mirror of
https://github.com/VectorCamp/vectorscan.git
synced 2025-07-13 14:04:44 +03:00
234 lines
7.3 KiB
C
234 lines
7.3 KiB
C
/*
|
|
* Copyright (c) 2015-2017, Intel Corporation
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* noodle scan parts for AVX */
|
|
|
|
static really_inline m256 getMask(u8 c, bool noCase) {
|
|
u8 k = caseClear8(c, noCase);
|
|
return set32x8(k);
|
|
}
|
|
|
|
static really_inline m256 getCaseMask(void) {
|
|
return set32x8(0xdf);
|
|
}
|
|
|
|
static really_inline
|
|
hwlm_error_t scanSingleUnaligned(const struct noodTable *n, const u8 *buf,
|
|
size_t len, size_t offset, bool noCase,
|
|
m256 caseMask, m256 mask1,
|
|
const struct cb_info *cbi, size_t start,
|
|
size_t end) {
|
|
const u8 *d = buf + offset;
|
|
DEBUG_PRINTF("start %zu end %zu offset %zu\n", start, end, offset);
|
|
const size_t l = end - start;
|
|
|
|
m256 v = loadu256(d);
|
|
|
|
if (noCase) {
|
|
v = and256(v, caseMask);
|
|
}
|
|
|
|
u32 z = movemask256(eq256(mask1, v));
|
|
|
|
u32 buf_off = start - offset;
|
|
u32 mask = (u32)((u64a)(1ULL << l) - 1) << buf_off;
|
|
DEBUG_PRINTF("mask 0x%08x z 0x%08x\n", mask, z);
|
|
|
|
z &= mask;
|
|
|
|
SINGLE_ZSCAN();
|
|
|
|
return HWLM_SUCCESS;
|
|
}
|
|
|
|
static really_inline
|
|
hwlm_error_t scanDoubleUnaligned(const struct noodTable *n, const u8 *buf,
|
|
size_t len, size_t offset, bool noCase,
|
|
m256 caseMask, m256 mask1, m256 mask2,
|
|
const struct cb_info *cbi, size_t start,
|
|
size_t end) {
|
|
const u8 *d = buf + offset;
|
|
DEBUG_PRINTF("start %zu end %zu offset %zu\n", start, end, offset);
|
|
size_t l = end - start;
|
|
|
|
m256 v = loadu256(d);
|
|
|
|
if (noCase) {
|
|
v = and256(v, caseMask);
|
|
}
|
|
|
|
u32 z0 = movemask256(eq256(mask1, v));
|
|
u32 z1 = movemask256(eq256(mask2, v));
|
|
u32 z = (z0 << 1) & z1;
|
|
|
|
// mask out where we can't match
|
|
u32 buf_off = start - offset;
|
|
u32 mask = (u32)((u64a)(1ULL << l) - 1) << buf_off;
|
|
DEBUG_PRINTF("mask 0x%08x z 0x%08x\n", mask, z);
|
|
z &= mask;
|
|
|
|
DOUBLE_ZSCAN();
|
|
|
|
return HWLM_SUCCESS;
|
|
}
|
|
|
|
// The short scan routine. It is used both to scan data up to an
|
|
// alignment boundary if needed and to finish off data that the aligned scan
|
|
// function can't handle (due to small/unaligned chunk at end)
|
|
static really_inline
|
|
hwlm_error_t scanSingleShort(const struct noodTable *n, const u8 *buf,
|
|
size_t len, bool noCase, m256 caseMask, m256 mask1,
|
|
const struct cb_info *cbi, size_t start,
|
|
size_t end) {
|
|
const u8 *d = buf + start;
|
|
size_t l = end - start;
|
|
DEBUG_PRINTF("l %zu\n", l);
|
|
assert(l <= 32);
|
|
if (!l) {
|
|
return HWLM_SUCCESS;
|
|
}
|
|
|
|
m256 v;
|
|
|
|
if (l < 4) {
|
|
u8 *vp = (u8*)&v;
|
|
switch (l) {
|
|
case 3: vp[2] = d[2]; // fallthrough
|
|
case 2: vp[1] = d[1]; // fallthrough
|
|
case 1: vp[0] = d[0]; // fallthrough
|
|
}
|
|
} else {
|
|
v = masked_move256_len(d, l);
|
|
}
|
|
|
|
if (noCase) {
|
|
v = and256(v, caseMask);
|
|
}
|
|
|
|
// mask out where we can't match
|
|
u32 mask = (0xFFFFFFFF >> (32 - l));
|
|
|
|
u32 z = mask & movemask256(eq256(mask1, v));
|
|
|
|
SINGLE_ZSCAN();
|
|
|
|
return HWLM_SUCCESS;
|
|
}
|
|
|
|
static really_inline
|
|
hwlm_error_t scanDoubleShort(const struct noodTable *n, const u8 *buf,
|
|
size_t len, bool noCase, m256 caseMask, m256 mask1,
|
|
m256 mask2, const struct cb_info *cbi,
|
|
size_t start, size_t end) {
|
|
const u8 *d = buf + start;
|
|
size_t l = end - start;
|
|
if (!l) {
|
|
return HWLM_SUCCESS;
|
|
}
|
|
assert(l <= 32);
|
|
m256 v;
|
|
|
|
DEBUG_PRINTF("d %zu\n", d - buf);
|
|
if (l < 4) {
|
|
u8 *vp = (u8*)&v;
|
|
switch (l) {
|
|
case 3: vp[2] = d[2]; // fallthrough
|
|
case 2: vp[1] = d[1]; // fallthrough
|
|
case 1: vp[0] = d[0]; // fallthrough
|
|
}
|
|
} else {
|
|
v = masked_move256_len(d, l);
|
|
}
|
|
if (noCase) {
|
|
v = and256(v, caseMask);
|
|
}
|
|
|
|
u32 z0 = movemask256(eq256(mask1, v));
|
|
u32 z1 = movemask256(eq256(mask2, v));
|
|
u32 z = (z0 << 1) & z1;
|
|
|
|
// mask out where we can't match
|
|
u32 mask = (0xFFFFFFFF >> (32 - l));
|
|
z &= mask;
|
|
|
|
DOUBLE_ZSCAN();
|
|
|
|
return HWLM_SUCCESS;
|
|
}
|
|
|
|
static really_inline
|
|
hwlm_error_t scanSingleFast(const struct noodTable *n, const u8 *buf,
|
|
size_t len, bool noCase, m256 caseMask, m256 mask1,
|
|
const struct cb_info *cbi, size_t start,
|
|
size_t end) {
|
|
const u8 *d = buf + start, *e = buf + end;
|
|
assert(d < e);
|
|
|
|
for (; d < e; d += 32) {
|
|
m256 v = noCase ? and256(load256(d), caseMask) : load256(d);
|
|
|
|
u32 z = movemask256(eq256(mask1, v));
|
|
|
|
// On large packet buffers, this prefetch appears to get us about 2%.
|
|
__builtin_prefetch(d + 128);
|
|
|
|
SINGLE_ZSCAN();
|
|
}
|
|
return HWLM_SUCCESS;
|
|
}
|
|
|
|
static really_inline
|
|
hwlm_error_t scanDoubleFast(const struct noodTable *n, const u8 *buf,
|
|
size_t len, bool noCase, m256 caseMask, m256 mask1,
|
|
m256 mask2, const struct cb_info *cbi, size_t start,
|
|
size_t end) {
|
|
const u8 *d = buf + start, *e = buf + end;
|
|
DEBUG_PRINTF("start %zu end %zu \n", start, end);
|
|
assert(d < e);
|
|
u32 lastz0 = 0;
|
|
|
|
for (; d < e; d += 32) {
|
|
m256 v = noCase ? and256(load256(d), caseMask) : load256(d);
|
|
|
|
// we have to pull the masks out of the AVX registers because we can't
|
|
// byte shift between the lanes
|
|
u32 z0 = movemask256(eq256(mask1, v));
|
|
u32 z1 = movemask256(eq256(mask2, v));
|
|
u32 z = (lastz0 | (z0 << 1)) & z1;
|
|
lastz0 = z0 >> 31;
|
|
|
|
// On large packet buffers, this prefetch appears to get us about 2%.
|
|
__builtin_prefetch(d + 128);
|
|
|
|
DOUBLE_ZSCAN();
|
|
|
|
}
|
|
return HWLM_SUCCESS;
|
|
}
|
|
|