vectorscan/src/nfa/dfa_min.cpp
Justin Viiret 9cf66b6ac9 util: switch from Boost to std::unordered set/map
This commit replaces the ue2::unordered_{set,map} types with their STL
versions, with some new hashing utilities in util/hash.h. The new types
ue2_unordered_set<T> and ue2_unordered_map<Key, T> default to using the
ue2_hasher.

The header util/ue2_containers.h has been removed, and the flat_set/map
containers moved to util/flat_containers.h.
2017-08-21 11:14:55 +10:00

319 lines
10 KiB
C++

/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
* \brief Build code for DFA minimization.
*/
/**
* /Summary of the Hopcroft minimisation algorithm/
*
* partition := {F, Q \ F};
* work_queue := {F};
* while (work_queue is not empty) do
* choose and remove a set A from work_queue
* for each c in . do
* let X be the set of states for which a transition on c
* leads to a state in A
* for each set Y in partition for which X . Y is nonempty and
* Y \ X is nonempty do
* replace Y in partition by the two sets X . Y and Y \ X
* if Y is in work_queue
* replace Y in work_queue by the same two sets
* else
* if |X . Y| <= |Y \ X|
* add X . Y to work_queue
* else
* add Y \ X to work_queue
* end;
* end;
* end;
*/
#include "dfa_min.h"
#include "grey.h"
#include "mcclellancompile_util.h"
#include "rdfa.h"
#include "ue2common.h"
#include "util/container.h"
#include "util/flat_containers.h"
#include "util/noncopyable.h"
#include "util/partitioned_set.h"
#include <algorithm>
#include <functional>
#include <iterator>
#include <map>
#include <queue>
#include <set>
#include <vector>
using namespace std;
namespace ue2 {
namespace {
struct hopcroft_state_info {
explicit hopcroft_state_info(size_t alpha_size) : prev(alpha_size) {}
/** \brief Mapping from symbol to a list of predecessors that transition to
* this state on that symbol. */
vector<vector<dstate_id_t>> prev;
};
struct HopcroftInfo : noncopyable {
size_t alpha_size; //!< Size of DFA alphabet.
queue<size_t> work_queue; //!< Hopcroft work queue of partition indices.
partitioned_set<dstate_id_t> partition; //!< Partition set of DFA states.
vector<hopcroft_state_info> states; //!< Pre-calculated state info (preds)
explicit HopcroftInfo(const raw_dfa &rdfa);
};
} // namespace
/**
* \brief Create an initial partitioning and work_queue.
*
* Initial partition contains {accepting states..., Non-accepting states}
* Initial work_queue contains accepting state subsets
*
* The initial partitioning needs to distinguish between the different
* reporting behaviours (unlike standard Hopcroft) --> more than one subset
* possible for the accepting states.
*
* Look for accepting states in both reports and reports_eod.
* Creates a map with a key(reports, reports_eod) and an id.
* Reports of each state are searched against the map and
* added to the corresponding id -> partition[id] and work_queue[id].
* Non Accept states are added to partition[id+1].
*/
static
vector<size_t> create_map(const raw_dfa &rdfa, queue<size_t> &work_queue) {
using ReportKey = pair<flat_set<ReportID>, flat_set<ReportID>>;
map<ReportKey, size_t> subset_map;
vector<size_t> state_to_subset(rdfa.states.size(), INVALID_SUBSET);
for (size_t i = 0; i < rdfa.states.size(); i++) {
const auto &ds = rdfa.states[i];
if (!ds.reports.empty() || !ds.reports_eod.empty()) {
ReportKey key(ds.reports, ds.reports_eod);
if (contains(subset_map, key)) {
state_to_subset[i] = subset_map[key];
} else {
size_t sub = subset_map.size();
subset_map.emplace(std::move(key), sub);
state_to_subset[i] = sub;
work_queue.push(sub);
}
}
}
/* Give non-accept states their own subset. */
size_t non_accept_sub = subset_map.size();
replace(state_to_subset.begin(), state_to_subset.end(), INVALID_SUBSET,
non_accept_sub);
return state_to_subset;
}
HopcroftInfo::HopcroftInfo(const raw_dfa &rdfa)
: alpha_size(rdfa.alpha_size), partition(create_map(rdfa, work_queue)),
states(rdfa.states.size(), hopcroft_state_info(alpha_size)) {
/* Construct predecessor lists for each state, indexed by symbol. */
for (size_t i = 0; i < states.size(); i++) { // i is the previous state
for (size_t sym = 0; sym < alpha_size; sym++) {
dstate_id_t present_state = rdfa.states[i].next[sym];
states[present_state].prev[sym].push_back(i);
}
}
}
/**
* For a split set X, each subset S (given by part_index) in the partition, two
* sets are created: v_inter (X intersection S) and v_sub (S - X).
*
* For each subset S in the partition that could be split (v_inter is nonempty
* and v_sub is nonempty):
* - replace S in partition by the two sets v_inter and v_sub.
* - if S is in work_queue:
* - replace S in work_queue by the two subsets.
* - else:
* - replace S in work_queue by the smaller of the two sets.
*/
static
void split_and_replace_set(const size_t part_index, HopcroftInfo &info,
const flat_set<dstate_id_t> &splitter) {
/* singleton sets cannot be split */
if (info.partition[part_index].size() == 1) {
return;
}
size_t small_index = info.partition.split(part_index, splitter);
if (small_index == INVALID_SUBSET) {
/* the set could not be split */
return;
}
/* larger subset remains at the input subset index, if the input subset was
* already in the work queue then the larger subset will remain there. */
info.work_queue.push(small_index);
}
/**
* \brief Core of the Hopcroft minimisation algorithm.
*/
static
void dfa_min(HopcroftInfo &info) {
flat_set<dstate_id_t> curr, sym_preds;
vector<size_t> cand_subsets;
while (!info.work_queue.empty()) {
/* Choose and remove a set of states (curr, or A in the description
* above) from the work queue. Note that we copy the set because the
* partition may be split by the loop below. */
curr.clear();
insert(&curr, info.partition[info.work_queue.front()]);
info.work_queue.pop();
for (size_t sym = 0; sym < info.alpha_size; sym++) {
/* Find the set of states sym_preds for which a transition on the
* given symbol leads to a state in curr. */
sym_preds.clear();
for (dstate_id_t s : curr) {
insert(&sym_preds, info.states[s].prev[sym]);
}
if (sym_preds.empty()) {
continue;
}
/* we only need to consider subsets with at least one member in
* sym_preds for splitting */
cand_subsets.clear();
info.partition.find_overlapping(sym_preds, &cand_subsets);
for (size_t sub : cand_subsets) {
split_and_replace_set(sub, info, sym_preds);
}
}
}
}
/**
* \brief Build the new DFA state table.
*/
static
void mapping_new_states(const HopcroftInfo &info,
vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
const size_t num_partitions = info.partition.size();
// Mapping from equiv class's first state to equiv class index.
map<dstate_id_t, size_t> ordering;
// New state id for each equiv class.
vector<dstate_id_t> eq_state(num_partitions);
for (size_t i = 0; i < num_partitions; i++) {
ordering[*info.partition[i].begin()] = i;
}
dstate_id_t new_id = 0;
for (const auto &m : ordering) {
eq_state[m.second] = new_id++;
}
for (size_t t = 0; t < info.partition.size(); t++) {
for (dstate_id_t id : info.partition[t]) {
old_to_new[id] = eq_state[t];
}
}
vector<dstate> new_states;
new_states.reserve(num_partitions);
for (const auto &m : ordering) {
new_states.push_back(rdfa.states[m.first]);
}
rdfa.states = std::move(new_states);
}
static
void renumber_new_states(const HopcroftInfo &info,
const vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
for (size_t i = 0; i < info.partition.size(); i++) {
for (size_t sym = 0; sym < info.alpha_size; sym++) {
dstate_id_t output = rdfa.states[i].next[sym];
rdfa.states[i].next[sym] = old_to_new[output];
}
dstate_id_t dad = rdfa.states[i].daddy;
rdfa.states[i].daddy = old_to_new[dad];
}
rdfa.start_floating = old_to_new[rdfa.start_floating];
rdfa.start_anchored = old_to_new[rdfa.start_anchored];
}
static
void new_dfa(raw_dfa &rdfa, const HopcroftInfo &info) {
if (info.partition.size() == info.states.size()) {
return;
}
vector<dstate_id_t> old_to_new(info.states.size());
mapping_new_states(info, old_to_new, rdfa);
renumber_new_states(info, old_to_new, rdfa);
}
void minimize_hopcroft(raw_dfa &rdfa, const Grey &grey) {
if (!grey.minimizeDFA) {
return;
}
if (is_dead(rdfa)) {
DEBUG_PRINTF("dfa is empty\n");
}
UNUSED const size_t states_before = rdfa.states.size();
HopcroftInfo info(rdfa);
dfa_min(info);
new_dfa(rdfa, info);
DEBUG_PRINTF("reduced from %zu to %zu states\n", states_before,
rdfa.states.size());
}
} // namespace ue2