vectorscan/src/nfagraph/ng_extparam.cpp
Justin Viiret 5dfae12a62 ng: split NGWrapper into NGHolder, ExpressionInfo
We now use NGHolder for all graph information, while other expression
properties (report, flag information, etc) go in new class
ExpressionInfo.
2017-04-26 15:18:09 +10:00

883 lines
27 KiB
C++

/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Propagate extended parameters to vertex reports and reduce graph if
* possible.
*
* This code handles the propagation of the extension parameters specified by
* the user with the hs_expr_ext structure into the reports on the graph's
* vertices.
*
* There are also some analyses that prune edges that cannot contribute to a
* match given these constraints, or transform the graph in order to make a
* constraint implicit.
*/
#include "ng_extparam.h"
#include "ng.h"
#include "ng_depth.h"
#include "ng_dump.h"
#include "ng_prune.h"
#include "ng_reports.h"
#include "ng_som_util.h"
#include "ng_width.h"
#include "ng_util.h"
#include "ue2common.h"
#include "compiler/compiler.h"
#include "parser/position.h"
#include "util/compile_context.h"
#include "util/compile_error.h"
#include "util/container.h"
#include "util/graph.h"
#include "util/graph_range.h"
#include <sstream>
#include <string>
using namespace std;
namespace ue2 {
static const u32 MAX_MAXOFFSET_TO_ANCHOR = 2000;
static const u32 MAX_MINLENGTH_TO_CONVERT = 2000;
/** \brief Find the (min, max) offset adjustment for the reports on a given
* vertex. */
static
pair<s32,s32> getMinMaxOffsetAdjust(const ReportManager &rm,
const NGHolder &g, NFAVertex v) {
s32 minAdj = 0, maxAdj = 0;
const auto &reports = g[v].reports;
for (auto ri = reports.begin(), re = reports.end(); ri != re; ++ri) {
const Report &ir = rm.getReport(*ri);
if (ri == reports.begin()) {
minAdj = ir.offsetAdjust;
maxAdj = ir.offsetAdjust;
} else {
minAdj = min(minAdj, ir.offsetAdjust);
maxAdj = max(maxAdj, ir.offsetAdjust);
}
}
return make_pair(minAdj, maxAdj);
}
/** \brief Find the (min, max) length of any match for the given holder. */
static
DepthMinMax findMatchLengths(const ReportManager &rm, const NGHolder &g) {
DepthMinMax match_depths;
vector<DepthMinMax> depths = getDistancesFromSOM(g);
pair<s32, s32> adj;
for (auto v : inv_adjacent_vertices_range(g.accept, g)) {
u32 idx = g[v].index;
DepthMinMax d = depths[idx]; // copy
adj = getMinMaxOffsetAdjust(rm, g, v);
DEBUG_PRINTF("vertex %u: depths=%s, adj=[%d,%d]\n", idx,
d.str().c_str(), adj.first, adj.second);
d.min += adj.first;
d.max += adj.second;
match_depths = unionDepthMinMax(match_depths, d);
}
for (auto v : inv_adjacent_vertices_range(g.acceptEod, g)) {
if (v == g.accept) {
continue;
}
u32 idx = g[v].index;
DepthMinMax d = depths[idx]; // copy
adj = getMinMaxOffsetAdjust(rm, g, v);
DEBUG_PRINTF("vertex %u: depths=%s, adj=[%d,%d]\n", idx,
d.str().c_str(), adj.first, adj.second);
d.min += adj.first;
d.max += adj.second;
match_depths = unionDepthMinMax(match_depths, d);
}
DEBUG_PRINTF("match_depths=%s\n", match_depths.str().c_str());
assert(match_depths.min.is_reachable());
assert(match_depths.max.is_reachable());
return match_depths;
}
/** \brief Replace the graph's reports with new reports that specify bounds. */
static
void updateReportBounds(ReportManager &rm, NGHolder &g,
const ExpressionInfo &expr, NFAVertex accept,
set<NFAVertex> &done) {
for (auto v : inv_adjacent_vertices_range(accept, g)) {
// Don't operate on g.accept itself.
if (v == g.accept) {
assert(accept == g.acceptEod);
continue;
}
// Don't operate on a vertex we've already done.
if (contains(done, v)) {
continue;
}
done.insert(v);
flat_set<ReportID> new_reports;
auto &reports = g[v].reports;
for (auto id : reports) {
Report ir = rm.getReport(id); // make a copy
assert(!ir.hasBounds());
// Note that we need to cope with offset adjustment here.
ir.minOffset = expr.min_offset - ir.offsetAdjust;
if (expr.max_offset == MAX_OFFSET) {
ir.maxOffset = MAX_OFFSET;
} else {
ir.maxOffset = expr.max_offset - ir.offsetAdjust;
}
assert(ir.maxOffset >= ir.minOffset);
ir.minLength = expr.min_length;
if (expr.min_length && !expr.som) {
ir.quashSom = true;
}
DEBUG_PRINTF("id %u -> min_offset=%llu, max_offset=%llu, "
"min_length=%llu\n",
id, ir.minOffset, ir.maxOffset, ir.minLength);
new_reports.insert(rm.getInternalId(ir));
}
DEBUG_PRINTF("swapping reports on vertex %zu\n", g[v].index);
reports.swap(new_reports);
}
}
static
bool hasVirtualStarts(const NGHolder &g) {
for (auto v : adjacent_vertices_range(g.start, g)) {
if (g[v].assert_flags & POS_FLAG_VIRTUAL_START) {
return true;
}
}
return false;
}
/** If the pattern is unanchored, has a max_offset and has not asked for SOM,
* we can use that knowledge to anchor it which will limit its lifespan. Note
* that we can't use this transformation if there's a min_length, as it's
* currently handled using "sly SOM".
*
* Note that it is possible to handle graphs that have a combination of
* anchored and unanchored paths, but it's too tricky for the moment.
*/
static
bool anchorPatternWithBoundedRepeat(NGHolder &g, const ExpressionInfo &expr,
const depth &minWidth,
const depth &maxWidth) {
assert(!expr.som);
assert(expr.max_offset != MAX_OFFSET);
assert(minWidth <= maxWidth);
assert(maxWidth.is_reachable());
DEBUG_PRINTF("widths=[%s,%s], min/max offsets=[%llu,%llu]\n",
minWidth.str().c_str(), maxWidth.str().c_str(),
expr.min_offset, expr.max_offset);
if (expr.max_offset > MAX_MAXOFFSET_TO_ANCHOR) {
return false;
}
if (expr.max_offset < minWidth) {
assert(0);
return false;
}
// If the pattern has virtual starts, we probably don't want to touch it.
if (hasVirtualStarts(g)) {
DEBUG_PRINTF("virtual starts, bailing\n");
return false;
}
// Similarly, bail if the pattern is vacuous. TODO: this could be done, we
// would just need to be a little careful with reports.
if (isVacuous(g)) {
DEBUG_PRINTF("vacuous, bailing\n");
return false;
}
u32 min_bound, max_bound;
if (maxWidth.is_infinite()) {
min_bound = 0;
max_bound = expr.max_offset - minWidth;
} else {
min_bound = expr.min_offset > maxWidth ? expr.min_offset - maxWidth : 0;
max_bound = expr.max_offset - minWidth;
}
DEBUG_PRINTF("prepending ^.{%u,%u}\n", min_bound, max_bound);
vector<NFAVertex> initials;
for (auto v : adjacent_vertices_range(g.startDs, g)) {
if (v == g.startDs) {
continue;
}
initials.push_back(v);
}
if (initials.empty()) {
DEBUG_PRINTF("no initial vertices\n");
return false;
}
// Wire up 'min_offset' mandatory dots from anchored start.
NFAVertex u = g.start;
for (u32 i = 0; i < min_bound; i++) {
NFAVertex v = add_vertex(g);
g[v].char_reach.setall();
add_edge(u, v, g);
u = v;
}
NFAVertex head = u;
// Wire up optional dots for (max_offset - min_offset).
for (u32 i = 0; i < max_bound - min_bound; i++) {
NFAVertex v = add_vertex(g);
g[v].char_reach.setall();
if (head != u) {
add_edge(head, v, g);
}
add_edge(u, v, g);
u = v;
}
// Remove edges from starts and wire both head and u to our initials.
for (auto v : initials) {
remove_edge(g.startDs, v, g);
remove_edge(g.start, v, g);
if (head != u) {
add_edge(head, v, g);
}
add_edge(u, v, g);
}
renumber_vertices(g);
renumber_edges(g);
return true;
}
static
NFAVertex findSingleCyclic(const NGHolder &g) {
NFAVertex v = NGHolder::null_vertex();
for (const auto &e : edges_range(g)) {
if (source(e, g) == target(e, g)) {
if (source(e, g) == g.startDs) {
continue;
}
if (v != NGHolder::null_vertex()) {
// More than one cyclic vertex.
return NGHolder::null_vertex();
}
v = source(e, g);
}
}
if (v != NGHolder::null_vertex()) {
DEBUG_PRINTF("cyclic is %zu\n", g[v].index);
assert(!is_special(v, g));
}
return v;
}
static
bool hasOffsetAdjust(const ReportManager &rm, NGHolder &g,
int *adjust) {
const auto &reports = all_reports(g);
if (reports.empty()) {
assert(0);
return false;
}
int offsetAdjust = rm.getReport(*reports.begin()).offsetAdjust;
for (auto report : reports) {
const Report &ir = rm.getReport(report);
if (ir.offsetAdjust != offsetAdjust) {
DEBUG_PRINTF("different adjusts!\n");
return false;
}
}
*adjust = offsetAdjust;
return true;
}
/** If the pattern has a min_length and is of "ratchet" form with one unbounded
* repeat, that repeat can become a bounded repeat.
*
* /foo.*bar/{min_length=100} --> /foo.{94,}bar/
*/
static
bool transformMinLengthToRepeat(const ReportManager &rm, NGHolder &g,
ExpressionInfo &expr) {
assert(expr.min_length);
if (expr.min_length > MAX_MINLENGTH_TO_CONVERT) {
return false;
}
// If the pattern has virtual starts, we probably don't want to touch it.
if (hasVirtualStarts(g)) {
DEBUG_PRINTF("virtual starts, bailing\n");
return false;
}
// The graph must contain a single cyclic vertex (other than startDs), and
// that vertex can have one pred and one successor.
NFAVertex cyclic = findSingleCyclic(g);
if (cyclic == NGHolder::null_vertex()) {
return false;
}
NGHolder::adjacency_iterator ai, ae;
tie(ai, ae) = adjacent_vertices(g.start, g);
if (*ai == g.startDs) {
++ai;
}
NFAVertex v = *ai;
if (++ai != ae) {
DEBUG_PRINTF("more than one initial vertex\n");
return false;
}
u32 width = 0;
// Walk from the start vertex to the cyclic state and ensure we have a
// chain of vertices.
while (v != cyclic) {
DEBUG_PRINTF("vertex %zu\n", g[v].index);
width++;
auto succ = succs(v, g);
if (contains(succ, cyclic)) {
if (succ.size() == 1) {
v = cyclic;
} else if (succ.size() == 2) {
// Cyclic and jump edge.
succ.erase(cyclic);
NFAVertex v2 = *succ.begin();
if (!edge(cyclic, v2, g).second) {
DEBUG_PRINTF("bad form\n");
return false;
}
v = cyclic;
} else {
DEBUG_PRINTF("bad form\n");
return false;
}
} else {
if (succ.size() != 1) {
DEBUG_PRINTF("bad form\n");
return false;
}
v = *succ.begin();
}
}
// Check the cyclic state is A-OK.
v = getSoleDestVertex(g, cyclic);
if (v == NGHolder::null_vertex()) {
DEBUG_PRINTF("cyclic has more than one successor\n");
return false;
}
// Walk from the cyclic state to an accept and ensure we have a chain of
// vertices.
while (!is_any_accept(v, g)) {
DEBUG_PRINTF("vertex %zu\n", g[v].index);
width++;
auto succ = succs(v, g);
if (succ.size() != 1) {
DEBUG_PRINTF("bad form\n");
return false;
}
v = *succ.begin();
}
int offsetAdjust = 0;
if (!hasOffsetAdjust(rm, g, &offsetAdjust)) {
return false;
}
DEBUG_PRINTF("adjusting width by %d\n", offsetAdjust);
width += offsetAdjust;
DEBUG_PRINTF("width=%u, vertex %zu is cyclic\n", width,
g[cyclic].index);
if (width >= expr.min_length) {
DEBUG_PRINTF("min_length=%llu is guaranteed, as width=%u\n",
expr.min_length, width);
expr.min_length = 0;
return true;
}
vector<NFAVertex> preds;
vector<NFAEdge> dead;
for (auto u : inv_adjacent_vertices_range(cyclic, g)) {
DEBUG_PRINTF("pred %zu\n", g[u].index);
if (u == cyclic) {
continue;
}
preds.push_back(u);
// We want to delete the out-edges of each predecessor, but need to
// make sure we don't delete the startDs self loop.
for (const auto &e : out_edges_range(u, g)) {
if (target(e, g) != g.startDs) {
dead.push_back(e);
}
}
}
remove_edges(dead, g);
assert(!preds.empty());
const CharReach &cr = g[cyclic].char_reach;
for (u32 i = 0; i < expr.min_length - width - 1; ++i) {
v = add_vertex(g);
g[v].char_reach = cr;
for (auto u : preds) {
add_edge(u, v, g);
}
preds.clear();
preds.push_back(v);
}
assert(!preds.empty());
for (auto u : preds) {
add_edge(u, cyclic, g);
}
renumber_vertices(g);
renumber_edges(g);
clearReports(g);
expr.min_length = 0;
return true;
}
static
bool hasExtParams(const ExpressionInfo &expr) {
if (expr.min_length != 0) {
return true;
}
if (expr.min_offset != 0) {
return true;
}
if (expr.max_offset != MAX_OFFSET) {
return true;
}
return false;
}
static
depth maxDistFromStart(const NFAVertexBidiDepth &d) {
if (!d.fromStartDotStar.max.is_unreachable()) {
// A path from startDs, any path, implies we can match at any offset.
return depth::infinity();
}
return d.fromStart.max;
}
static
const depth& maxDistToAccept(const NFAVertexBidiDepth &d) {
if (d.toAccept.max.is_unreachable()) {
return d.toAcceptEod.max;
} else if (d.toAcceptEod.max.is_unreachable()) {
return d.toAccept.max;
}
return max(d.toAccept.max, d.toAcceptEod.max);
}
static
const depth& minDistFromStart(const NFAVertexBidiDepth &d) {
return min(d.fromStartDotStar.min, d.fromStart.min);
}
static
const depth& minDistToAccept(const NFAVertexBidiDepth &d) {
return min(d.toAccept.min, d.toAcceptEod.min);
}
static
bool isEdgePrunable(const NGHolder &g, const ExpressionInfo &expr,
const vector<NFAVertexBidiDepth> &depths,
const NFAEdge &e) {
const NFAVertex u = source(e, g);
const NFAVertex v = target(e, g);
DEBUG_PRINTF("edge (%zu,%zu)\n", g[u].index, g[v].index);
// Leave our special-to-special edges alone.
if (is_special(u, g) && is_special(v, g)) {
DEBUG_PRINTF("ignoring special-to-special\n");
return false;
}
// We must be careful around start: we don't want to remove (start, v) if
// (startDs, v) exists as well, since later code will assume the presence
// of both edges, but other cases are OK.
if (u == g.start && edge(g.startDs, v, g).second) {
DEBUG_PRINTF("ignoring unanchored start edge\n");
return false;
}
u32 u_idx = g[u].index;
u32 v_idx = g[v].index;
assert(u_idx < depths.size() && v_idx < depths.size());
const NFAVertexBidiDepth &du = depths.at(u_idx);
const NFAVertexBidiDepth &dv = depths.at(v_idx);
if (expr.min_offset) {
depth max_offset = maxDistFromStart(du) + maxDistToAccept(dv);
if (max_offset.is_finite() && max_offset < expr.min_offset) {
DEBUG_PRINTF("max_offset=%s too small\n", max_offset.str().c_str());
return true;
}
}
if (expr.max_offset != MAX_OFFSET) {
depth min_offset = minDistFromStart(du) + minDistToAccept(dv);
assert(min_offset.is_finite());
if (min_offset > expr.max_offset) {
DEBUG_PRINTF("min_offset=%s too large\n", min_offset.str().c_str());
return true;
}
}
if (expr.min_length && is_any_accept(v, g)) {
// Simple take on min_length. If we're an edge to accept and our max
// dist from start is too small, we can be pruned.
const depth &width = du.fromStart.max;
if (width.is_finite() && width < expr.min_length) {
DEBUG_PRINTF("max width %s from start too small for min_length\n",
width.str().c_str());
return true;
}
}
return false;
}
static
void pruneExtUnreachable(NGHolder &g, const ExpressionInfo &expr) {
vector<NFAVertexBidiDepth> depths;
calcDepths(g, depths);
vector<NFAEdge> dead;
for (const auto &e : edges_range(g)) {
if (isEdgePrunable(g, expr, depths, e)) {
DEBUG_PRINTF("pruning\n");
dead.push_back(e);
}
}
if (dead.empty()) {
return;
}
remove_edges(dead, g);
pruneUseless(g);
}
/** Remove vacuous edges in graphs where the min_offset or min_length
* constraints dictate that they can never produce a match. */
static
void pruneVacuousEdges(NGHolder &g, const ExpressionInfo &expr) {
if (!expr.min_length && !expr.min_offset) {
return;
}
vector<NFAEdge> dead;
for (const auto &e : edges_range(g)) {
const NFAVertex u = source(e, g);
const NFAVertex v = target(e, g);
// Special case: Crudely remove vacuous edges from start in graphs with a
// min_offset.
if (expr.min_offset && u == g.start && is_any_accept(v, g)) {
DEBUG_PRINTF("vacuous edge in graph with min_offset!\n");
dead.push_back(e);
continue;
}
// If a min_length is set, vacuous edges can be removed.
if (expr.min_length && is_any_start(u, g) && is_any_accept(v, g)) {
DEBUG_PRINTF("vacuous edge in graph with min_length!\n");
dead.push_back(e);
continue;
}
}
if (dead.empty()) {
return;
}
remove_edges(dead, g);
pruneUseless(g);
}
static
void pruneUnmatchable(NGHolder &g, const ExpressionInfo &expr,
const vector<DepthMinMax> &depths,
const ReportManager &rm, NFAVertex accept) {
vector<NFAEdge> dead;
for (const auto &e : in_edges_range(accept, g)) {
NFAVertex v = source(e, g);
if (v == g.accept) {
assert(accept == g.acceptEod); // stylised edge
continue;
}
u32 idx = g[v].index;
DepthMinMax d = depths[idx]; // copy
pair<s32, s32> adj = getMinMaxOffsetAdjust(rm, g, v);
DEBUG_PRINTF("vertex %u: depths=%s, adj=[%d,%d]\n", idx,
d.str().c_str(), adj.first, adj.second);
d.min += adj.first;
d.max += adj.second;
if (d.max.is_finite() && d.max < expr.min_length) {
DEBUG_PRINTF("prune, max match length %s < min_length=%llu\n",
d.max.str().c_str(), expr.min_length);
dead.push_back(e);
continue;
}
if (expr.max_offset != MAX_OFFSET && d.min > expr.max_offset) {
DEBUG_PRINTF("prune, min match length %s > max_offset=%llu\n",
d.min.str().c_str(), expr.max_offset);
dead.push_back(e);
continue;
}
}
remove_edges(dead, g);
}
/** Remove edges to accepts that can never produce a match long enough to
* satisfy our min_length and max_offset constraints. */
static
void pruneUnmatchable(NGHolder &g, const ExpressionInfo &expr,
const ReportManager &rm) {
if (!expr.min_length) {
return;
}
vector<DepthMinMax> depths = getDistancesFromSOM(g);
pruneUnmatchable(g, expr, depths, rm, g.accept);
pruneUnmatchable(g, expr, depths, rm, g.acceptEod);
pruneUseless(g);
}
static
bool isUnanchored(const NGHolder &g) {
for (auto v : adjacent_vertices_range(g.start, g)) {
if (!edge(g.startDs, v, g).second) {
DEBUG_PRINTF("fail, %zu is anchored vertex\n", g[v].index);
return false;
}
}
return true;
}
static
bool hasOffsetAdjustments(const ReportManager &rm, const NGHolder &g) {
for (auto report : all_reports(g)) {
const Report &ir = rm.getReport(report);
if (ir.offsetAdjust) {
return true;
}
}
return false;
}
void handleExtendedParams(ReportManager &rm, NGHolder &g, ExpressionInfo &expr,
UNUSED const CompileContext &cc) {
if (!hasExtParams(expr)) {
return;
}
depth minWidth = findMinWidth(g);
depth maxWidth = findMaxWidth(g);
bool is_anchored = !has_proper_successor(g.startDs, g)
&& out_degree(g.start, g);
bool has_offset_adj = hasOffsetAdjustments(rm, g);
DEBUG_PRINTF("minWidth=%s, maxWidth=%s, anchored=%d, offset_adj=%d\n",
minWidth.str().c_str(), maxWidth.str().c_str(), is_anchored,
has_offset_adj);
DepthMinMax match_depths = findMatchLengths(rm, g);
DEBUG_PRINTF("match depths %s\n", match_depths.str().c_str());
if (is_anchored && maxWidth.is_finite() && expr.min_offset > maxWidth) {
ostringstream oss;
oss << "Expression is anchored and cannot satisfy min_offset="
<< expr.min_offset << " as it can only produce matches of length "
<< maxWidth << " bytes at most.";
throw CompileError(expr.index, oss.str());
}
if (minWidth > expr.max_offset) {
ostringstream oss;
oss << "Expression has max_offset=" << expr.max_offset
<< " but requires " << minWidth << " bytes to match.";
throw CompileError(expr.index, oss.str());
}
if (maxWidth.is_finite() && match_depths.max < expr.min_length) {
ostringstream oss;
oss << "Expression has min_length=" << expr.min_length << " but can "
"only produce matches of length " << match_depths.max <<
" bytes at most.";
throw CompileError(expr.index, oss.str());
}
if (expr.min_length && expr.min_length <= match_depths.min) {
DEBUG_PRINTF("min_length=%llu constraint is unnecessary\n",
expr.min_length);
expr.min_length = 0;
}
if (!hasExtParams(expr)) {
return;
}
pruneVacuousEdges(g, expr);
pruneUnmatchable(g, expr, rm);
if (!has_offset_adj) {
pruneExtUnreachable(g, expr);
}
// We may have removed all the edges to accept, in which case this
// expression cannot match.
if (in_degree(g.accept, g) == 0 && in_degree(g.acceptEod, g) == 1) {
throw CompileError(expr.index, "Extended parameter "
"constraints can not be satisfied for any match from "
"this expression.");
}
// Remove reports on vertices without an edge to accept (which have been
// pruned above).
clearReports(g);
// Recalc.
minWidth = findMinWidth(g);
maxWidth = findMaxWidth(g);
is_anchored = proper_out_degree(g.startDs, g) == 0 &&
out_degree(g.start, g);
has_offset_adj = hasOffsetAdjustments(rm, g);
// If the pattern is completely anchored and has a min_length set, this can
// be converted to a min_offset.
if (expr.min_length && (expr.min_offset <= expr.min_length) &&
is_anchored) {
DEBUG_PRINTF("convertinexpr.min_length to min_offset=%llu for "
"anchored case\n", expr.min_length);
expr.min_offset = expr.min_length;
expr.min_length = 0;
}
if (expr.min_offset && expr.min_offset <= minWidth && !has_offset_adj) {
DEBUG_PRINTF("min_offset=%llu constraint is unnecessary\n",
expr.min_offset);
expr.min_offset = 0;
}
if (!hasExtParams(expr)) {
return;
}
// If the pattern has a min_length and is of "ratchet" form with one
// unbounded repeat, that repeat can become a bounded repeat.
// e.g. /foo.*bar/{min_length=100} --> /foo.{94,}bar/
if (expr.min_length && transformMinLengthToRepeat(rm, g, expr)) {
DEBUG_PRINTF("converted min_length to bounded repeat\n");
// recalc
minWidth = findMinWidth(g);
}
// If the pattern is unanchored, has a max_offset and has not asked for
// SOM, we can use that knowledge to anchor it which will limit its
// lifespan. Note that we can't use this transformation if there's a
// min_length, as it's currently handled using "sly SOM".
// Note that it is possible to handle graphs that have a combination of
// anchored and unanchored paths, but it's too tricky for the moment.
if (expr.max_offset != MAX_OFFSET && !expr.som && !expr.min_length &&
!has_offset_adj && isUnanchored(g)) {
if (anchorPatternWithBoundedRepeat(g, expr, minWidth, maxWidth)) {
DEBUG_PRINTF("minWidth=%s, maxWidth=%s\n", minWidth.str().c_str(),
maxWidth.str().c_str());
if (minWidth == maxWidth) {
// For a fixed width pattern, we can retire the offsets as they
// are implicit in the graph now.
expr.min_offset = 0;
expr.max_offset = MAX_OFFSET;
}
}
}
//dumpGraph("final.dot", g);
if (!hasExtParams(expr)) {
return;
}
set<NFAVertex> done;
updateReportBounds(rm, g, expr, g.accept, done);
updateReportBounds(rm, g, expr, g.acceptEod, done);
}
} // namespace ue2