vectorscan/src/nfa/truffle_simd.hpp

353 lines
13 KiB
C++

/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2023, VectorCamp PC
* Copyright (c) 2023, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Truffle: character class acceleration.
*
*/
#include "truffle.h"
#include "ue2common.h"
#include "util/arch.h"
#include "util/bitutils.h"
#include "util/unaligned.h"
#include "util/supervector/supervector.hpp"
#include "util/match.hpp"
#ifdef HAVE_SVE
static really_inline
svuint8_t blockSingleMask(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars);
#else
template <uint16_t S>
static really_inline
const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, SuperVector<S> shuf_mask_lo_highset, SuperVector<S> chars);
#endif //HAVE_SVE
#if defined(VS_SIMDE_BACKEND)
#include "x86/truffle.hpp"
#else
#if defined(ARCH_IA32) || defined(ARCH_X86_64)
#include "x86/truffle.hpp"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "arm/truffle.hpp"
#elif defined(ARCH_PPC64EL)
#include "ppc64el/truffle.hpp"
#endif
#endif
#ifdef HAVE_SVE
const u8 *truffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset,
const u8 *buf, const u8 *buf_end);
const u8 *rtruffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset,
const u8 *buf, const u8 *buf_end);
static really_inline
const u8 *scanBlock(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars, const u8 *buf, bool forward) {
const size_t vector_size_int_8 = svcntb();
const svuint8_t result_mask = blockSingleMask(shuf_mask_lo_highclear, shuf_mask_lo_highset, chars);
uint64_t index;
if (forward) {
index = first_non_zero(vector_size_int_8, result_mask);
} else {
index = last_non_zero(vector_size_int_8, result_mask);
}
if(index < vector_size_int_8) {
return buf+index;
} else {
return NULL;
}
}
really_inline
const u8 *truffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset, const u8 *buf, const u8 *buf_end) {
const int vect_size_int8 = svcntb();
// Activate only 16 lanes to read the m128 buffers
const svbool_t lane_pred_16 = svwhilelt_b8(0, 16);
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("truffle %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
svuint8_t wide_shuf_mask_lo_highclear = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highclear);
svuint8_t wide_shuf_mask_lo_highset = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highset);
const u8 *work_buffer = buf;
const u8 *ret_val;
DEBUG_PRINTF("start %p end %p \n", work_buffer, buf_end);
assert(work_buffer < buf_end);
__builtin_prefetch(work_buffer + 16*64);
if (work_buffer + vect_size_int8 <= buf_end) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(work_buffer, vect_size_int8));
if (!ISALIGNED_N(work_buffer, vect_size_int8)) {
svuint8_t chars = svld1(svptrue_b8(), work_buffer);
const u8 *alligned_buffer = ROUNDUP_PTR(work_buffer, vect_size_int8);
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, true);
if (ret_val && ret_val < alligned_buffer) return ret_val;
work_buffer = alligned_buffer;
}
while(work_buffer + vect_size_int8 <= buf_end) {
__builtin_prefetch(work_buffer + 16*64);
DEBUG_PRINTF("work_buffer %p \n", work_buffer);
svuint8_t chars = svld1(svptrue_b8(), work_buffer);
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, true);
if (ret_val) return ret_val;
work_buffer += vect_size_int8;
}
}
DEBUG_PRINTF("work_buffer %p e %p \n", work_buffer, buf_end);
// finish off tail
if (work_buffer != buf_end) {
svuint8_t chars;
const u8* end_buf;
if (buf_end - buf < vect_size_int8) {
const svbool_t remaining_lanes = svwhilelt_b8(0ll, buf_end - buf);
chars = svld1(remaining_lanes, buf);
end_buf = buf;
} else {
chars = svld1(svptrue_b8(), buf_end - vect_size_int8);
end_buf = buf_end - vect_size_int8;
}
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, end_buf, true);
DEBUG_PRINTF("ret_val %p \n", ret_val);
if (ret_val && ret_val < buf_end) return ret_val;
}
return buf_end;
}
really_inline
const u8 *rtruffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset, const u8 *buf, const u8 *buf_end){
const int vect_size_int8 = svcntb();
// Activate only 16 lanes to read the m128 buffers
const svbool_t lane_pred_16 = svwhilelt_b8(0, 16);
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("truffle %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
svuint8_t wide_shuf_mask_lo_highclear = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highclear);
svuint8_t wide_shuf_mask_lo_highset = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highset);
const u8 *work_buffer = buf_end;
const u8 *ret_val;
DEBUG_PRINTF("start %p end %p \n", buf, work_buffer);
assert(work_buffer > buf);
__builtin_prefetch(work_buffer - 16*64);
if (work_buffer - vect_size_int8 >= buf) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDDOWN_PTR(work_buffer, vect_size_int8));
if (!ISALIGNED_N(work_buffer, vect_size_int8)) {
svuint8_t chars = svld1(svptrue_b8(), work_buffer - vect_size_int8);
const u8 *alligned_buffer = ROUNDDOWN_PTR(work_buffer, vect_size_int8);
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer - vect_size_int8, false);
DEBUG_PRINTF("ret_val %p \n", ret_val);
if (ret_val >= alligned_buffer) return ret_val;
work_buffer = alligned_buffer;
}
while (work_buffer - vect_size_int8 >= buf) {
DEBUG_PRINTF("aligned %p \n", work_buffer);
// On large packet buffers, this prefetch appears to get us about 2%.
__builtin_prefetch(work_buffer - 16*64);
work_buffer -= vect_size_int8;
svuint8_t chars = svld1(svptrue_b8(), work_buffer);
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, false);
if (ret_val) return ret_val;
}
}
DEBUG_PRINTF("tail work_buffer %p e %p \n", buf, work_buffer);
// finish off head
if (work_buffer != buf) {
svuint8_t chars;
if (buf_end - buf < vect_size_int8) {
const svbool_t remaining_lanes = svwhilele_b8(0ll, buf_end - buf);
chars = svld1(remaining_lanes, buf);
} else {
chars = svld1(svptrue_b8(), buf);
}
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, buf, false);
DEBUG_PRINTF("ret_val %p \n", ret_val);
if (ret_val && ret_val < buf_end) return ret_val;
}
return buf - 1;
}
#else
template <uint16_t S>
static really_inline
const u8 *fwdBlock(SuperVector<S> shuf_mask_lo_highclear, SuperVector<S> shuf_mask_lo_highset, SuperVector<S> chars, const u8 *buf) {
SuperVector<S> res = blockSingleMask(shuf_mask_lo_highclear, shuf_mask_lo_highset, chars);
return first_zero_match_inverted<S>(buf, res);
}
template <uint16_t S>
const u8 *truffleExecReal(const m128 &shuf_mask_lo_highclear, m128 shuf_mask_lo_highset, const u8 *buf, const u8 *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("truffle %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const SuperVector<S> wide_shuf_mask_lo_highclear(shuf_mask_lo_highclear);
const SuperVector<S> wide_shuf_mask_lo_highset(shuf_mask_lo_highset);
const u8 *d = buf;
const u8 *rv;
__builtin_prefetch(d + 16*64);
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
assert(d < buf_end);
if (d + S <= buf_end) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
SuperVector<S> chars = SuperVector<S>::loadu(d);
const u8 *dup = ROUNDUP_PTR(d, S);
rv = fwdBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, d);
if (rv && rv < dup) return rv;
d = dup;
}
while(d + S <= buf_end) {
__builtin_prefetch(d + 16*64);
DEBUG_PRINTF("d %p \n", d);
SuperVector<S> chars = SuperVector<S>::load(d);
rv = fwdBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, d);
if (rv) return rv;
d += S;
}
}
DEBUG_PRINTF("d %p e %p \n", d, buf_end);
// finish off tail
if (d != buf_end) {
SuperVector<S> chars = SuperVector<S>::Zeroes();
const u8* end_buf;
if (buf_end - buf < S) {
memcpy(&chars.u, buf, buf_end - buf);
end_buf = buf;
} else {
chars = SuperVector<S>::loadu(buf_end - S);
end_buf = buf_end - S;
}
rv = fwdBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, end_buf);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
return buf_end;
}
template <uint16_t S>
static really_inline
const u8 *revBlock(SuperVector<S> shuf_mask_lo_highclear, SuperVector<S> shuf_mask_lo_highset, SuperVector<S> v,
const u8 *buf) {
SuperVector<S> res = blockSingleMask(shuf_mask_lo_highclear, shuf_mask_lo_highset, v);
return last_zero_match_inverted<S>(buf, res);
}
template <uint16_t S>
const u8 *rtruffleExecReal(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset, const u8 *buf, const u8 *buf_end){
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("trufle %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const SuperVector<S> wide_shuf_mask_lo_highclear(shuf_mask_lo_highclear);
const SuperVector<S> wide_shuf_mask_lo_highset(shuf_mask_lo_highset);
const u8 *d = buf_end;
const u8 *rv;
__builtin_prefetch(d - 16*64);
DEBUG_PRINTF("start %p end %p \n", buf, d);
assert(d > buf);
if (d - S >= buf) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDDOWN_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
SuperVector<S> chars = SuperVector<S>::loadu(d - S);
const u8 *dbot = ROUNDDOWN_PTR(d, S);
rv = revBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, d - S);
DEBUG_PRINTF("rv %p \n", rv);
if (rv >= dbot) return rv;
d = dbot;
}
while (d - S >= buf) {
DEBUG_PRINTF("aligned %p \n", d);
// On large packet buffers, this prefetch appears to get us about 2%.
__builtin_prefetch(d - 16*64);
d -= S;
SuperVector<S> chars = SuperVector<S>::load(d);
rv = revBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, d);
if (rv) return rv;
}
}
DEBUG_PRINTF("tail d %p e %p \n", buf, d);
// finish off head
if (d != buf) {
SuperVector<S> chars = SuperVector<S>::Zeroes();
if (buf_end - buf < S) {
memcpy(&chars.u, buf, buf_end - buf);
} else {
chars = SuperVector<S>::loadu(buf);
}
rv = revBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, buf);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
return buf - 1;
}
#endif //HAVE_SVE