mirror of
https://github.com/VectorCamp/vectorscan.git
synced 2025-06-28 16:41:01 +03:00
On 64-bit platforms, the Limex 64 model is implemented in normal GPRs. On 32-bit platforms, however, 128-bit SSE registers are used for the runtime implementation.
232 lines
9.1 KiB
C
232 lines
9.1 KiB
C
/*
|
|
* Copyright (c) 2015-2016, Intel Corporation
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** \file
|
|
* \brief Uniformly-named primitives named by target type.
|
|
*
|
|
* The following are a set of primitives named by target type, so that we can
|
|
* macro the hell out of all our NFA implementations. Hurrah!
|
|
*/
|
|
|
|
#ifndef UNIFORM_OPS_H
|
|
#define UNIFORM_OPS_H
|
|
|
|
#include "ue2common.h"
|
|
#include "simd_utils.h"
|
|
#include "unaligned.h"
|
|
|
|
// Aligned loads
|
|
#define load_u8(a) (*(const u8 *)(a))
|
|
#define load_u16(a) (*(const u16 *)(a))
|
|
#define load_u32(a) (*(const u32 *)(a))
|
|
#define load_u64a(a) (*(const u64a *)(a))
|
|
#define load_m128(a) load128(a)
|
|
#define load_m256(a) load256(a)
|
|
#define load_m384(a) load384(a)
|
|
#define load_m512(a) load512(a)
|
|
|
|
// Unaligned loads
|
|
#define loadu_u8(a) (*(const u8 *)(a))
|
|
#define loadu_u16(a) unaligned_load_u16((const u8 *)(a))
|
|
#define loadu_u32(a) unaligned_load_u32((const u8 *)(a))
|
|
#define loadu_u64a(a) unaligned_load_u64a((const u8 *)(a))
|
|
#define loadu_m128(a) loadu128(a)
|
|
#define loadu_m256(a) loadu256(a)
|
|
#define loadu_m384(a) loadu384(a)
|
|
#define loadu_m512(a) loadu512(a)
|
|
|
|
// Aligned stores
|
|
#define store_u8(ptr, a) do { *(u8 *)(ptr) = (a); } while(0)
|
|
#define store_u16(ptr, a) do { *(u16 *)(ptr) = (a); } while(0)
|
|
#define store_u32(ptr, a) do { *(u32 *)(ptr) = (a); } while(0)
|
|
#define store_u64a(ptr, a) do { *(u64a *)(ptr) = (a); } while(0)
|
|
#define store_m128(ptr, a) store128(ptr, a)
|
|
#define store_m256(ptr, a) store256(ptr, a)
|
|
#define store_m384(ptr, a) store384(ptr, a)
|
|
#define store_m512(ptr, a) store512(ptr, a)
|
|
|
|
// Unaligned stores
|
|
#define storeu_u8(ptr, a) do { *(u8 *)(ptr) = (a); } while(0)
|
|
#define storeu_u16(ptr, a) unaligned_store_u16(ptr, a)
|
|
#define storeu_u32(ptr, a) unaligned_store_u32(ptr, a)
|
|
#define storeu_u64a(ptr, a) unaligned_store_u64a(ptr, a)
|
|
#define storeu_m128(ptr, a) storeu128(ptr, a)
|
|
|
|
#define zero_u8 0
|
|
#define zero_u32 0
|
|
#define zero_u64a 0
|
|
#define zero_m128 zeroes128()
|
|
#define zero_m256 zeroes256()
|
|
#define zero_m384 zeroes384()
|
|
#define zero_m512 zeroes512()
|
|
|
|
#define ones_u8 0xff
|
|
#define ones_u32 0xfffffffful
|
|
#define ones_u64a 0xffffffffffffffffull
|
|
#define ones_m128 ones128()
|
|
#define ones_m256 ones256()
|
|
#define ones_m384 ones384()
|
|
#define ones_m512 ones512()
|
|
|
|
#define or_u8(a, b) ((a) | (b))
|
|
#define or_u32(a, b) ((a) | (b))
|
|
#define or_u64a(a, b) ((a) | (b))
|
|
#define or_m128(a, b) (or128(a, b))
|
|
#define or_m256(a, b) (or256(a, b))
|
|
#define or_m384(a, b) (or384(a, b))
|
|
#define or_m512(a, b) (or512(a, b))
|
|
|
|
#define and_u8(a, b) ((a) & (b))
|
|
#define and_u32(a, b) ((a) & (b))
|
|
#define and_u64a(a, b) ((a) & (b))
|
|
#define and_m128(a, b) (and128(a, b))
|
|
#define and_m256(a, b) (and256(a, b))
|
|
#define and_m384(a, b) (and384(a, b))
|
|
#define and_m512(a, b) (and512(a, b))
|
|
|
|
#define not_u8(a) (~(a))
|
|
#define not_u32(a) (~(a))
|
|
#define not_u64a(a) (~(a))
|
|
#define not_m128(a) (not128(a))
|
|
#define not_m256(a) (not256(a))
|
|
#define not_m384(a) (not384(a))
|
|
#define not_m512(a) (not512(a))
|
|
|
|
#define andnot_u8(a, b) ((~(a)) & (b))
|
|
#define andnot_u32(a, b) ((~(a)) & (b))
|
|
#define andnot_u64a(a, b) ((~(a)) & (b))
|
|
#define andnot_m128(a, b) (andnot128(a, b))
|
|
#define andnot_m256(a, b) (andnot256(a, b))
|
|
#define andnot_m384(a, b) (andnot384(a, b))
|
|
#define andnot_m512(a, b) (andnot512(a, b))
|
|
|
|
#define lshift_u32(a, b) ((a) << (b))
|
|
#define lshift_u64a(a, b) ((a) << (b))
|
|
#define lshift_m128(a, b) (lshift64_m128(a, b))
|
|
#define lshift_m256(a, b) (lshift64_m256(a, b))
|
|
#define lshift_m384(a, b) (lshift64_m384(a, b))
|
|
#define lshift_m512(a, b) (lshift64_m512(a, b))
|
|
|
|
#define isZero_u8(a) ((a) == 0)
|
|
#define isZero_u32(a) ((a) == 0)
|
|
#define isZero_u64a(a) ((a) == 0)
|
|
#define isZero_m128(a) (!isnonzero128(a))
|
|
#define isZero_m256(a) (!isnonzero256(a))
|
|
#define isZero_m384(a) (!isnonzero384(a))
|
|
#define isZero_m512(a) (!isnonzero512(a))
|
|
|
|
#define isNonZero_u8(a) ((a) != 0)
|
|
#define isNonZero_u32(a) ((a) != 0)
|
|
#define isNonZero_u64a(a) ((a) != 0)
|
|
#define isNonZero_m128(a) (isnonzero128(a))
|
|
#define isNonZero_m256(a) (isnonzero256(a))
|
|
#define isNonZero_m384(a) (isnonzero384(a))
|
|
#define isNonZero_m512(a) (isnonzero512(a))
|
|
|
|
#define diffrich_u32(a, b) ((a) != (b))
|
|
#define diffrich_u64a(a, b) ((a) != (b) ? 3 : 0) //TODO: impl 32bit granularity
|
|
#define diffrich_m128(a, b) (diffrich128(a, b))
|
|
#define diffrich_m256(a, b) (diffrich256(a, b))
|
|
#define diffrich_m384(a, b) (diffrich384(a, b))
|
|
#define diffrich_m512(a, b) (diffrich512(a, b))
|
|
|
|
#define diffrich64_u32(a, b) ((a) != (b))
|
|
#define diffrich64_u64a(a, b) ((a) != (b) ? 1 : 0)
|
|
#define diffrich64_m128(a, b) (diffrich64_128(a, b))
|
|
#define diffrich64_m256(a, b) (diffrich64_256(a, b))
|
|
#define diffrich64_m384(a, b) (diffrich64_384(a, b))
|
|
#define diffrich64_m512(a, b) (diffrich64_512(a, b))
|
|
|
|
#define noteq_u8(a, b) ((a) != (b))
|
|
#define noteq_u32(a, b) ((a) != (b))
|
|
#define noteq_u64a(a, b) ((a) != (b))
|
|
#define noteq_m128(a, b) (diff128(a, b))
|
|
#define noteq_m256(a, b) (diff256(a, b))
|
|
#define noteq_m384(a, b) (diff384(a, b))
|
|
#define noteq_m512(a, b) (diff512(a, b))
|
|
|
|
#define partial_store_m128(ptr, v, sz) storebytes128(ptr, v, sz)
|
|
#define partial_store_m256(ptr, v, sz) storebytes256(ptr, v, sz)
|
|
#define partial_store_m384(ptr, v, sz) storebytes384(ptr, v, sz)
|
|
#define partial_store_m512(ptr, v, sz) storebytes512(ptr, v, sz)
|
|
|
|
#define partial_load_m128(ptr, sz) loadbytes128(ptr, sz)
|
|
#define partial_load_m256(ptr, sz) loadbytes256(ptr, sz)
|
|
#define partial_load_m384(ptr, sz) loadbytes384(ptr, sz)
|
|
#define partial_load_m512(ptr, sz) loadbytes512(ptr, sz)
|
|
|
|
#define store_compressed_u32(ptr, x, m, len) storecompressed32(ptr, x, m, len)
|
|
#define store_compressed_u64a(ptr, x, m, len) storecompressed64(ptr, x, m, len)
|
|
#define store_compressed_m128(ptr, x, m, len) storecompressed128(ptr, x, m, len)
|
|
#define store_compressed_m256(ptr, x, m, len) storecompressed256(ptr, x, m, len)
|
|
#define store_compressed_m384(ptr, x, m, len) storecompressed384(ptr, x, m, len)
|
|
#define store_compressed_m512(ptr, x, m, len) storecompressed512(ptr, x, m, len)
|
|
|
|
#define load_compressed_u32(x, ptr, m, len) loadcompressed32(x, ptr, m, len)
|
|
#define load_compressed_u64a(x, ptr, m, len) loadcompressed64(x, ptr, m, len)
|
|
#define load_compressed_m128(x, ptr, m, len) loadcompressed128(x, ptr, m, len)
|
|
#define load_compressed_m256(x, ptr, m, len) loadcompressed256(x, ptr, m, len)
|
|
#define load_compressed_m384(x, ptr, m, len) loadcompressed384(x, ptr, m, len)
|
|
#define load_compressed_m512(x, ptr, m, len) loadcompressed512(x, ptr, m, len)
|
|
|
|
static really_inline
|
|
void clearbit_u32(u32 *p, u32 n) {
|
|
assert(n < sizeof(*p) * 8);
|
|
*p &= ~(1U << n);
|
|
}
|
|
|
|
static really_inline
|
|
void clearbit_u64a(u64a *p, u32 n) {
|
|
assert(n < sizeof(*p) * 8);
|
|
*p &= ~(1ULL << n);
|
|
}
|
|
|
|
#define clearbit_m128(ptr, n) (clearbit128(ptr, n))
|
|
#define clearbit_m256(ptr, n) (clearbit256(ptr, n))
|
|
#define clearbit_m384(ptr, n) (clearbit384(ptr, n))
|
|
#define clearbit_m512(ptr, n) (clearbit512(ptr, n))
|
|
|
|
static really_inline
|
|
char testbit_u32(u32 val, u32 n) {
|
|
assert(n < sizeof(val) * 8);
|
|
return !!(val & (1U << n));
|
|
}
|
|
|
|
static really_inline
|
|
char testbit_u64a(u64a val, u32 n) {
|
|
assert(n < sizeof(val) * 8);
|
|
return !!(val & (1ULL << n));
|
|
}
|
|
|
|
#define testbit_m128(val, n) (testbit128(val, n))
|
|
#define testbit_m256(val, n) (testbit256(val, n))
|
|
#define testbit_m384(val, n) (testbit384(val, n))
|
|
#define testbit_m512(val, n) (testbit512(val, n))
|
|
|
|
#endif
|