vectorscan/src/fdr/teddy_runtime_common.h
2021-01-13 12:26:47 +00:00

460 lines
17 KiB
C++

/*
* Copyright (c) 2016-2020, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Teddy literal matcher: common runtime procedures.
*/
#ifndef TEDDY_RUNTIME_COMMON_H_
#define TEDDY_RUNTIME_COMMON_H_
#include "fdr_confirm.h"
#include "fdr_confirm_runtime.h"
#include "ue2common.h"
#include "util/bitutils.h"
#include "util/simd_utils.h"
#include "util/uniform_ops.h"
extern const u8 ALIGN_DIRECTIVE p_mask_arr[17][32];
#if defined(HAVE_AVX2)
extern const u8 ALIGN_AVX_DIRECTIVE p_mask_arr256[33][64];
#endif
#if defined(HAVE_AVX512VBMI)
static const u8 ALIGN_DIRECTIVE p_sh_mask_arr[80] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f
};
#endif
#ifdef ARCH_64_BIT
#define TEDDY_CONF_TYPE u64a
#define TEDDY_FIND_AND_CLEAR_LSB(conf) findAndClearLSB_64(conf)
#else
#define TEDDY_CONF_TYPE u32
#define TEDDY_FIND_AND_CLEAR_LSB(conf) findAndClearLSB_32(conf)
#endif
#define CHECK_HWLM_TERMINATE_MATCHING \
do { \
if (unlikely(control == HWLM_TERMINATE_MATCHING)) { \
return HWLM_TERMINATED; \
} \
} while (0);
#define CHECK_FLOOD \
do { \
if (unlikely(ptr > tryFloodDetect)) { \
tryFloodDetect = floodDetect(fdr, a, &ptr, tryFloodDetect, \
&floodBackoff, &control, iterBytes); \
CHECK_HWLM_TERMINATE_MATCHING; \
} \
} while (0);
/*
* \brief Copy a block of [0,15] bytes efficiently.
*
* This function is a workaround intended to stop some compilers from
* synthesizing a memcpy function call out of the copy of a small number of
* bytes that we do in vectoredLoad128.
*/
static really_inline
void copyRuntBlock128(u8 *dst, const u8 *src, size_t len) {
switch (len) {
case 0:
break;
case 1:
*dst = *src;
break;
case 2:
unaligned_store_u16(dst, unaligned_load_u16(src));
break;
case 3:
unaligned_store_u16(dst, unaligned_load_u16(src));
dst[2] = src[2];
break;
case 4:
unaligned_store_u32(dst, unaligned_load_u32(src));
break;
case 5:
case 6:
case 7:
/* Perform copy with two overlapping 4-byte chunks. */
unaligned_store_u32(dst + len - 4, unaligned_load_u32(src + len - 4));
unaligned_store_u32(dst, unaligned_load_u32(src));
break;
case 8:
unaligned_store_u64a(dst, unaligned_load_u64a(src));
break;
default:
/* Perform copy with two overlapping 8-byte chunks. */
assert(len < 16);
unaligned_store_u64a(dst + len - 8, unaligned_load_u64a(src + len - 8));
unaligned_store_u64a(dst, unaligned_load_u64a(src));
break;
}
}
// Note: p_mask is an output param that initialises a poison mask.
// *p_mask = load128(p_mask_arr[n] + 16 - m) means:
// m byte 0xff in the beginning, followed by n byte 0x00,
// then followed by the rest bytes 0xff.
// ptr >= lo:
// no history.
// for end/short zone, ptr==lo and start_offset==0
// for start zone, see below
// lo ptr hi hi
// |----------|-------|----------------|............|
// -start 0 -start+offset MIN(avail,16)
// p_mask ffff..ff0000...........00ffff..........
// ptr < lo:
// only start zone.
// history
// ptr lo hi hi
// |----------|-------|----------------|............|
// 0 start start+offset end(<=16)
// p_mask ffff.....ffffff..ff0000...........00ffff..........
static really_inline
m128 vectoredLoad128(m128 *p_mask, const u8 *ptr, const size_t start_offset,
const u8 *lo, const u8 *hi,
const u8 *buf_history, size_t len_history,
const u32 nMasks) {
union {
u8 val8[16];
m128 val128;
} u;
u.val128 = zeroes128();
uintptr_t copy_start;
uintptr_t copy_len;
if (ptr >= lo) { // short/end/start zone
uintptr_t start = (uintptr_t)(ptr - lo);
uintptr_t avail = (uintptr_t)(hi - ptr);
if (avail >= 16) {
assert(start_offset - start <= 16);
*p_mask = loadu128(p_mask_arr[16 - start_offset + start]
+ 16 - start_offset + start);
return loadu128(ptr);
}
assert(start_offset - start <= avail);
*p_mask = loadu128(p_mask_arr[avail - start_offset + start]
+ 16 - start_offset + start);
copy_start = 0;
copy_len = avail;
} else { // start zone
uintptr_t need = MIN((uintptr_t)(lo - ptr),
MIN(len_history, nMasks - 1));
uintptr_t start = (uintptr_t)(lo - ptr);
uintptr_t i;
for (i = start - need; i < start; i++) {
u.val8[i] = buf_history[len_history - (start - i)];
}
uintptr_t end = MIN(16, (uintptr_t)(hi - ptr));
assert(start + start_offset <= end);
*p_mask = loadu128(p_mask_arr[end - start - start_offset]
+ 16 - start - start_offset);
copy_start = start;
copy_len = end - start;
}
// Runt block from the buffer.
copyRuntBlock128(&u.val8[copy_start], &ptr[copy_start], copy_len);
return u.val128;
}
#if defined(HAVE_AVX2)
/*
* \brief Copy a block of [0,31] bytes efficiently.
*
* This function is a workaround intended to stop some compilers from
* synthesizing a memcpy function call out of the copy of a small number of
* bytes that we do in vectoredLoad256.
*/
static really_inline
void copyRuntBlock256(u8 *dst, const u8 *src, size_t len) {
switch (len) {
case 0:
break;
case 1:
*dst = *src;
break;
case 2:
unaligned_store_u16(dst, unaligned_load_u16(src));
break;
case 3:
unaligned_store_u16(dst, unaligned_load_u16(src));
dst[2] = src[2];
break;
case 4:
unaligned_store_u32(dst, unaligned_load_u32(src));
break;
case 5:
case 6:
case 7:
/* Perform copy with two overlapping 4-byte chunks. */
unaligned_store_u32(dst + len - 4, unaligned_load_u32(src + len - 4));
unaligned_store_u32(dst, unaligned_load_u32(src));
break;
case 8:
unaligned_store_u64a(dst, unaligned_load_u64a(src));
break;
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
/* Perform copy with two overlapping 8-byte chunks. */
unaligned_store_u64a(dst + len - 8, unaligned_load_u64a(src + len - 8));
unaligned_store_u64a(dst, unaligned_load_u64a(src));
break;
case 16:
storeu128(dst, loadu128(src));
break;
default:
/* Perform copy with two overlapping 16-byte chunks. */
assert(len < 32);
storeu128(dst + len - 16, loadu128(src + len - 16));
storeu128(dst, loadu128(src));
break;
}
}
// Note: p_mask is an output param that initialises a poison mask.
// *p_mask = load256(p_mask_arr256[n] + 32 - m) means:
// m byte 0xff in the beginning, followed by n byte 0x00,
// then followed by the rest bytes 0xff.
// ptr >= lo:
// no history.
// for end/short zone, ptr==lo and start_offset==0
// for start zone, see below
// lo ptr hi hi
// |----------|-------|----------------|............|
// -start 0 -start+offset MIN(avail,32)
// p_mask ffff..ff0000...........00ffff..........
// ptr < lo:
// only start zone.
// history
// ptr lo hi hi
// |----------|-------|----------------|............|
// 0 start start+offset end(<=32)
// p_mask ffff.....ffffff..ff0000...........00ffff..........
static really_inline
m256 vectoredLoad256(m256 *p_mask, const u8 *ptr, const size_t start_offset,
const u8 *lo, const u8 *hi,
const u8 *buf_history, size_t len_history,
const u32 nMasks) {
union {
u8 val8[32];
m256 val256;
} u;
u.val256 = zeroes256();
uintptr_t copy_start;
uintptr_t copy_len;
if (ptr >= lo) { // short/end/start zone
uintptr_t start = (uintptr_t)(ptr - lo);
uintptr_t avail = (uintptr_t)(hi - ptr);
if (avail >= 32) {
assert(start_offset - start <= 32);
*p_mask = loadu256(p_mask_arr256[32 - start_offset + start]
+ 32 - start_offset + start);
return loadu256(ptr);
}
assert(start_offset - start <= avail);
*p_mask = loadu256(p_mask_arr256[avail - start_offset + start]
+ 32 - start_offset + start);
copy_start = 0;
copy_len = avail;
} else { //start zone
uintptr_t need = MIN((uintptr_t)(lo - ptr),
MIN(len_history, nMasks - 1));
uintptr_t start = (uintptr_t)(lo - ptr);
uintptr_t i;
for (i = start - need; i < start; i++) {
u.val8[i] = buf_history[len_history - (start - i)];
}
uintptr_t end = MIN(32, (uintptr_t)(hi - ptr));
assert(start + start_offset <= end);
*p_mask = loadu256(p_mask_arr256[end - start - start_offset]
+ 32 - start - start_offset);
copy_start = start;
copy_len = end - start;
}
// Runt block from the buffer.
copyRuntBlock256(&u.val8[copy_start], &ptr[copy_start], copy_len);
return u.val256;
}
#endif // HAVE_AVX2
#if defined(HAVE_AVX512)
// Note: p_mask is an output param that initialises a poison mask.
// u64a k = ones_u64a << n' >> m'; // m' < n'
// *p_mask = set_mask_m512(~k);
// means p_mask is consist of:
// (n' - m') poison bytes "0xff" at the beginning,
// followed by (64 - n') valid bytes "0x00",
// then followed by the rest m' poison bytes "0xff".
// ptr >= lo:
// no history.
// for end/short zone, ptr==lo and start_offset==0
// for start zone, see below
// lo ptr hi hi
// |----------|-------|----------------|............|
// -start 0 -start+offset MIN(avail,64)
// p_mask ffff..ff0000...........00ffff..........
// ptr < lo:
// only start zone.
// history
// ptr lo hi hi
// |----------|-------|----------------|............|
// 0 start start+offset end(<=64)
// p_mask ffff.....ffffff..ff0000...........00ffff..........
static really_inline
m512 vectoredLoad512(m512 *p_mask, const u8 *ptr, const size_t start_offset,
const u8 *lo, const u8 *hi, const u8 *hbuf, size_t hlen,
const u32 nMasks) {
m512 val;
uintptr_t copy_start;
uintptr_t copy_len;
if (ptr >= lo) { // short/end/start zone
uintptr_t start = (uintptr_t)(ptr - lo);
uintptr_t avail = (uintptr_t)(hi - ptr);
if (avail >= 64) {
assert(start_offset - start <= 64);
u64a k = ones_u64a << (start_offset - start);
*p_mask = set_mask_m512(~k);
return loadu512(ptr);
}
assert(start_offset - start <= avail);
u64a k = ones_u64a << (64 - avail + start_offset - start)
>> (64 - avail);
*p_mask = set_mask_m512(~k);
copy_start = 0;
copy_len = avail;
} else { //start zone
uintptr_t need = MIN((uintptr_t)(lo - ptr),
MIN(hlen, nMasks - 1));
uintptr_t start = (uintptr_t)(lo - ptr);
u64a j = 0x7fffffffffffffffULL >> (63 - need) << (start - need);
val = loadu_maskz_m512(j, &hbuf[hlen - start]);
uintptr_t end = MIN(64, (uintptr_t)(hi - ptr));
assert(start + start_offset <= end);
u64a k = ones_u64a << (64 - end + start + start_offset) >> (64 - end);
*p_mask = set_mask_m512(~k);
copy_start = start;
copy_len = end - start;
}
assert(copy_len < 64);
assert(copy_len > 0);
u64a j = ones_u64a >> (64 - copy_len) << copy_start;
val = loadu_mask_m512(val, j, ptr);
return val;
}
#endif // HAVE_AVX512
static really_inline
u64a getConfVal(const struct FDR_Runtime_Args *a, const u8 *ptr, u32 byte,
UNUSED CautionReason reason) {
u64a confVal = 0;
const u8 *buf = a->buf;
size_t len = a->len;
const u8 *confirm_loc = ptr + byte - 7;
#if defined(HAVE_AVX512VBMI)
if (likely(confirm_loc >= buf)) {
#else
if (likely(reason == NOT_CAUTIOUS || confirm_loc >= buf)) {
#endif
confVal = lv_u64a(confirm_loc, buf, buf + len);
} else { // r == VECTORING, confirm_loc < buf
u64a histBytes = a->histBytes;
confVal = lv_u64a_ce(confirm_loc, buf, buf + len);
// stitch together confVal and history
u32 overhang = buf - confirm_loc;
histBytes >>= 64 - (overhang * 8);
confVal |= histBytes;
}
return confVal;
}
static really_inline
void do_confWithBit_teddy(TEDDY_CONF_TYPE *conf, u8 bucket, u8 offset,
const u32 *confBase, CautionReason reason,
const struct FDR_Runtime_Args *a, const u8 *ptr,
hwlmcb_rv_t *control, u32 *last_match) {
do {
u32 bit = TEDDY_FIND_AND_CLEAR_LSB(conf);
u32 byte = bit / bucket + offset;
u32 idx = bit % bucket;
u32 cf = confBase[idx];
if (!cf) {
continue;
}
const struct FDRConfirm *fdrc = (const struct FDRConfirm *)
((const u8 *)confBase + cf);
if (!(fdrc->groups & *control)) {
continue;
}
u64a tmp = 0;
u64a confVal = getConfVal(a, ptr, byte, reason);
confWithBit(fdrc, a, ptr - a->buf + byte, control,
last_match, confVal, &tmp, 0);
} while (unlikely(*conf));
}
static really_inline
const m128 *getMaskBase(const struct Teddy *teddy) {
return (const m128 *)((const u8 *)teddy + ROUNDUP_CL(sizeof(struct Teddy)));
}
static really_inline
const u64a *getReinforcedMaskBase(const struct Teddy *teddy, u8 numMask) {
return (const u64a *)((const u8 *)getMaskBase(teddy)
+ ROUNDUP_CL(2 * numMask * sizeof(m128)));
}
static really_inline
const u32 *getConfBase(const struct Teddy *teddy) {
return (const u32 *)((const u8 *)teddy + teddy->confOffset);
}
#endif /* TEDDY_RUNTIME_COMMON_H_ */