unordered_map<FiveTuple, size_t, FiveTupleHash> stream_map;
|
|
|
|
// Hyperscan compiled database
|
|
hs_database_t *db = nullptr;
|
|
|
|
// Hyperscan temporary scratch space
|
|
hs_scratch_t *scratch = nullptr;
|
|
|
|
// Vector of Hyperscan stream state
|
|
vector<hs_stream_t *> streams;
|
|
|
|
// Count of matches found while scanning
|
|
size_t matchCount = 0;
|
|
public:
|
|
~Benchmark() {
|
|
hs_free_scratch(scratch);
|
|
hs_free_database(db);
|
|
}
|
|
|
|
// Initialisation; after this call, Benchmark owns the database and will
|
|
// ensure it is freed.
|
|
void setDatabase(hs_database_t *hs_db) {
|
|
hs_free_database(db); // Free previous database.
|
|
db = hs_db;
|
|
// (Re)allocate scratch to ensure that it is large enough to handle the
|
|
// database.
|
|
hs_error_t err = hs_alloc_scratch(db, &scratch);
|
|
if (err != HS_SUCCESS) {
|
|
cerr << "ERROR: could not allocate scratch space. Exiting." << endl;
|
|
exit(-1);
|
|
}
|
|
}
|
|
const hs_database_t *getDatabase() const {
|
|
return db;
|
|
}
|
|
|
|
size_t getScratchSize() const {
|
|
size_t scratch_size;
|
|
hs_error_t err = hs_scratch_size(scratch, &scratch_size);
|
|
if (err != HS_SUCCESS) {
|
|
cerr << "ERROR: could not query scratch space size. Exiting."
|
|
<< endl;
|
|
exit(-1);
|
|
}
|
|
return scratch_size;
|
|
}
|
|
|
|
// Read a set of streams from a pcap file
|
|
bool readStreams(const char *pcapFile) {
|
|
// Open PCAP file for input
|
|
char errbuf[PCAP_ERRBUF_SIZE];
|
|
pcap_t *pcapHandle = pcap_open_offline(pcapFile, errbuf);
|
|
if (pcapHandle == nullptr) {
|
|
cerr << "ERROR: Unable to open pcap file \"" << pcapFile
|
|
<< "\": " << errbuf << endl;
|
|
return false;
|
|
}
|
|
|
|
struct pcap_pkthdr pktHeader;
|
|
const unsigned char *pktData;
|
|
while ((pktData = pcap_next(pcapHandle, &pktHeader)) != nullptr) {
|
|
unsigned int offset = 0, length = 0;
|
|
if (!payloadOffset(pktData, &offset, &length)) {
|
|
continue;
|
|
}
|
|
|
|
// Valid TCP or UDP packet
|
|
const struct ip *iphdr = (const struct ip *)(pktData
|
|
+ sizeof(struct ether_header));
|
|
const char *payload = (const char *)pktData + offset;
|
|
|
|
size_t id = stream_map.insert(std::make_pair(FiveTuple(iphdr),
|
|
stream_map.size())).first->second;
|
|
|
|
packets.push_back(string(payload, length));
|
|
stream_ids.push_back(id);
|
|
}
|
|
pcap_close(pcapHandle);
|
|
|
|
return !packets.empty();
|
|
}
|
|
|
|
// Return the number of bytes scanned
|
|
size_t bytes() const {
|
|
size_t sum = 0;
|
|
auto packs = [](size_t z, const string &packet) { return z + packet.size(); };
|
|
sum += std::accumulate(packets.begin(), packets.end(), 0, packs);
|
|
// for (const auto &packet : packets) {
|
|
// sum += packet.size();
|
|
// }
|
|
return sum;
|
|
}
|
|
|
|
// Return the number of matches found.
|
|
size_t matches() const {
|
|
return matchCount;
|
|
}
|
|
|
|
// Clear the number of matches found.
|
|
void clearMatches() {
|
|
matchCount = 0;
|
|
}
|
|
|
|
// Open a Hyperscan stream for each stream in stream_ids
|
|
void openStreams() {
|
|
streams.resize(stream_map.size());
|
|
for (auto &stream : streams) {
|
|
hs_error_t err = hs_open_stream(db, 0, &stream);
|
|
if (err != HS_SUCCESS) {
|
|
cerr << "ERROR: Unable to open stream. Exiting." << endl;
|
|
exit(-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Close all open Hyperscan streams (potentially generating any
|
|
// end-anchored matches)
|
|
void closeStreams() {
|
|
for (auto &stream : streams) {
|
|
hs_error_t err =
|
|
hs_close_stream(stream, scratch, onMatch, &matchCount);
|
|
if (err != HS_SUCCESS) {
|
|
cerr << "ERROR: Unable to close stream. Exiting." << endl;
|
|
exit(-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scan each packet (in the ordering given in the PCAP file) through
|
|
// Hyperscan using the streaming interface.
|
|
void scanStreams() {
|
|
for (size_t i = 0; i != packets.size(); ++i) {
|
|
const std::string &pkt = packets[i];
|
|
hs_error_t err = hs_scan_stream(streams[stream_ids[i]],
|
|
pkt.c_str(), pkt.length(), 0,
|
|
scratch, onMatch, &matchCount);
|
|
if (err != HS_SUCCESS) {
|
|
cerr << "ERROR: Unable to scan packet. Exiting." << endl;
|
|
exit(-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scan each packet (in the ordering given in the PCAP file) through
|
|
// Hyperscan using the block-mode interface.
|
|
void scanBlock() {
|
|
for (size_t i = 0; i != packets.size(); ++i) {
|
|
const std::string &pkt = packets[i];
|
|
hs_error_t err = hs_scan(db, pkt.c_str(), pkt.length(), 0,
|
|
scratch, onMatch, &matchCount);
|
|
if (err != HS_SUCCESS) {
|
|
cerr << "ERROR: Unable to scan packet. Exiting." << endl;
|
|
exit(-1);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// helper function - see end of file
|
|
static void parseFile(const char *filename, vector<string> &patterns,
|
|
vector<unsigned> &flags, vector<unsigned> &ids,
|
|
vector<string> &originals);
|
|
|
|
class Sigdata {
|
|
vector<unsigned> flags;
|
|
vector<unsigned> ids;
|
|
vector<string> patterns;
|
|
vector<string> originals;
|
|
|
|
public:
|
|
Sigdata() {}
|
|
Sigdata(const char *filename) {
|
|
parseFile(filename, patterns, flags, ids, originals);
|
|
|
|
}
|
|
|
|
const string &get_original(unsigned index) const {
|
|
return originals[index];
|
|
}
|
|
|
|
hs_database_t *compileDatabase(unsigned mode, double *compileTime) const {
|
|
hs_database_t *db = nullptr;
|
|
hs_compile_error_t *compileErr;
|
|
|
|
// Turn our vector of strings into a vector of char*'s to pass in to
|
|
// hs_compile_multi. (This is just using the vector of strings as
|
|
// dynamic storage.)
|
|
vector<const char *> cstrPatterns;
|
|
cstrPatterns.reserve(patterns.size());
|
|
for (const auto &pattern : patterns) {
|
|
// cppcheck-suppress useStlAlgorithm
|
|
cstrPatterns.push_back(pattern.c_str());
|
|
}
|
|
|
|
Clock clock;
|
|
clock.start();
|
|
hs_error_t err = hs_compile_multi(cstrPatterns.data(), flags.data(),
|
|
ids.data(), cstrPatterns.size(), mode,
|
|
nullptr, &db, &compileErr);
|
|
clock.stop();
|
|
if (err != HS_SUCCESS) {
|
|
if (compileErr->expression < 0) {
|
|
// The error does not refer to a particular expression.
|
|
cerr << "ERROR: " << compileErr->message << endl;
|
|
} else {
|
|
cerr << "ERROR: Pattern '"
|
|
<< patterns[compileErr->expression]
|
|
<< "' failed with error '" << compileErr->message << "'"
|
|
<< endl;
|
|
}
|
|
// As the compileErr pointer points to dynamically allocated memory,
|
|
// if we get an error, we must be sure to release it. This is not
|
|
// necessary when no error is detected.
|
|
hs_free_compile_error(compileErr);
|
|
exit(-1);
|
|
}
|
|
|
|
*compileTime = clock.seconds();
|
|
return db;
|
|
}
|
|
|
|
unsigned size() const {
|
|
return patterns.size();
|
|
}
|
|
|
|
Sigdata cloneExclude(const set<unsigned> &excludeIndexSet) const {
|
|
Sigdata c;
|
|
for (unsigned i = 0, e = size(); i != e; ++i) {
|
|
if (excludeIndexSet.find(i) == excludeIndexSet.end()) {
|
|
c.flags.push_back(flags[i]);
|
|
c.ids.push_back(ids[i]);
|
|
c.patterns.push_back(patterns[i]);
|
|
c.originals.push_back(originals[i]);
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
};
|
|
|
|
static
|
|
void usage(const char *) {
|
|
cerr << "Usage:" << endl << endl;
|
|
cerr << " patbench [-n repeats] [ -G generations] [ -C criterion ]" << endl
|
|
<< " [ -F factor_group_size ] [ -N | -S ] "
|
|
<< "<pattern file> <pcap file>" << endl << endl
|
|
<< " -n repeats sets the number of times the PCAP is repeatedly "
|
|
"scanned" << endl << " with the pattern." << endl
|
|
<< " -G generations sets the number of generations that the "
|
|
"algorithm is" << endl << " run for." << endl
|
|
<< " -N sets non-streaming mode, -S sets streaming mode (default)."
|
|
<< endl << " -F sets the factor group size (must be >0); this "
|
|
"allows the detection" << endl
|
|
<< " of multiple interacting factors." << endl << "" << endl
|
|
<< " -C sets the 'criterion', which can be either:" << endl
|
|
<< " t throughput (the default) - this requires a pcap file"
|
|
<< endl << " r scratch size" << endl
|
|
<< " s stream state size" << endl
|
|
<< " c compile time" << endl << " b bytecode size"
|
|
<< endl << endl
|
|
<< "We recommend the use of a utility like 'taskset' on "
|
|
"multiprocessor hosts to" << endl
|
|
<< "lock execution to a single processor: this will remove processor "
|
|
"migration" << endl
|
|
<< "by the scheduler as a source of noise in the results." << endl;
|
|
}
|
|
|
|
static
|
|
double measure_stream_time(Benchmark &bench, unsigned int repeatCount) {
|
|
Clock clock;
|
|
bench.clearMatches();
|
|
clock.start();
|
|
for (unsigned int i = 0; i < repeatCount; i++) {
|
|
bench.openStreams();
|
|
bench.scanStreams();
|
|
bench.closeStreams();
|
|
}
|
|
clock.stop();
|
|
double secsScan = clock.seconds();
|
|
return secsScan;
|
|
}
|
|
|
|
static
|
|
double measure_block_time(Benchmark &bench, unsigned int repeatCount) {
|
|
Clock clock;
|
|
bench.clearMatches();
|
|
clock.start();
|
|
for (unsigned int i = 0; i < repeatCount; i++) {
|
|
bench.scanBlock();
|
|
}
|
|
clock.stop();
|
|
double secsScan = clock.seconds();
|
|
return secsScan;
|
|
}
|
|
|
|
static
|
|
double eval_set(Benchmark &bench, Sigdata &sigs, unsigned int mode,
|
|
unsigned repeatCount, Criterion criterion,
|
|
bool diagnose = true) {
|
|
double compileTime = 0;
|
|
bench.setDatabase(sigs.compileDatabase(mode, &compileTime));
|
|
|
|
switch (criterion) {
|
|
case CRITERION_BYTECODE_SIZE: {
|
|
size_t dbSize;
|
|
hs_error_t err = hs_database_size(bench.getDatabase(), &dbSize);
|
|
if (err != HS_SUCCESS) {
|
|
cerr << "ERROR: could not retrieve bytecode size" << endl;
|
|
exit(1);
|
|
}
|
|
return dbSize;
|
|
}
|
|
case CRITERION_COMPILE_TIME:
|
|
return compileTime;
|
|
case CRITERION_STREAM_STATE: {
|
|
size_t streamStateSize;
|
|
hs_error_t err = hs_stream_size(bench.getDatabase(), &streamStateSize);
|
|
if (err != HS_SUCCESS) {
|
|
cerr << "ERROR: could not retrieve stream state size" << endl;
|
|
exit(1);
|
|
}
|
|
return streamStateSize;
|
|
}
|
|
case CRITERION_SCRATCH_SIZE:
|
|
return bench.getScratchSize();
|
|
case CRITERION_THROUGHPUT:
|
|
default:
|
|
break; // do nothing - we are THROUGHPUT
|
|
}
|
|
double scan_time;
|
|
if (mode == HS_MODE_NOSTREAM) {
|
|
scan_time = measure_block_time(bench, repeatCount);
|
|
} else {
|
|
scan_time = measure_stream_time(bench, repeatCount);
|
|
}
|
|
size_t bytes = bench.bytes();
|
|
size_t matches = bench.matches();
|
|
if (diagnose) {
|
|
std::ios::fmtflags f(cout.flags());
|
|
cout << "Scan time " << std::fixed << std::setprecision(3) << scan_time
|
|
<< " sec, Scanned " << bytes * repeatCount << " bytes, Throughput "
|
|
<< std::fixed << std::setprecision(3)
|
|
<< (bytes * 8 * repeatCount) / (scan_time * 1000000)
|
|
<< " Mbps, Matches " << matches << endl;
|
|
cout.flags(f);
|
|
}
|
|
return (bytes * 8 * repeatCount) / (scan_time * 1000000);
|
|
}
|
|
|
|
// Main entry point.
|
|
int main(int argc, char **argv) {
|
|
unsigned int repeatCount = 1;
|
|
unsigned int mode = HS_MODE_STREAM;
|
|
Criterion criterion = CRITERION_THROUGHPUT;
|
|
unsigned int gen_max = 10;
|
|
unsigned int factor_max = 1;
|
|
// Process command line arguments.
|
|
int opt;
|
|
while ((opt = getopt(argc, argv, "SNn:G:F:C:")) != -1) {
|
|
switch (opt) {
|
|
case 'F':
|
|
factor_max = atoi(optarg);
|
|
break;
|
|
case 'G':
|
|
gen_max = atoi(optarg);
|
|
break;
|
|
case 'S':
|
|
mode = HS_MODE_STREAM;
|
|
break;
|
|
case 'N':
|
|
mode = HS_MODE_NOSTREAM;
|
|
break;
|
|
case 'C':
|
|
switch (optarg[0]) {
|
|
case 't':
|
|
criterion = CRITERION_THROUGHPUT;
|
|
break;
|
|
case 'b':
|
|
criterion = CRITERION_BYTECODE_SIZE;
|
|
break;
|
|
case 'c':
|
|
criterion = CRITERION_COMPILE_TIME;
|
|
break;
|
|
case 's':
|
|
criterion = CRITERION_STREAM_STATE;
|
|
break;
|
|
case 'r':
|
|
criterion = CRITERION_SCRATCH_SIZE;
|
|
break;
|
|
default:
|
|
cerr << "Unrecognised criterion: " << optarg[0] << endl;
|
|
usage(argv[0]);
|
|
exit(-1);
|
|
}
|
|
break;
|
|
case 'n':
|
|
repeatCount = atoi(optarg);
|
|
break;
|
|
default:
|
|
usage(argv[0]);
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
if (argc - optind != ((criterion == CRITERION_THROUGHPUT) ? 2 : 1)) {
|
|
usage(argv[0]);
|
|
exit(-1);
|
|
}
|
|
|
|
const char *patternFile = argv[optind];
|
|
const char *pcapFile = argv[optind + 1];
|
|
|
|
// Read our input PCAP file in
|
|
Benchmark bench;
|
|
if (criterion == CRITERION_THROUGHPUT) {
|
|
if (!bench.readStreams(pcapFile)) {
|
|
cerr << "Unable to read packets from PCAP file. Exiting." << endl;
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
if ((criterion == CRITERION_STREAM_STATE) && (mode != HS_MODE_STREAM)) {
|
|
cerr << "Cannot evaluate stream state for block mode compile. Exiting."
|
|
<< endl;
|
|
exit(-1);
|
|
}
|
|
|
|
cout << "Base signatures: " << patternFile;
|
|
if (pcapFile) {
|
|
cout << "\tPCAP input file: " << pcapFile
|
|
<< "\tRepeat count: " << repeatCount;
|
|
}
|
|
if (mode == HS_MODE_STREAM) {
|
|
cout << "\tMode: streaming";
|
|
} else {
|
|
cout << "\tMode: block";
|
|
}
|
|
cout << endl;
|
|
|
|
Sigdata sigs(patternFile);
|
|
|
|
// calculate and show a baseline
|
|
eval_set(bench, sigs, mode, repeatCount, criterion);
|
|
|
|
set<unsigned> work_sigs, exclude;
|
|
|
|
for (unsigned i = 0; i < sigs.size(); ++i) {
|
|
work_sigs.insert(i);
|
|
}
|
|
|
|
double score_base =
|
|
eval_set(bench, sigs, mode, repeatCount, criterion, false);
|
|
bool maximize = higher_is_better(criterion);
|
|
cout << "Number of signatures: " << sigs.size() << endl;
|
|
cout << "Base performance: ";
|
|
print_criterion(criterion, score_base);
|
|
cout << endl;
|
|
|
|
unsigned generations = min(gen_max, (sigs.size() - 1) / factor_max);
|
|
|
|
cout << "Cutting signatures cumulatively for " << generations
|
|
<< " generations" << endl;
|
|
for (unsigned gen = 0; gen < generations; ++gen) {
|
|
cout << "Generation " << gen << " ";
|
|
set<unsigned> s(work_sigs.begin(), work_sigs.end());
|
|
double best = maximize ? 0 : 1000000000000.0;
|
|
unsigned count = 0;
|
|
while (s.size() > factor_max) {
|
|
count++;
|
|
cout << "." << std::flush;
|
|
vector<unsigned> sv(s.begin(), s.end());
|
|
random_device rng;
|
|
mt19937 urng(rng());
|
|
shuffle(sv.begin(), sv.end(), urng);
|
|
unsigned groups = factor_max + 1;
|
|
for (unsigned current_group = 0; current_group < groups;
|
|
current_group++) {
|
|
unsigned sz = sv.size();
|
|
unsigned lo = (current_group * sz) / groups;
|
|
unsigned hi = ((current_group + 1) * sz) / groups;
|
|
|
|
set<unsigned> s_part1(sv.begin(), sv.begin() + lo);
|
|
set<unsigned> s_part2(sv.begin() + hi, sv.end());
|
|
set<unsigned> s_tmp = s_part1;
|
|
s_tmp.insert(s_part2.begin(), s_part2.end());
|
|
set<unsigned> tmp = s_tmp;
|
|
tmp.insert(exclude.begin(), exclude.end());
|
|
Sigdata sigs_tmp = sigs.cloneExclude(tmp);
|
|
double score = eval_set(bench, sigs_tmp, mode, repeatCount,
|
|
criterion, false);
|
|
|
|
if ((current_group == 0) ||
|
|
(!maximize ? (score < best) : (score > best))) {
|
|
s = s_tmp;
|
|
best = score;
|
|
}
|
|
}
|
|
}
|
|
for (unsigned i = count; i < 16; i++) {
|
|
cout << " ";
|
|
}
|
|
std::ios::fmtflags out_f(cout.flags());
|
|
cout << "Performance: ";
|
|
print_criterion(criterion, best);
|
|
cout << " (" << std::fixed << std::setprecision(3) << (best / score_base)
|
|
<< "x) after cutting:" << endl;
|
|
cout.flags(out_f);
|
|
|
|
// s now has factor_max signatures
|
|
for (const auto &found : s) {
|
|
exclude.insert(found);
|
|
work_sigs.erase(found);
|
|
cout << sigs.get_original(found) << endl;
|
|
}
|
|
|
|
cout << endl;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Helper function to locate the offset of the first byte of the payload in the
|
|
* given ethernet frame. Offset into the packet, and the length of the payload
|
|
* are returned in the arguments @a offset and @a length.
|
|
*/
|
|
static
|
|
bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset,
|
|
unsigned int *length) {
|
|
const ip *iph = (const ip *)(pkt_data + sizeof(ether_header));
|
|
const tcphdr *th = nullptr;
|
|
|
|
// Ignore packets that aren't IPv4
|
|
if (iph->ip_v != 4) {
|
|
return false;
|
|
}
|
|
|
|
// Ignore fragmented packets.
|
|
if (iph->ip_off & htons(IP_MF | IP_OFFMASK)) {
|
|
return false;
|
|
}
|
|
|
|
// IP header length, and transport header length.
|
|
unsigned int ihlen = iph->ip_hl * 4;
|
|
unsigned int thlen = 0;
|
|
|
|
switch (iph->ip_p) {
|
|
case IPPROTO_TCP:
|
|
th = (const tcphdr *)((const char *)iph + ihlen);
|
|
thlen = th->th_off * 4;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
thlen = sizeof(udphdr);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
*offset = sizeof(ether_header) + ihlen + thlen;
|
|
*length = sizeof(ether_header) + ntohs(iph->ip_len) - *offset;
|
|
|
|
return *length != 0;
|
|
}
|
|
|
|
static unsigned parseFlags(const string &flagsStr) {
|
|
unsigned flags = 0;
|
|
for (const auto &c : flagsStr) {
|
|
switch (c) {
|
|
case 'i':
|
|
flags |= HS_FLAG_CASELESS; break;
|
|
case 'm':
|
|
flags |= HS_FLAG_MULTILINE; break;
|
|
case 's':
|
|
flags |= HS_FLAG_DOTALL; break;
|
|
case 'H':
|
|
flags |= HS_FLAG_SINGLEMATCH; break;
|
|
case 'V':
|
|
flags |= HS_FLAG_ALLOWEMPTY; break;
|
|
case '8':
|
|
flags |= HS_FLAG_UTF8; break;
|
|
case 'W':
|
|
flags |= HS_FLAG_UCP; break;
|
|
case '\r': // stray carriage-return
|
|
break;
|
|
default:
|
|
cerr << "Unsupported flag \'" << c << "\'" << endl;
|
|
exit(-1);
|
|
}
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
static void parseFile(const char *filename, vector<string> &patterns,
|
|
vector<unsigned> &flags, vector<unsigned> &ids,
|
|
vector<string> &originals) {
|
|
ifstream inFile(filename);
|
|
if (!inFile.good()) {
|
|
cerr << "ERROR: Can't open pattern file \"" << filename << "\"" << endl;
|
|
exit(-1);
|
|
}
|
|
|
|
for (unsigned i = 1; !inFile.eof(); ++i) {
|
|
string line;
|
|
getline(inFile, line);
|
|
|
|
// if line is empty, or a comment, we can skip it
|
|
if (line.empty() || line[0] == '#') {
|
|
continue;
|
|
}
|
|
|
|
// otherwise, it should be ID:PCRE, e.g.
|
|
// 10001:/foobar/is
|
|
|
|
size_t colonIdx = line.find_first_of(':');
|
|
if (colonIdx == string::npos) {
|
|
cerr << "ERROR: Could not parse line " << i << endl;
|
|
exit(-1);
|
|
}
|
|
|
|
// we should have an unsigned int as an ID, before the colon
|
|
unsigned id = std::stoi(line.substr(0, colonIdx).c_str());
|
|
|
|
// rest of the expression is the PCRE
|
|
const string expr(line.substr(colonIdx + 1));
|
|
|
|
size_t flagsStart = expr.find_last_of('/');
|
|
if (flagsStart == string::npos) {
|
|
cerr << "ERROR: no trailing '/' char" << endl;
|
|
exit(-1);
|
|
}
|
|
|
|
string pcre(expr.substr(1, flagsStart - 1));
|
|
string flagsStr(expr.substr(flagsStart + 1, expr.size() - flagsStart));
|
|
unsigned flag = parseFlags(flagsStr);
|
|
|
|
originals.push_back(line);
|
|
patterns.push_back(pcre);
|
|
flags.push_back(flag);
|
|
ids.push_back(id);
|
|
}
|
|
}
|