2024-04-24 17:32:09 +03:00

856 lines
32 KiB
C

/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "fdr.h"
#include "fdr_confirm.h"
#include "fdr_confirm_runtime.h"
#include "fdr_internal.h"
#include "fdr_loadval.h"
#include "flood_runtime.h"
#include "scratch.h"
#include "teddy.h"
#include "teddy_internal.h"
#include "util/arch.h"
#include "util/bitutils.h"
#include "util/simd_utils.h"
#include "util/uniform_ops.h"
/** \brief number of bytes processed in each iteration */
#define ITER_BYTES 16
/** \brief total zone buffer size */
#define ZONE_TOTAL_SIZE 64
/** \brief maximum number of allowed zones */
#define ZONE_MAX 3
/** \brief zone information.
*
* Zone represents a region of data to scan in FDR.
*
* The incoming buffer is to split in multiple zones to ensure two properties:
* 1: that we can read 8? bytes behind to generate a hash safely
* 2: that we can read the 3 byte after the current byte (domain > 8)
*/
struct zone {
/** \brief copied buffer, used only when it is a boundary zone. */
u8 ALIGN_CL_DIRECTIVE buf[ZONE_TOTAL_SIZE];
/** \brief shift amount for fdr state to avoid unwanted match. */
u8 shift;
/** \brief if boundary zone, start points into the zone buffer after the
* pre-padding. Otherwise, points to the main buffer, appropriately. */
const u8 *start;
/** \brief if boundary zone, end points to the end of zone. Otherwise,
* pointer to the main buffer, appropriately. */
const u8 *end;
/** \brief the amount to adjust to go from a pointer in the zones region
* (between start and end) to a pointer in the original data buffer. */
ptrdiff_t zone_pointer_adjust;
/** \brief firstFloodDetect from FDR_Runtime_Args for non-boundary zones,
* otherwise end of the zone buf. floodPtr always points inside the same
* buffer as the start pointe. */
const u8 *floodPtr;
};
static
const ALIGN_CL_DIRECTIVE u8 zone_or_mask[ITER_BYTES+1][ITER_BYTES] = {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
};
/* generates an initial state mask based on the last byte-ish of history rather
* than being all accepting. If there is no history to consider, the state is
* generated based on the minimum length of each bucket in order to prevent
* confirms.
*/
static really_inline
m128 getInitState(const struct FDR *fdr, u8 len_history, const u64a *ft,
const struct zone *z) {
m128 s;
if (len_history) {
/* +1: the zones ensure that we can read the byte at z->end */
u32 tmp = lv_u16(z->start + z->shift - 1, z->buf, z->end + 1);
tmp &= fdr->domainMask;
s = load_m128_from_u64a(ft + tmp);
s = rshiftbyte_m128(s, 1);
} else {
s = fdr->start;
}
return s;
}
static really_inline
void get_conf_stride_1(const u8 *itPtr, UNUSED const u8 *start_ptr,
UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
/* +1: the zones ensure that we can read the byte at z->end */
assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
u64a domain_mask = ~domain_mask_flipped;
u64a it_hi = *(const u64a *)itPtr;
u64a it_lo = *(const u64a *)(itPtr + 8);
u64a reach0 = domain_mask & it_hi;
u64a reach1 = domain_mask & (it_hi >> 8);
u64a reach2 = domain_mask & (it_hi >> 16);
u64a reach3 = domain_mask & (it_hi >> 24);
u64a reach4 = domain_mask & (it_hi >> 32);
u64a reach5 = domain_mask & (it_hi >> 40);
u64a reach6 = domain_mask & (it_hi >> 48);
u64a reach7 = domain_mask & ((it_hi >> 56) | (it_lo << 8));
u64a reach8 = domain_mask & it_lo;
u64a reach9 = domain_mask & (it_lo >> 8);
u64a reach10 = domain_mask & (it_lo >> 16);
u64a reach11 = domain_mask & (it_lo >> 24);
u64a reach12 = domain_mask & (it_lo >> 32);
u64a reach13 = domain_mask & (it_lo >> 40);
u64a reach14 = domain_mask & (it_lo >> 48);
u64a reach15 = domain_mask & unaligned_load_u32(itPtr + 15);
m128 st0 = load_m128_from_u64a(ft + reach0);
m128 st1 = lshiftbyte_m128(load_m128_from_u64a(ft + reach1), 1);
m128 st2 = lshiftbyte_m128(load_m128_from_u64a(ft + reach2), 2);
m128 st3 = lshiftbyte_m128(load_m128_from_u64a(ft + reach3), 3);
m128 st4 = lshiftbyte_m128(load_m128_from_u64a(ft + reach4), 4);
m128 st5 = lshiftbyte_m128(load_m128_from_u64a(ft + reach5), 5);
m128 st6 = lshiftbyte_m128(load_m128_from_u64a(ft + reach6), 6);
m128 st7 = lshiftbyte_m128(load_m128_from_u64a(ft + reach7), 7);
m128 st8 = load_m128_from_u64a(ft + reach8);
m128 st9 = lshiftbyte_m128(load_m128_from_u64a(ft + reach9), 1);
m128 st10 = lshiftbyte_m128(load_m128_from_u64a(ft + reach10), 2);
m128 st11 = lshiftbyte_m128(load_m128_from_u64a(ft + reach11), 3);
m128 st12 = lshiftbyte_m128(load_m128_from_u64a(ft + reach12), 4);
m128 st13 = lshiftbyte_m128(load_m128_from_u64a(ft + reach13), 5);
m128 st14 = lshiftbyte_m128(load_m128_from_u64a(ft + reach14), 6);
m128 st15 = lshiftbyte_m128(load_m128_from_u64a(ft + reach15), 7);
st0 = or128(st0, st1);
st2 = or128(st2, st3);
st4 = or128(st4, st5);
st6 = or128(st6, st7);
st0 = or128(st0, st2);
st4 = or128(st4, st6);
st0 = or128(st0, st4);
st8 = or128(st8, st9);
st10 = or128(st10, st11);
st12 = or128(st12, st13);
st14 = or128(st14, st15);
st8 = or128(st8, st10);
st12 = or128(st12, st14);
st8 = or128(st8, st12);
m128 st = or128(*s, st0);
*conf0 = movq(st) ^ ~0ULL;
st = rshiftbyte_m128(st, 8);
st = or128(st, st8);
*conf8 = movq(st) ^ ~0ULL;
*s = rshiftbyte_m128(st, 8);
}
static really_inline
void get_conf_stride_2(const u8 *itPtr, UNUSED const u8 *start_ptr,
UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
u64a reach0 = andn(domain_mask_flipped, itPtr);
u64a reach2 = andn(domain_mask_flipped, itPtr + 2);
u64a reach4 = andn(domain_mask_flipped, itPtr + 4);
u64a reach6 = andn(domain_mask_flipped, itPtr + 6);
m128 st0 = load_m128_from_u64a(ft + reach0);
m128 st2 = load_m128_from_u64a(ft + reach2);
m128 st4 = load_m128_from_u64a(ft + reach4);
m128 st6 = load_m128_from_u64a(ft + reach6);
u64a reach8 = andn(domain_mask_flipped, itPtr + 8);
u64a reach10 = andn(domain_mask_flipped, itPtr + 10);
u64a reach12 = andn(domain_mask_flipped, itPtr + 12);
u64a reach14 = andn(domain_mask_flipped, itPtr + 14);
m128 st8 = load_m128_from_u64a(ft + reach8);
m128 st10 = load_m128_from_u64a(ft + reach10);
m128 st12 = load_m128_from_u64a(ft + reach12);
m128 st14 = load_m128_from_u64a(ft + reach14);
st2 = lshiftbyte_m128(st2, 2);
st4 = lshiftbyte_m128(st4, 4);
st6 = lshiftbyte_m128(st6, 6);
*s = or128(*s, st0);
*s = or128(*s, st2);
*s = or128(*s, st4);
*s = or128(*s, st6);
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
st10 = lshiftbyte_m128(st10, 2);
st12 = lshiftbyte_m128(st12, 4);
st14 = lshiftbyte_m128(st14, 6);
*s = or128(*s, st8);
*s = or128(*s, st10);
*s = or128(*s, st12);
*s = or128(*s, st14);
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
}
static really_inline
void get_conf_stride_4(const u8 *itPtr, UNUSED const u8 *start_ptr,
UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
u64a reach0 = andn(domain_mask_flipped, itPtr);
u64a reach4 = andn(domain_mask_flipped, itPtr + 4);
u64a reach8 = andn(domain_mask_flipped, itPtr + 8);
u64a reach12 = andn(domain_mask_flipped, itPtr + 12);
m128 st0 = load_m128_from_u64a(ft + reach0);
m128 st4 = load_m128_from_u64a(ft + reach4);
m128 st8 = load_m128_from_u64a(ft + reach8);
m128 st12 = load_m128_from_u64a(ft + reach12);
st4 = lshiftbyte_m128(st4, 4);
st12 = lshiftbyte_m128(st12, 4);
*s = or128(*s, st0);
*s = or128(*s, st4);
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
*s = or128(*s, st8);
*s = or128(*s, st12);
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
}
static really_inline
void do_confirm_fdr(u64a *conf, u8 offset, hwlmcb_rv_t *control,
const u32 *confBase, const struct FDR_Runtime_Args *a,
const u8 *ptr, u32 *last_match_id, const struct zone *z) {
const u8 bucket = 8;
if (likely(!*conf)) {
return;
}
/* ptr is currently referring to a location in the zone's buffer, we also
* need a pointer in the original, main buffer for the final string compare.
*/
const u8 *ptr_main = (const u8 *)((uintptr_t)ptr + z->zone_pointer_adjust);
const u8 *confLoc = ptr;
do {
u32 bit = findAndClearLSB_64(conf);
u32 byte = bit / bucket + offset;
u32 bitRem = bit % bucket;
u32 idx = bitRem;
u32 cf = confBase[idx];
if (!cf) {
continue;
}
const struct FDRConfirm *fdrc = (const struct FDRConfirm *)
((const u8 *)confBase + cf);
if (!(fdrc->groups & *control)) {
continue;
}
u64a confVal = unaligned_load_u64a(confLoc + byte - sizeof(u64a) + 1);
confWithBit(fdrc, a, ptr_main - a->buf + byte, control,
last_match_id, confVal, conf, bit);
} while (unlikely(!!*conf));
}
static really_inline
void dumpZoneInfo(UNUSED struct zone *z, UNUSED size_t zone_id) {
#ifdef DEBUG
DEBUG_PRINTF("zone: zone=%zu, bufPtr=%p\n", zone_id, z->buf);
DEBUG_PRINTF("zone: startPtr=%p, endPtr=%p, shift=%u\n",
z->start, z->end, z->shift);
DEBUG_PRINTF("zone: zone_pointer_adjust=%zd, floodPtr=%p\n",
z->zone_pointer_adjust, z->floodPtr);
DEBUG_PRINTF("zone buf:");
for (size_t i = 0; i < ZONE_TOTAL_SIZE; i++) {
if (i % 8 == 0) {
printf("_");
}
if (z->buf[i]) {
printf("%02x", z->buf[i]);
} else {
printf("..");
}
}
printf("\n");
#endif
};
/**
* \brief Updates attributes for non-boundary region zone.
*/
static really_inline
void createMainZone(const u8 *flood, const u8 *begin, const u8 *end,
struct zone *z) {
z->zone_pointer_adjust = 0; /* zone buffer is the main buffer */
z->start = begin;
z->end = end;
z->floodPtr = flood;
z->shift = 0;
}
/**
* \brief Create zone for short cases (<= ITER_BYTES).
*
* For this case we need to copy everything into the zone's internal buffer.
*
* We need to ensure that we run over real data if it exists (in history or
* before zone begin). We also need to ensure 8 bytes before any data being
* matched can be read (to perform a conf hash).
*
* We also need to ensure that the data at z->end can be read.
*
* Hence, the zone consists of:
* 16 bytes of history,
* 1 - 24 bytes of data form the buffer (ending at end),
* 1 byte of final padding
*/
static really_inline
void createShortZone(const u8 *buf, const u8 *hend, const u8 *begin,
const u8 *end, struct zone *z) {
/* the floodPtr for BOUNDARY zones are maximum of end of zone buf to avoid
* the checks in boundary zone. */
z->floodPtr = z->buf + ZONE_TOTAL_SIZE;
ptrdiff_t z_len = end - begin;
assert(z_len > 0);
assert(z_len <= ITER_BYTES);
z->shift = ITER_BYTES - z_len; /* ignore bytes outside region specified */
static const size_t ZONE_SHORT_DATA_OFFSET = 16; /* after history */
/* we are guaranteed to always have 16 initialised bytes at the end of
* the history buffer (they may be garbage coming from the stream state
* preceding hbuf, but bytes that don't correspond to actual history
* shouldn't affect computations). */
*(m128 *)z->buf = loadu128(hend - sizeof(m128));
/* The amount of data we have to copy from main buffer. */
size_t copy_len = MIN((size_t)(end - buf),
ITER_BYTES + sizeof(CONF_TYPE));
u8 *zone_data = z->buf + ZONE_SHORT_DATA_OFFSET;
switch (copy_len) {
case 1:
*zone_data = *(end - 1);
break;
case 2:
*(u16 *)zone_data = unaligned_load_u16(end - 2);
break;
case 3:
*(u16 *)zone_data = unaligned_load_u16(end - 3);
*(zone_data + 2) = *(end - 1);
break;
case 4:
*(u32 *)zone_data = unaligned_load_u32(end - 4);
break;
case 5:
case 6:
case 7:
/* perform copy with 2 overlapping 4-byte chunks from buf. */
*(u32 *)zone_data = unaligned_load_u32(end - copy_len);
unaligned_store_u32(zone_data + copy_len - sizeof(u32),
unaligned_load_u32(end - sizeof(u32)));
break;
case 8:
*(u64a *)zone_data = unaligned_load_u64a(end - 8);
break;
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
/* perform copy with 2 overlapping 8-byte chunks from buf. */
*(u64a *)zone_data = unaligned_load_u64a(end - copy_len);
unaligned_store_u64a(zone_data + copy_len - sizeof(u64a),
unaligned_load_u64a(end - sizeof(u64a)));
break;
case 16:
/* copy 16-bytes from buf. */
*(m128 *)zone_data = loadu128(end - 16);
break;
default:
assert(copy_len <= sizeof(m128) + sizeof(u64a));
/* perform copy with (potentially overlapping) 8-byte and 16-byte chunks.
*/
*(u64a *)zone_data = unaligned_load_u64a(end - copy_len);
storeu128(zone_data + copy_len - sizeof(m128),
loadu128(end - sizeof(m128)));
break;
}
/* set the start and end location of the zone buf
* to be scanned */
u8 *z_end = z->buf + ZONE_SHORT_DATA_OFFSET + copy_len;
assert(ZONE_SHORT_DATA_OFFSET + copy_len >= ITER_BYTES);
/* copy the post-padding byte; this is required for domain > 8 due to
* overhang */
assert(ZONE_SHORT_DATA_OFFSET + copy_len + 3 < 64);
*z_end = 0;
z->end = z_end;
z->start = z_end - ITER_BYTES;
z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);
assert(z->start + z->shift == z_end - z_len);
}
/**
* \brief Create a zone for the start region.
*
* This function requires that there is > ITER_BYTES of data in the buffer to
* scan. The start zone itself is always responsible for scanning exactly
* ITER_BYTES of data - there are no warmup/junk bytes scanned.
*
* This zone ensures that the byte at z->end can be read and corresponds to
* the next byte of data.
*
* 8 bytes of history data are provided before z->start to allow proper hash
* generation in streaming mode. If buf != begin, upto 8 bytes of data
* prior to begin is also provided.
*
* Although we are not interested in bare literals which start before begin
* if buf != begin, lookarounds associated with the literal may require
* the data prior to begin for hash purposes.
*/
static really_inline
void createStartZone(const u8 *buf, const u8 *hend, const u8 *begin,
struct zone *z) {
assert(ITER_BYTES == sizeof(m128));
assert(sizeof(CONF_TYPE) == 8);
static const size_t ZONE_START_BEGIN = sizeof(CONF_TYPE);
const u8 *end = begin + ITER_BYTES;
/* set floodPtr to the end of zone buf to avoid checks in start zone */
z->floodPtr = z->buf + ZONE_TOTAL_SIZE;
z->shift = 0; /* we are processing ITER_BYTES of real data */
/* we are guaranteed to always have 16 initialised bytes at the end of the
* history buffer (they may be garbage coming from the stream state
* preceding hbuf, but bytes that don't correspond to actual history
* shouldn't affect computations). However, for start zones, history is only
* required for conf hash purposes so we only need 8 bytes */
unaligned_store_u64a(z->buf, unaligned_load_u64a(hend - sizeof(u64a)));
/* The amount of data we have to copy from main buffer. */
size_t copy_len = MIN((size_t)(end - buf),
ITER_BYTES + sizeof(CONF_TYPE));
assert(copy_len >= 16);
/* copy the post-padding byte; this is required for domain > 8 due to
* overhang. The start requires that there is data after the zone so it
* it safe to dereference end */
z->buf[ZONE_START_BEGIN + copy_len] = *end;
/* set the start and end location of the zone buf to be scanned */
u8 *z_end = z->buf + ZONE_START_BEGIN + copy_len;
z->end = z_end;
z->start = z_end - ITER_BYTES;
/* copy the first 8 bytes of the valid region */
unaligned_store_u64a(z->buf + ZONE_START_BEGIN,
unaligned_load_u64a(end - copy_len));
/* copy the last 16 bytes, may overlap with the previous 8 byte write */
storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128)));
z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);
assert(ZONE_START_BEGIN + copy_len + 3 < 64);
}
/**
* \brief Create a zone for the end region.
*
* This function requires that there is > ITER_BYTES of data in the buffer to
* scan. The end zone is responsible for a scanning the <= ITER_BYTES rump of
* data and optional ITER_BYTES. The main zone cannot handle the last 3 bytes
* of the buffer. The end zone is required to handle an optional full
* ITER_BYTES from main zone when there are less than 3 bytes to scan. The
* main zone size is reduced by ITER_BYTES in this case.
*
* This zone ensures that the byte at z->end can be read by filling it with a
* padding character.
*
* Upto 8 bytes of data prior to begin is also provided for the purposes of
* generating hashes. History is not copied, as all locations which require
* history for generating a hash are the responsiblity of the start zone.
*/
static really_inline
void createEndZone(const u8 *buf, const u8 *begin, const u8 *end,
struct zone *z) {
/* the floodPtr for BOUNDARY zones are maximum of end of zone buf to avoid
* the checks in boundary zone. */
z->floodPtr = z->buf + ZONE_TOTAL_SIZE;
ptrdiff_t z_len = end - begin;
assert(z_len > 0);
size_t iter_bytes_second = 0;
size_t z_len_first = z_len;
if (z_len > ITER_BYTES) {
z_len_first = z_len - ITER_BYTES;
iter_bytes_second = ITER_BYTES;
}
z->shift = ITER_BYTES - z_len_first;
const u8 *end_first = end - iter_bytes_second;
/* The amount of data we have to copy from main buffer for the
* first iteration. */
size_t copy_len_first = MIN((size_t)(end_first - buf),
ITER_BYTES + sizeof(CONF_TYPE));
assert(copy_len_first >= 16);
size_t total_copy_len = copy_len_first + iter_bytes_second;
assert(total_copy_len + 3 < 64);
/* copy the post-padding byte; this is required for domain > 8 due to
* overhang */
z->buf[total_copy_len] = 0;
/* set the start and end location of the zone buf
* to be scanned */
u8 *z_end = z->buf + total_copy_len;
z->end = z_end;
z->start = z_end - ITER_BYTES - iter_bytes_second;
assert(z->start + z->shift == z_end - z_len);
u8 *z_end_first = z_end - iter_bytes_second;
/* copy the first 8 bytes of the valid region */
unaligned_store_u64a(z->buf,
unaligned_load_u64a(end_first - copy_len_first));
/* copy the last 16 bytes, may overlap with the previous 8 byte write */
storeu128(z_end_first - sizeof(m128), loadu128(end_first - sizeof(m128)));
if (iter_bytes_second) {
storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128)));
}
z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);
}
/**
* \brief Prepare zones.
*
* This function prepares zones with actual buffer and some padded bytes.
* The actual ITER_BYTES bytes in zone is preceded by main buf and/or
* history buf and succeeded by padded bytes possibly from main buf,
* if available.
*/
static really_inline
size_t prepareZones(const u8 *buf, size_t len, const u8 *hend,
size_t start, const u8 *flood, struct zone *zoneArr) {
const u8 *ptr = buf + start;
size_t remaining = len - start;
if (remaining <= ITER_BYTES) {
/* enough bytes to make only one zone */
createShortZone(buf, hend, ptr, buf + len, &zoneArr[0]);
return 1;
}
/* enough bytes to make more than one zone */
size_t numZone = 0;
createStartZone(buf, hend, ptr, &zoneArr[numZone++]);
ptr += ITER_BYTES;
assert(ptr < buf + len);
/* find maximum buffer location that the main zone can scan
* - must be a multiple of ITER_BYTES, and
* - cannot contain the last 3 bytes (due to 3 bytes read behind the
end of buffer in FDR main loop)
*/
const u8 *main_end = buf + start + ROUNDDOWN_N(len - start - 3, ITER_BYTES);
/* create a zone if multiple of ITER_BYTES are found */
if (main_end > ptr) {
createMainZone(flood, ptr, main_end, &zoneArr[numZone++]);
ptr = main_end;
}
/* create a zone with rest of the data from the main buffer */
createEndZone(buf, ptr, buf + len, &zoneArr[numZone++]);
return numZone;
}
#define INVALID_MATCH_ID (~0U)
#define FDR_MAIN_LOOP(zz, s, get_conf_fn) \
do { \
const u8 *tryFloodDetect = zz->floodPtr; \
const u8 *start_ptr = zz->start; \
const u8 *end_ptr = zz->end; \
for (const u8 *itPtr = ROUNDDOWN_PTR(start_ptr, 64); itPtr + 4*ITER_BYTES <= end_ptr; \
itPtr += 4*ITER_BYTES) { \
__builtin_prefetch(itPtr); \
} \
\
for (const u8 *itPtr = start_ptr; itPtr + ITER_BYTES <= end_ptr; \
itPtr += ITER_BYTES) { \
if (unlikely(itPtr > tryFloodDetect)) { \
tryFloodDetect = floodDetect(fdr, a, &itPtr, tryFloodDetect,\
&floodBackoff, &control, \
ITER_BYTES); \
if (unlikely(control == HWLM_TERMINATE_MATCHING)) { \
return HWLM_TERMINATED; \
} \
} \
__builtin_prefetch(itPtr + ITER_BYTES); \
u64a conf0; \
u64a conf8; \
get_conf_fn(itPtr, start_ptr, end_ptr, domain_mask_flipped, \
ft, &conf0, &conf8, &s); \
do_confirm_fdr(&conf0, 0, &control, confBase, a, itPtr, \
&last_match_id, zz); \
do_confirm_fdr(&conf8, 8, &control, confBase, a, itPtr, \
&last_match_id, zz); \
if (unlikely(control == HWLM_TERMINATE_MATCHING)) { \
return HWLM_TERMINATED; \
} \
} /* end for loop */ \
} while (0) \
static never_inline
hwlm_error_t fdr_engine_exec(const struct FDR *fdr,
const struct FDR_Runtime_Args *a,
hwlm_group_t control) {
assert(ISALIGNED_CL(fdr));
u32 floodBackoff = FLOOD_BACKOFF_START;
u32 last_match_id = INVALID_MATCH_ID;
u32 domain_mask_flipped = ~fdr->domainMask;
u8 stride = fdr->stride;
const u64a *ft =
(const u64a *)((const u8 *)fdr + ROUNDUP_CL(sizeof(struct FDR)));
assert(ISALIGNED_CL(ft));
const u32 *confBase = (const u32 *)((const u8 *)fdr + fdr->confOffset);
assert(ISALIGNED_CL(confBase));
struct zone zones[ZONE_MAX];
assert(fdr->domain > 8 && fdr->domain < 16);
memset(zones, 0, sizeof(zones));
size_t numZone = prepareZones(a->buf, a->len,
a->buf_history + a->len_history,
a->start_offset, a->firstFloodDetect, zones);
assert(numZone <= ZONE_MAX);
m128 state = getInitState(fdr, a->len_history, ft, &zones[0]);
for (size_t curZone = 0; curZone < numZone; curZone++) {
struct zone *z = &zones[curZone];
dumpZoneInfo(z, curZone);
/* When a zone contains less data than is processed in an iteration
* of FDR_MAIN_LOOP(), we need to scan over some extra data.
*
* We have chosen to scan this extra data at the start of the
* iteration. The extra data is either data we have already scanned or
* garbage (if it is earlier than offset 0),
*
* As a result we need to shift the incoming state back so that it will
* properly line up with the data being scanned.
*
* We also need to forbid reporting any matches in the data being
* rescanned as they have already been reported (or are over garbage but
* later stages should also provide that safety guarantee).
*/
u8 shift = z->shift;
state = variable_byte_shift_m128(state, shift);
state = or128(state, load128(zone_or_mask[shift]));
switch (stride) {
case 1:
FDR_MAIN_LOOP(z, state, get_conf_stride_1);
break;
case 2:
FDR_MAIN_LOOP(z, state, get_conf_stride_2);
break;
case 4:
FDR_MAIN_LOOP(z, state, get_conf_stride_4);
break;
default:
break;
}
}
return HWLM_SUCCESS;
}
#if defined(HAVE_AVX2)
#define ONLY_AVX2(func) func
#else
#define ONLY_AVX2(func) NULL
#endif
typedef hwlm_error_t (*FDRFUNCTYPE)(const struct FDR *fdr,
const struct FDR_Runtime_Args *a,
hwlm_group_t control);
static const FDRFUNCTYPE funcs[] = {
fdr_engine_exec,
NULL, /* old: fast teddy */
NULL, /* old: fast teddy */
ONLY_AVX2(fdr_exec_fat_teddy_msks1),
ONLY_AVX2(fdr_exec_fat_teddy_msks1_pck),
ONLY_AVX2(fdr_exec_fat_teddy_msks2),
ONLY_AVX2(fdr_exec_fat_teddy_msks2_pck),
ONLY_AVX2(fdr_exec_fat_teddy_msks3),
ONLY_AVX2(fdr_exec_fat_teddy_msks3_pck),
ONLY_AVX2(fdr_exec_fat_teddy_msks4),
ONLY_AVX2(fdr_exec_fat_teddy_msks4_pck),
fdr_exec_teddy_msks1,
fdr_exec_teddy_msks1_pck,
fdr_exec_teddy_msks2,
fdr_exec_teddy_msks2_pck,
fdr_exec_teddy_msks3,
fdr_exec_teddy_msks3_pck,
fdr_exec_teddy_msks4,
fdr_exec_teddy_msks4_pck,
};
#define FAKE_HISTORY_SIZE 16
static const u8 fake_history[FAKE_HISTORY_SIZE];
hwlm_error_t fdrExec(const struct FDR *fdr, const u8 *buf, size_t len,
size_t start, HWLMCallback cb,
struct hs_scratch *scratch, hwlm_group_t groups) {
// We guarantee (for safezone construction) that it is safe to read 16
// bytes before the end of the history buffer.
const u8 *hbuf = fake_history + FAKE_HISTORY_SIZE;
const struct FDR_Runtime_Args a = {
buf,
len,
hbuf,
0,
start,
cb,
scratch,
nextFloodDetect(buf, len, FLOOD_BACKOFF_START),
0
};
if (unlikely(a.start_offset >= a.len)) {
return HWLM_SUCCESS;
} else {
assert(funcs[fdr->engineID]);
return funcs[fdr->engineID](fdr, &a, groups);
}
}
hwlm_error_t fdrExecStreaming(const struct FDR *fdr, const u8 *hbuf,
size_t hlen, const u8 *buf, size_t len,
size_t start, HWLMCallback cb,
struct hs_scratch *scratch,
hwlm_group_t groups) {
struct FDR_Runtime_Args a = {
buf,
len,
hbuf,
hlen,
start,
cb,
scratch,
nextFloodDetect(buf, len, FLOOD_BACKOFF_START),
/* we are guaranteed to always have 16 initialised bytes at the end of
* the history buffer (they may be garbage). */
hbuf ? unaligned_load_u64a(hbuf + hlen - sizeof(u64a)) : (u64a)0
};
hwlm_error_t ret;
if (unlikely(a.start_offset >= a.len)) {
ret = HWLM_SUCCESS;
} else {
assert(funcs[fdr->engineID]);
ret = funcs[fdr->engineID](fdr, &a, groups);
}
return ret;
}