vectorscan/src/compiler/compiler.cpp
2022-08-29 15:03:22 +03:00

637 lines
22 KiB
C++

/*
* Copyright (c) 2015-2021, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Compiler front-end interface.
*/
#include "allocator.h"
#include "asserts.h"
#include "compiler.h"
#include "crc32.h"
#include "database.h"
#include "grey.h"
#include "hs_internal.h"
#include "hs_runtime.h"
#include "ue2common.h"
#include "nfagraph/ng_builder.h"
#include "nfagraph/ng_dump.h"
#include "nfagraph/ng.h"
#include "nfagraph/ng_util.h"
#include "parser/buildstate.h"
#include "parser/dump.h"
#include "parser/Component.h"
#include "parser/logical_combination.h"
#include "parser/parse_error.h"
#include "parser/Parser.h" // for flags
#include "parser/position.h"
#include "parser/position_dump.h"
#include "parser/position_info.h"
#include "parser/prefilter.h"
#include "parser/shortcut_literal.h"
#include "parser/unsupported.h"
#include "parser/utf8_validate.h"
#include "rose/rose_build.h"
#include "rose/rose_internal.h"
#include "som/slot_manager_dump.h"
#include "util/bytecode_ptr.h"
#include "util/compile_error.h"
#include "util/target_info.h"
#include "util/verify_types.h"
#include "util/ue2string.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <memory>
#include <sstream>
using namespace std;
namespace ue2 {
static
void validateExt(const hs_expr_ext &ext) {
static const unsigned long long ALL_EXT_FLAGS = HS_EXT_FLAG_MIN_OFFSET |
HS_EXT_FLAG_MAX_OFFSET |
HS_EXT_FLAG_MIN_LENGTH |
HS_EXT_FLAG_EDIT_DISTANCE |
HS_EXT_FLAG_HAMMING_DISTANCE;
if (ext.flags & ~ALL_EXT_FLAGS) {
throw CompileError("Invalid hs_expr_ext flag set.");
}
if ((ext.flags & HS_EXT_FLAG_MIN_OFFSET) &&
(ext.flags & HS_EXT_FLAG_MAX_OFFSET) &&
(ext.min_offset > ext.max_offset)) {
throw CompileError("In hs_expr_ext, min_offset must be less than or "
"equal to max_offset.");
}
if ((ext.flags & HS_EXT_FLAG_MIN_LENGTH) &&
(ext.flags & HS_EXT_FLAG_MAX_OFFSET) &&
(ext.min_length > ext.max_offset)) {
throw CompileError("In hs_expr_ext, min_length must be less than or "
"equal to max_offset.");
}
if ((ext.flags & HS_EXT_FLAG_EDIT_DISTANCE) &&
(ext.flags & HS_EXT_FLAG_HAMMING_DISTANCE)) {
throw CompileError("In hs_expr_ext, cannot have both edit distance and "
"Hamming distance.");
}
}
void ParsedLitExpression::parseLiteral(const char *expression, size_t len,
bool nocase) {
const char *c = expression;
for (size_t i = 0; i < len; i++) {
lit.push_back(*c, nocase);
c++;
}
}
ParsedLitExpression::ParsedLitExpression(unsigned index_in,
const char *expression,
size_t expLength, unsigned flags,
ReportID report)
: expr(index_in, false, flags & HS_FLAG_SINGLEMATCH, false, false,
SOM_NONE, report, 0, MAX_OFFSET, 0, 0, 0, false) {
// For pure literal expression, below 'HS_FLAG_'s are unuseful:
// DOTALL/ALLOWEMPTY/UTF8/UCP/PREFILTER/COMBINATION/QUIET/MULTILINE
if (flags & ~HS_FLAG_ALL) {
DEBUG_PRINTF("Unrecognised flag, flags=%u.\n", flags);
throw CompileError("Unrecognised flag.");
}
// FIXME: we disallow highlander + SOM, see UE-1850.
if ((flags & HS_FLAG_SINGLEMATCH) && (flags & HS_FLAG_SOM_LEFTMOST)) {
throw CompileError("HS_FLAG_SINGLEMATCH is not supported in "
"combination with HS_FLAG_SOM_LEFTMOST.");
}
// Set SOM type.
if (flags & HS_FLAG_SOM_LEFTMOST) {
expr.som = SOM_LEFT;
}
// Transfer expression text into ue2_literal.
bool nocase = flags & HS_FLAG_CASELESS ? true : false;
parseLiteral(expression, expLength, nocase);
}
ParsedExpression::ParsedExpression(unsigned index_in, const char *expression,
unsigned flags, ReportID report,
const hs_expr_ext *ext)
: expr(index_in, flags & HS_FLAG_ALLOWEMPTY, flags & HS_FLAG_SINGLEMATCH,
false, flags & HS_FLAG_PREFILTER, SOM_NONE, report, 0, MAX_OFFSET,
0, 0, 0, flags & HS_FLAG_QUIET) {
// We disallow SOM + Quiet.
if ((flags & HS_FLAG_QUIET) && (flags & HS_FLAG_SOM_LEFTMOST)) {
throw CompileError("HS_FLAG_QUIET is not supported in "
"combination with HS_FLAG_SOM_LEFTMOST.");
}
flags &= ~HS_FLAG_QUIET;
ParseMode mode(flags);
component = parse(expression, mode);
expr.utf8 = mode.utf8; /* utf8 may be set by parse() */
const size_t len = strlen(expression);
if (expr.utf8 && !isValidUtf8(expression, len)) {
throw ParseError("Expression is not valid UTF-8.");
}
if (!component) {
assert(0); // parse() should have thrown a ParseError.
throw ParseError("Parse error.");
}
if (flags & ~HS_FLAG_ALL) {
DEBUG_PRINTF("Unrecognised flag, flags=%u.\n", flags);
throw CompileError("Unrecognised flag.");
}
// FIXME: we disallow highlander + SOM, see UE-1850.
if ((flags & HS_FLAG_SINGLEMATCH) && (flags & HS_FLAG_SOM_LEFTMOST)) {
throw CompileError("HS_FLAG_SINGLEMATCH is not supported in "
"combination with HS_FLAG_SOM_LEFTMOST.");
}
// FIXME: we disallow prefilter + SOM, see UE-1899.
if ((flags & HS_FLAG_PREFILTER) && (flags & HS_FLAG_SOM_LEFTMOST)) {
throw CompileError("HS_FLAG_PREFILTER is not supported in "
"combination with HS_FLAG_SOM_LEFTMOST.");
}
// Set SOM type.
if (flags & HS_FLAG_SOM_LEFTMOST) {
expr.som = SOM_LEFT;
}
// Set extended parameters, if we have them.
if (ext) {
// Ensure that the given parameters make sense.
validateExt(*ext);
if (ext->flags & HS_EXT_FLAG_MIN_OFFSET) {
expr.min_offset = ext->min_offset;
}
if (ext->flags & HS_EXT_FLAG_MAX_OFFSET) {
expr.max_offset = ext->max_offset;
}
if (ext->flags & HS_EXT_FLAG_MIN_LENGTH) {
expr.min_length = ext->min_length;
}
if (ext->flags & HS_EXT_FLAG_EDIT_DISTANCE) {
expr.edit_distance = ext->edit_distance;
}
if (ext->flags & HS_EXT_FLAG_HAMMING_DISTANCE) {
expr.hamm_distance = ext->hamming_distance;
}
}
// These are validated in validateExt, so an error will already have been
// thrown if these conditions don't hold.
assert(expr.max_offset >= expr.min_offset);
assert(expr.max_offset >= expr.min_length);
// Since prefiltering and SOM aren't supported together, we must squash any
// min_length constraint as well.
if (flags & HS_FLAG_PREFILTER && expr.min_length) {
DEBUG_PRINTF("prefiltering mode: squashing min_length constraint\n");
expr.min_length = 0;
}
}
#if defined(DUMP_SUPPORT) || defined(DEBUG)
/**
* \brief Dumps the parse tree to screen in debug mode and to disk in dump
* mode.
*/
void dumpExpression(UNUSED const ParsedExpression &pe,
UNUSED const char *stage, UNUSED const Grey &grey) {
#if defined(DEBUG)
DEBUG_PRINTF("===== Rule ID: %u (expression index: %u) =====\n",
pe.expr.report, pe.expr.index);
ostringstream debug_tree;
dumpTree(debug_tree, pe.component.get());
printf("%s\n", debug_tree.str().c_str());
#endif // DEBUG
#if defined(DUMP_SUPPORT)
if (grey.dumpFlags & Grey::DUMP_PARSE) {
stringstream ss;
ss << grey.dumpPath << "Expr_" << pe.expr.index << "_componenttree_"
<< stage << ".txt";
ofstream out(ss.str().c_str());
out << "Component Tree for " << pe.expr.report << endl;
dumpTree(out, pe.component.get());
if (pe.expr.utf8) {
out << "UTF8 mode" << endl;
}
}
#endif // DEBUG
}
#endif
/** \brief Run Component tree optimisations on \a expr. */
static
void optimise(ParsedExpression &pe) {
if (pe.expr.min_length || pe.expr.som) {
return;
}
DEBUG_PRINTF("optimising\n");
pe.component->optimise(true /* root is connected to sds */);
}
void addExpression(NG &ng, unsigned index, const char *expression,
unsigned flags, const hs_expr_ext *ext, ReportID id) {
assert(expression);
const CompileContext &cc = ng.cc;
DEBUG_PRINTF("index=%u, id=%u, flags=%u, expr='%s'\n", index, id, flags,
expression);
if (flags & HS_FLAG_COMBINATION) {
if (flags & ~(HS_FLAG_COMBINATION | HS_FLAG_QUIET |
HS_FLAG_SINGLEMATCH)) {
throw CompileError("only HS_FLAG_QUIET and HS_FLAG_SINGLEMATCH "
"are supported in combination "
"with HS_FLAG_COMBINATION.");
}
if (flags & HS_FLAG_QUIET) {
DEBUG_PRINTF("skip QUIET logical combination expression %u\n", id);
} else {
u32 ekey = INVALID_EKEY;
u64a min_offset = 0;
u64a max_offset = MAX_OFFSET;
if (flags & HS_FLAG_SINGLEMATCH) {
ekey = ng.rm.getExhaustibleKey(id);
}
if (ext) {
validateExt(*ext);
if (ext->flags & ~(HS_EXT_FLAG_MIN_OFFSET |
HS_EXT_FLAG_MAX_OFFSET)) {
throw CompileError("only HS_EXT_FLAG_MIN_OFFSET and "
"HS_EXT_FLAG_MAX_OFFSET extra flags "
"are supported in combination "
"with HS_FLAG_COMBINATION.");
}
if (ext->flags & HS_EXT_FLAG_MIN_OFFSET) {
min_offset = ext->min_offset;
}
if (ext->flags & HS_EXT_FLAG_MAX_OFFSET) {
max_offset = ext->max_offset;
}
}
ng.rm.pl.parseLogicalCombination(id, expression, ekey, min_offset,
max_offset);
DEBUG_PRINTF("parsed logical combination expression %u\n", id);
}
return;
}
// Ensure that our pattern isn't too long (in characters).
size_t maxlen = cc.grey.limitPatternLength + 1;
if (strnlen(expression, maxlen) >= maxlen) {
throw CompileError("Pattern length exceeds limit.");
}
// Do per-expression processing: errors here will result in an exception
// being thrown up to our caller
ParsedExpression pe(index, expression, flags, id, ext);
dumpExpression(pe, "orig", cc.grey);
// Apply prefiltering transformations if desired.
if (pe.expr.prefilter) {
prefilterTree(pe.component, ParseMode(flags));
dumpExpression(pe, "prefiltered", cc.grey);
}
// Expressions containing zero-width assertions and other extended pcre
// types aren't supported yet. This call will throw a ParseError exception
// if the component tree contains such a construct.
checkUnsupported(*pe.component);
pe.component->checkEmbeddedStartAnchor(true);
pe.component->checkEmbeddedEndAnchor(true);
if (cc.grey.optimiseComponentTree) {
optimise(pe);
dumpExpression(pe, "opt", cc.grey);
}
DEBUG_PRINTF("component=%p, nfaId=%u, reportId=%u\n",
pe.component.get(), pe.expr.index, pe.expr.report);
// You can only use the SOM flags if you've also specified an SOM
// precision mode.
if (pe.expr.som != SOM_NONE && cc.streaming && !ng.ssm.somPrecision()) {
throw CompileError("To use a SOM expression flag in streaming mode, "
"an SOM precision mode (e.g. "
"HS_MODE_SOM_HORIZON_LARGE) must be specified.");
}
// If this expression is a literal, we can feed it directly to Rose rather
// than building the NFA graph.
if (shortcutLiteral(ng, pe)) {
DEBUG_PRINTF("took literal short cut\n");
return;
}
auto built_expr = buildGraph(ng.rm, cc, pe);
if (!built_expr.g) {
DEBUG_PRINTF("NFA build failed on ID %u, but no exception was "
"thrown.\n", pe.expr.report);
throw CompileError("Internal error.");
}
if (!pe.expr.allow_vacuous && matches_everywhere(*built_expr.g)) {
throw CompileError("Pattern matches empty buffer; use "
"HS_FLAG_ALLOWEMPTY to enable support.");
}
if (!ng.addGraph(built_expr.expr, std::move(built_expr.g))) {
DEBUG_PRINTF("NFA addGraph failed on ID %u.\n", pe.expr.report);
throw CompileError("Error compiling expression.");
}
}
void addLitExpression(NG &ng, unsigned index, const char *expression,
unsigned flags, const hs_expr_ext *ext, ReportID id,
size_t expLength) {
assert(expression);
const CompileContext &cc = ng.cc;
DEBUG_PRINTF("index=%u, id=%u, flags=%u, expr='%s', len='%zu'\n", index,
id, flags, expression, expLength);
// Extended parameters are not supported for pure literal patterns.
if (ext && ext->flags != 0LLU) {
throw CompileError("Extended parameters are not supported for pure "
"literal matching API.");
}
// Ensure that our pattern isn't too long (in characters).
if (expLength > cc.grey.limitPatternLength) {
throw CompileError("Pattern length exceeds limit.");
}
// filter out flags not supported by pure literal API.
u64a not_supported = HS_FLAG_DOTALL | HS_FLAG_ALLOWEMPTY | HS_FLAG_UTF8 |
HS_FLAG_UCP | HS_FLAG_PREFILTER | HS_FLAG_COMBINATION |
HS_FLAG_QUIET | HS_FLAG_MULTILINE;
if (flags & not_supported) {
throw CompileError("Only HS_FLAG_CASELESS, HS_FLAG_SINGLEMATCH and "
"HS_FLAG_SOM_LEFTMOST are supported in literal API.");
}
// This expression must be a pure literal, we can build ue2_literal
// directly based on expression text.
ParsedLitExpression ple(index, expression, expLength, flags, id);
// Feed the ue2_literal into Rose.
const auto &expr = ple.expr;
if (ng.addLiteral(ple.lit, expr.index, expr.report, expr.highlander,
expr.som, expr.quiet)) {
DEBUG_PRINTF("took pure literal\n");
return;
}
}
static
bytecode_ptr<RoseEngine> generateRoseEngine(NG &ng) {
const u32 minWidth =
ng.minWidth.is_finite() ? verify_u32(ng.minWidth) : ROSE_BOUND_INF;
auto rose = ng.rose->buildRose(minWidth);
if (!rose) {
DEBUG_PRINTF("error building rose\n");
assert(0);
return nullptr;
}
dumpReportManager(ng.rm, ng.cc.grey);
dumpSomSlotManager(ng.ssm, ng.cc.grey);
dumpSmallWrite(rose.get(), ng.cc.grey);
return rose;
}
platform_t target_to_platform(const target_t &target_info) {
platform_t p;
p = 0;
if (!target_info.has_avx2()) {
p |= HS_PLATFORM_NOAVX2;
}
if (!target_info.has_avx512()) {
p |= HS_PLATFORM_NOAVX512;
}
if (!target_info.has_avx512vbmi()) {
p |= HS_PLATFORM_NOAVX512VBMI;
}
return p;
}
/** \brief Encapsulate the given bytecode (RoseEngine) in a newly-allocated
* \ref hs_database, ensuring that it is padded correctly to give cacheline
* alignment. */
static
hs_database_t *dbCreate(const char *in_bytecode, size_t len, u64a platform) {
size_t db_len = sizeof(struct hs_database) + len;
DEBUG_PRINTF("db size %zu\n", db_len);
DEBUG_PRINTF("db platform %llx\n", platform);
struct hs_database *db = (struct hs_database *)hs_database_alloc(db_len);
if (hs_check_alloc(db) != HS_SUCCESS) {
hs_database_free(db);
return nullptr;
}
// So that none of our database is uninitialized
memset(db, 0, db_len);
// we need to align things manually
size_t shift = (uintptr_t)db->bytes & 0x3f;
DEBUG_PRINTF("shift is %zu\n", shift);
db->bytecode = offsetof(struct hs_database, bytes) - shift;
char *bytecode = (char *)db + db->bytecode;
assert(ISALIGNED_CL(bytecode));
db->magic = HS_DB_MAGIC;
db->version = HS_DB_VERSION;
db->length = len;
db->platform = platform;
// Copy bytecode
memcpy(bytecode, in_bytecode, len);
db->crc32 = Crc32c_ComputeBuf(0, bytecode, db->length);
return db;
}
struct hs_database *build(NG &ng, unsigned int *length, u8 pureFlag) {
assert(length);
auto rose = generateRoseEngine(ng);
struct RoseEngine *roseHead = rose.get();
roseHead->pureLiteral = pureFlag;
if (!rose) {
throw CompileError("Unable to generate bytecode.");
}
*length = rose.size();
if (!*length) {
DEBUG_PRINTF("RoseEngine has zero length\n");
assert(0);
throw CompileError("Internal error.");
}
const char *bytecode = (const char *)(rose.get());
const platform_t p = target_to_platform(ng.cc.target_info);
struct hs_database *db = dbCreate(bytecode, *length, p);
if (!db) {
throw CompileError("Could not allocate memory for bytecode.");
}
return db;
}
static
void stripFromPositions(vector<PositionInfo> &v, Position pos) {
auto removed = remove(v.begin(), v.end(), PositionInfo(pos));
v.erase(removed, v.end());
}
static
void connectInitialStates(GlushkovBuildState &bs,
const ParsedExpression &expr) {
vector<PositionInfo> initials = expr.component->first();
const NFABuilder &builder = bs.getBuilder();
const Position startState = builder.getStart();
const Position startDotStarState = builder.getStartDotStar();
DEBUG_PRINTF("wiring initials = %s\n",
dumpPositions(initials.begin(), initials.end()).c_str());
vector<PositionInfo> starts = {startState, startDotStarState};
// strip start and startDs, which can be present due to boundaries
stripFromPositions(initials, startState);
stripFromPositions(initials, startDotStarState);
// replace epsilons with accepts
for (const auto &s : initials) {
if (s.pos != GlushkovBuildState::POS_EPSILON) {
continue;
}
assert(starts.size() == 2); /* start, startds */
vector<PositionInfo> starts_temp = starts;
starts_temp[0].flags = s.flags;
starts_temp[1].flags = s.flags;
bs.connectAccepts(starts_temp);
}
if (!initials.empty()) {
bs.connectRegions(starts, initials);
}
}
static
void connectFinalStates(GlushkovBuildState &bs, const ParsedExpression &expr) {
vector<PositionInfo> finals = expr.component->last();
DEBUG_PRINTF("wiring finals = %s\n",
dumpPositions(finals.begin(), finals.end()).c_str());
bs.connectAccepts(finals);
}
#ifndef NDEBUG
static
bool isSupported(const Component &c) {
try {
checkUnsupported(c);
return true;
}
catch (ParseError &) {
return false;
}
}
#endif
BuiltExpression buildGraph(ReportManager &rm, const CompileContext &cc,
const ParsedExpression &pe) {
assert(isSupported(*pe.component));
const auto builder = makeNFABuilder(rm, cc, pe);
assert(builder);
// Set up START and ACCEPT states; retrieve the special states
const auto bs = makeGlushkovBuildState(*builder, pe.expr.prefilter);
// Map position IDs to characters/components
pe.component->notePositions(*bs);
// Wire the start dotstar state to the firsts
connectInitialStates(*bs, pe);
DEBUG_PRINTF("wire up body of expr\n");
// Build the rest of the FOLLOW set
vector<PositionInfo> initials = {builder->getStartDotStar(),
builder->getStart()};
pe.component->buildFollowSet(*bs, initials);
// Wire the lasts to the accept state
connectFinalStates(*bs, pe);
// Create our edges
bs->buildEdges();
BuiltExpression built_expr = builder->getGraph();
assert(built_expr.g);
dumpDotWrapper(*built_expr.g, built_expr.expr, "00_before_asserts",
cc.grey);
removeAssertVertices(rm, *built_expr.g, built_expr.expr);
return built_expr;
}
} // namespace ue2