vectorscan/unit/internal/shuffle.cpp
2022-02-18 17:14:51 +00:00

308 lines
12 KiB
C++

/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "gtest/gtest.h"
#include "util/arch.h"
#include "util/simd_utils.h"
#include "nfa/limex_shuffle.h"
#include"util/supervector/supervector.hpp"
#include "nfa/limex_shuffle.hpp"
#ifdef setbit
#undef setbit
#endif
namespace {
// Switch one bit on in a bitmask.
template<class Mask>
Mask setbit(unsigned int bit) {
union {
Mask simd;
char bytes[sizeof(Mask)];
} cf;
memset(cf.bytes, 0, sizeof(Mask));
cf.bytes[bit / 8] = 1U << (bit % 8);
return cf.simd;
}
TEST(Shuffle, PackedExtract32_1) {
// Try all possible one-bit masks
for (unsigned int i = 0; i < 32; i++) {
// shuffle a single 1 bit to the front
u32 mask = 1U << i;
EXPECT_EQ(1U, pext32(mask, mask));
EXPECT_EQ(1U, pext32(~0U, mask));
// we should get zero out of these cases
EXPECT_EQ(0U, pext32(0, mask));
EXPECT_EQ(0U, pext32(~mask, mask));
// we should get zero out of all the other bit positions
for (unsigned int j = 0; (j != i && j < 32); j++) {
EXPECT_EQ(0U, pext32((1U << j), mask));
}
}
}
TEST(Shuffle, PackedExtract32_2) {
// All 32 bits in mask are on
u32 mask = ~0U;
EXPECT_EQ(0U, pext32(0, mask));
EXPECT_EQ(mask, pext32(mask, mask));
for (unsigned int i = 0; i < 32; i++) {
EXPECT_EQ(1U << i, pext32(1U << i, mask));
}
}
TEST(Shuffle, PackedExtract32_3) {
// Try setting every second bit
u32 mask = 0;
for (unsigned int i = 0; i < 32; i += 2) {
mask |= 1U << i;
}
// Test both cases (all even bits, all odd bits)
EXPECT_EQ((1U << 16) - 1, pext32(mask, mask));
EXPECT_EQ((1U << 16) - 1, pext32(~mask, ~mask));
EXPECT_EQ(0U, pext32(~mask, mask));
EXPECT_EQ(0U, pext32(mask, ~mask));
for (unsigned int i = 0; i < 32; i += 2) {
EXPECT_EQ(1U << (i/2), pext32(1U << i, mask));
EXPECT_EQ(0U, pext32(1U << i, ~mask));
EXPECT_EQ(1U << (i/2), pext32(1U << (i+1), ~mask));
EXPECT_EQ(0U, pext32(1U << (i+1), mask));
}
}
TEST(Shuffle, PackedExtract64_1) {
// Try all possible one-bit masks
for (unsigned int i = 0; i < 64; i++) {
// shuffle a single 1 bit to the front
u64a mask = 1ULL << i;
EXPECT_EQ(1U, pext64(mask, mask));
EXPECT_EQ(1U, pext64(~0ULL, mask));
// we should get zero out of these cases
EXPECT_EQ(0U, pext64(0, mask));
EXPECT_EQ(0U, pext64(~mask, mask));
// we should get zero out of all the other bit positions
for (unsigned int j = 0; (j != i && j < 64); j++) {
EXPECT_EQ(0U, pext64((1ULL << j), mask));
}
}
}
TEST(Shuffle, PackedExtract64_2) {
// Fill first half of mask
u64a mask = 0x00000000ffffffffULL;
EXPECT_EQ(0U, pext64(0, mask));
EXPECT_EQ(0xffffffffU, pext64(mask, mask));
for (unsigned int i = 0; i < 32; i++) {
EXPECT_EQ(1U << i, pext64(1ULL << i, mask));
}
// Fill second half of mask
mask = 0xffffffff00000000ULL;
EXPECT_EQ(0U, pext64(0, mask));
EXPECT_EQ(0xffffffffU, pext64(mask, mask));
for (unsigned int i = 32; i < 64; i++) {
EXPECT_EQ(1U << (i - 32), pext64(1ULL << i, mask));
}
// Try one in the middle
mask = 0x0000ffffffff0000ULL;
EXPECT_EQ(0U, pext64(0, mask));
EXPECT_EQ(0xffffffffU, pext64(mask, mask));
for (unsigned int i = 16; i < 48; i++) {
EXPECT_EQ(1U << (i - 16), pext64(1ULL << i, mask));
}
}
TEST(Shuffle, PackedExtract64_3) {
// Try setting every second bit (note: 32 bits, the max we can shuffle)
u64a mask = 0;
for (unsigned int i = 0; i < 64; i += 2) {
mask |= 1ULL << i;
}
// Test both cases (all even bits, all odd bits)
EXPECT_EQ(0xffffffffU, pext64(mask, mask));
EXPECT_EQ(0xffffffffU, pext64(~mask, ~mask));
EXPECT_EQ(0U, pext64(~mask, mask));
EXPECT_EQ(0U, pext64(mask, ~mask));
for (unsigned int i = 0; i < 64; i += 2) {
EXPECT_EQ(1U << (i/2), pext64(1ULL << i, mask));
EXPECT_EQ(0U, pext64(1ULL << i, ~mask));
EXPECT_EQ(1U << (i/2), pext64(1ULL << (i+1), ~mask));
EXPECT_EQ(0U, pext64(1ULL << (i+1), mask));
}
}
template<typename T>
static
void build_pshufb_masks_onebit(unsigned int bit, T *permute, T *compare) {
static_assert(sizeof(T) == sizeof(m128) || sizeof(T) == sizeof(m256) ||
sizeof(T) == sizeof(m512),
"should be valid type");
// permute mask has 0x80 in all bytes except the one we care about
memset(permute, 0x80, sizeof(*permute));
memset(compare, 0, sizeof(*compare));
char *pmsk = (char *)permute;
char *cmsk = (char *)compare;
u8 off = (bit >= 128) ? (bit >= 256) ? (bit >= 384) ? 0x30 : 0x20 : 0x10 : 0;
pmsk[off] = bit/8;
cmsk[off] = ~(1 << (bit % 8));
}
TEST(Shuffle, PackedExtract128_1) {
// Try all possible one-bit masks
for (unsigned int i = 0; i < 1; i++) {
// shuffle a single 1 bit to the front
m128 permute, compare;
build_pshufb_masks_onebit(i, &permute, &compare);
EXPECT_EQ(1U, packedExtract128(setbit<m128>(i), permute, compare));
EXPECT_EQ(1U, packedExtract128(ones128(), permute, compare));
// we should get zero out of these cases
EXPECT_EQ(0U, packedExtract128(zeroes128(), permute, compare));
EXPECT_EQ(0U, packedExtract128(not128(setbit<m128>(i)), permute, compare));
// we should get zero out of all the other bit positions
for (unsigned int j = 0; (j != i && j < 128); j++) {
EXPECT_EQ(0U, packedExtract128(setbit<m128>(j), permute, compare));
}
}
}
TEST(Shuffle, PackedExtract_templatized_128_1) {
// Try all possible one-bit masks
for (unsigned int i = 0; i < 128; i++) {
// shuffle a single 1 bit to the front
SuperVector<16> permute = SuperVector<16>::Zeroes();
SuperVector<16> compare = SuperVector<16>::Zeroes();
build_pshufb_masks_onebit(i, &permute.u.v128[0], &compare.u.v128[0]);
EXPECT_EQ(1U, packedExtract<16>(setbit<m128>(i), permute, compare));
EXPECT_EQ(1U, packedExtract<16>(SuperVector<16>::Ones(), permute, compare));
// we should get zero out of these cases
EXPECT_EQ(0U, packedExtract<16>(SuperVector<16>::Zeroes(), permute, compare));
EXPECT_EQ(0U, packedExtract<16>(not128(setbit<m128>(i)), permute, compare));
// we should get zero out of all the other bit positions
for (unsigned int j = 0; (j != i && j < 128); j++) {
EXPECT_EQ(0U, packedExtract<16>(setbit<m128>(j), permute, compare));
}
}
}
#if defined(HAVE_AVX2)
TEST(Shuffle, PackedExtract256_1) {
// Try all possible one-bit masks
for (unsigned int i = 0; i < 256; i++) {
// shuffle a single 1 bit to the front
m256 permute, compare;
build_pshufb_masks_onebit(i, &permute, &compare);
EXPECT_EQ(1U, packedExtract256(setbit<m256>(i), permute, compare));
EXPECT_EQ(1U, packedExtract256(ones256(), permute, compare));
// we should get zero out of these cases
EXPECT_EQ(0U, packedExtract256(zeroes256(), permute, compare));
EXPECT_EQ(0U, packedExtract256(not256(setbit<m256>(i)), permute, compare));
// we should get zero out of all the other bit positions
for (unsigned int j = 0; (j != i && j < 256); j++) {
EXPECT_EQ(0U, packedExtract256(setbit<m256>(j), permute, compare));
}
}
}
TEST(Shuffle, PackedExtract_templatized_256_1) {
// Try all possible one-bit masks
for (unsigned int i = 0; i < 256; i++) {
// shuffle a single 1 bit to the front
SuperVector<32> permute = SuperVector<32>::Zeroes();
SuperVector<32> compare = SuperVector<32>::Zeroes();
build_pshufb_masks_onebit(i, &permute.u.v256[0], &compare.u.v256[0]);
EXPECT_EQ(1U, packedExtract<32>(setbit<m256>(i), permute, compare));
EXPECT_EQ(1U, packedExtract<32>(SuperVector<32>::Ones(), permute, compare));
// we should get zero out of these cases
EXPECT_EQ(0U, packedExtract<32>(SuperVector<32>::Zeroes(), permute, compare));
EXPECT_EQ(0U, packedExtract<32>(not256(setbit<m256>(i)), permute, compare));
// we should get zero out of all the other bit positions
for (unsigned int j = 0; (j != i && j < 256); j++) {
EXPECT_EQ(0U, packedExtract<32>(setbit<m256>(j), permute, compare));
}
}
}
#endif
#if defined(HAVE_AVX512)
TEST(Shuffle, PackedExtract512_1) {
// Try all possible one-bit masks
for (unsigned int i = 0; i < 512; i++) {
// shuffle a single 1 bit to the front
m512 permute, compare;
build_pshufb_masks_onebit(i, &permute, &compare);
EXPECT_EQ(1U, packedExtract512(setbit<m512>(i), permute, compare));
EXPECT_EQ(1U, packedExtract512(ones512(), permute, compare));
// we should get zero out of these cases
EXPECT_EQ(0U, packedExtract512(zeroes512(), permute, compare));
EXPECT_EQ(0U, packedExtract512(not512(setbit<m512>(i)), permute, compare));
// we should get zero out of all the other bit positions
for (unsigned int j = 0; (j != i && j < 512); j++) {
EXPECT_EQ(0U, packedExtract512(setbit<m512>(j), permute, compare));
}
}
}
TEST(Shuffle, PackedExtract_templatized_512_1) {
// Try all possible one-bit masks
for (unsigned int i = 0; i < 512; i++) {
// shuffle a single 1 bit to the front
SuperVector<64> permute = SuperVector<64>::Zeroes();
SuperVector<64> compare = SuperVector<64>::Zeroes();
build_pshufb_masks_onebit(i, &permute.u.v512[0], &compare.u.v512[0]);
EXPECT_EQ(1U, packedExtract<64>(setbit<m512>(i), permute, compare));
EXPECT_EQ(1U, packedExtract<64>(SuperVector<64>::Ones(), permute, compare));
// we should get zero out of these cases
EXPECT_EQ(0U, packedExtract<64>(SuperVector<64>::Zeroes(), permute, compare));
EXPECT_EQ(0U, packedExtract<64>(not512(setbit<m512>(i)), permute, compare));
// we should get zero out of all the other bit positions
for (unsigned int j = 0; (j != i && j < 512); j++) {
EXPECT_EQ(0U, packedExtract<64>(setbit<m512>(j), permute, compare));
}
}
}
#endif
} // namespace