vectorscan/src/util/arch/ppc64el/simd_utils.h
Apostolos Tapsas 35e5369c70 *fix palignr implementation for VSX Release mode
*add unit test for palignr
*enable unit test building for Release mode
2021-11-24 15:03:49 +00:00

483 lines
14 KiB
C

/*
* Copyright (c) 2015-2020, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief SIMD types and primitive operations.
*/
#ifndef ARCH_PPC64EL_SIMD_UTILS_H
#define ARCH_PPC64EL_SIMD_UTILS_H
#include <stdio.h>
#include "ue2common.h"
#include "util/simd_types.h"
#include "util/unaligned.h"
#include "util/intrinsics.h"
#include <string.h> // for memcpy
typedef __vector uint64_t uint64x2_t;
typedef __vector int64_t int64x2_t;
typedef __vector uint32_t uint32x4_t;
typedef __vector int32_t int32x4_t;
typedef __vector uint16_t uint16x8_t;
typedef __vector int16_t int16x8_t;
typedef __vector uint8_t uint8x16_t;
typedef __vector int8_t int8x16_t;
#define ZEROES_8 0, 0, 0, 0, 0, 0, 0, 0
#define ZEROES_31 ZEROES_8, ZEROES_8, ZEROES_8, 0, 0, 0, 0, 0, 0, 0
#define ZEROES_32 ZEROES_8, ZEROES_8, ZEROES_8, ZEROES_8
/** \brief LUT for the mask1bit functions. */
ALIGN_CL_DIRECTIVE static const u8 simd_onebit_masks[] = {
ZEROES_32, ZEROES_32,
ZEROES_31, 0x01, ZEROES_32,
ZEROES_31, 0x02, ZEROES_32,
ZEROES_31, 0x04, ZEROES_32,
ZEROES_31, 0x08, ZEROES_32,
ZEROES_31, 0x10, ZEROES_32,
ZEROES_31, 0x20, ZEROES_32,
ZEROES_31, 0x40, ZEROES_32,
ZEROES_31, 0x80, ZEROES_32,
ZEROES_32, ZEROES_32,
};
static really_inline m128 ones128(void) {
return (m128) vec_splat_u8(-1);
}
static really_inline m128 zeroes128(void) {
return (m128) vec_splat_s32(0);
}
/** \brief Bitwise not for m128*/
static really_inline m128 not128(m128 a) {
//return (m128)vec_xor(a, a);
return (m128) vec_xor(a,ones128());
}
/** \brief Return 1 if a and b are different otherwise 0 */
static really_inline int diff128(m128 a, m128 b) {
return vec_any_ne(a, b);
}
static really_inline int isnonzero128(m128 a) {
return !!diff128(a, zeroes128());
}
/**
* "Rich" version of diff128(). Takes two vectors a and b and returns a 4-bit
* mask indicating which 32-bit words contain differences.
*/
static really_inline u32 diffrich128(m128 a, m128 b) {
static const m128 movemask = { 1, 2, 4, 8 };
m128 mask = (m128) vec_cmpeq(a, b); // _mm_cmpeq_epi32 (a, b);
mask = vec_and(not128(mask), movemask);
m128 sum = vec_sums(mask, zeroes128());
//sum = vec_sld(zeroes128(), sum, 4);
//s32 ALIGN_ATTR(16) x;
//vec_ste(sum, 0, &x);
//return x; // it could be ~(movemask_128(mask)) & 0x;
return sum[3];
}
/**
* "Rich" version of diff128(), 64-bit variant. Takes two vectors a and b and
* returns a 4-bit mask indicating which 64-bit words contain differences.
*/
static really_inline u32 diffrich64_128(m128 a, m128 b) {
static const uint64x2_t movemask = { 1, 4 };
uint64x2_t mask = (uint64x2_t) vec_cmpeq((uint64x2_t)a, (uint64x2_t)b);
mask = (uint64x2_t) vec_and((uint64x2_t)not128((m128)mask), movemask);
m128 sum = vec_sums((m128)mask, zeroes128());
//sum = vec_sld(zeroes128(), sum, 4);
//s32 ALIGN_ATTR(16) x;
//vec_ste(sum, 0, &x);
//return x;
return sum[3];
}
static really_really_inline
m128 add_2x64(m128 a, m128 b) {
return (m128) vec_add((uint64x2_t)a, (uint64x2_t)b);
}
static really_really_inline
m128 sub_2x64(m128 a, m128 b) {
return (m128) vec_sub((uint64x2_t)a, (uint64x2_t)b);
}
static really_really_inline
m128 lshift_m128(m128 a, unsigned b) {
switch(b){
case 1: return vec_sld(a, zeroes128(), 1); break;
case 2: return vec_sld(a, zeroes128(), 2); break;
case 3: return vec_sld(a, zeroes128(), 3); break;
case 4: return vec_sld(a, zeroes128(), 4); break;
case 5: return vec_sld(a, zeroes128(), 5); break;
case 6: return vec_sld(a, zeroes128(), 6); break;
case 7: return vec_sld(a, zeroes128(), 7); break;
case 8: return vec_sld(a, zeroes128(), 8); break;
case 9: return vec_sld(a, zeroes128(), 9); break;
case 10: return vec_sld(a, zeroes128(), 10); break;
case 11: return vec_sld(a, zeroes128(), 11); break;
case 12: return vec_sld(a, zeroes128(), 12); break;
case 13: return vec_sld(a, zeroes128(), 13); break;
case 14: return vec_sld(a, zeroes128(), 14); break;
case 15: return vec_sld(a, zeroes128(), 15); break;
}
return a;
}
static really_really_inline
m128 rshift_m128(m128 a, unsigned b) {
switch(b){
case 1: return vec_sld(zeroes128(), a, 15); break;
case 2: return vec_sld(zeroes128(), a, 14); break;
case 3: return vec_sld(zeroes128(), a, 13); break;
case 4: return vec_sld(zeroes128(), a, 12); break;
case 5: return vec_sld(zeroes128(), a, 11); break;
case 6: return vec_sld(zeroes128(), a, 10); break;
case 7: return vec_sld(zeroes128(), a, 9); break;
case 8: return vec_sld(zeroes128(), a, 8); break;
case 9: return vec_sld(zeroes128(), a, 7); break;
case 10: return vec_sld(zeroes128(), a, 6); break;
case 11: return vec_sld(zeroes128(), a, 5); break;
case 12: return vec_sld(zeroes128(), a, 4); break;
case 13: return vec_sld(zeroes128(), a, 3); break;
case 14: return vec_sld(zeroes128(), a, 2); break;
case 15: return vec_sld(zeroes128(), a, 1); break;
}
return a;
}
static really_really_inline
m128 lshift64_m128(m128 a, unsigned b) {
uint64x2_t shift_indices = vec_splats((uint64_t)b);
return (m128) vec_sl((int64x2_t)a, shift_indices);
}
static really_really_inline
m128 rshift64_m128(m128 a, unsigned b) {
uint64x2_t shift_indices = vec_splats((uint64_t)b);
return (m128) vec_sr((int64x2_t)a, shift_indices);
}
static really_inline m128 eq128(m128 a, m128 b) {
return (m128) vec_cmpeq((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline m128 eq64_m128(m128 a, m128 b) {
return (m128) vec_cmpeq((uint64x2_t)a, (uint64x2_t)b);
}
static really_inline u32 movemask128(m128 a) {
uint8x16_t s1 = vec_sr((uint8x16_t)a, vec_splat_u8(7));
uint16x8_t ss = vec_sr((uint16x8_t)s1, vec_splat_u16(7));
uint16x8_t res_and = vec_and((uint16x8_t)s1, vec_splats((uint16_t)0xff));
uint16x8_t s2 = vec_or((uint16x8_t)ss, res_and);
uint32x4_t ss2 = vec_sr((uint32x4_t)s2, vec_splat_u32(14));
uint32x4_t res_and2 = vec_and((uint32x4_t)s2, vec_splats((uint32_t)0xff));
uint32x4_t s3 = vec_or((uint32x4_t)ss2, res_and2);
uint64x2_t ss3 = vec_sr((uint64x2_t)s3, (uint64x2_t)vec_splats(28));
uint64x2_t res_and3 = vec_and((uint64x2_t)s3, vec_splats((uint64_t)0xff));
uint64x2_t s4 = vec_or((uint64x2_t)ss3, res_and3);
uint64x2_t ss4 = vec_sld((uint64x2_t)vec_splats(0), s4, 9);
uint64x2_t res_and4 = vec_and((uint64x2_t)s4, vec_splats((uint64_t)0xff));
uint64x2_t s5 = vec_or((uint64x2_t)ss4, res_and4);
return s5[0];
}
static really_inline m128 set1_16x8(u8 c) {
return (m128) vec_splats(c);
}
static really_inline m128 set1_4x32(u32 c) {
return (m128) vec_splats(c);
}
static really_inline m128 set1_2x64(u64a c) {
return (m128) vec_splats(c);
}
static really_inline u32 movd(const m128 in) {
return (u32) vec_extract((uint32x4_t)in, 0);
}
static really_inline u64a movq(const m128 in) {
u64a ALIGN_ATTR(16) a[2];
vec_xst((uint64x2_t) in, 0, a);
return a[0];
}
/* another form of movq */
static really_inline
m128 load_m128_from_u64a(const u64a *p) {
m128 vec =(m128) vec_splats(*p);
return rshift_m128(vec,8);
}
static really_inline u32 extract32from128(const m128 in, unsigned imm) {
u32 ALIGN_ATTR(16) a[4];
vec_xst((uint32x4_t) in, 0, a);
switch (imm) {
case 0:
return a[0];break;
case 1:
return a[1];break;
case 2:
return a[2];break;
case 3:
return a[3];break;
default:
return 0;break;
}
}
static really_inline u64a extract64from128(const m128 in, unsigned imm) {
u64a ALIGN_ATTR(16) a[2];
vec_xst((uint64x2_t) in, 0, a);
switch (imm) {
case 0:
return a[0];break;
case 1:
return a[1];break;
default:
return 0;
break;
}
}
static really_inline m128 low64from128(const m128 in) {
return rshift_m128(in,8);
}
static really_inline m128 high64from128(const m128 in) {
return lshift_m128(in,8);
}
static really_inline m128 add128(m128 a, m128 b) {
return (m128) vec_add((uint64x2_t)a, (uint64x2_t)b);
}
static really_inline m128 and128(m128 a, m128 b) {
return (m128) vec_and((int8x16_t)a, (int8x16_t)b);
}
static really_inline m128 xor128(m128 a, m128 b) {
return (m128) vec_xor((int8x16_t)a, (int8x16_t)b);
}
static really_inline m128 or128(m128 a, m128 b) {
return (m128) vec_or((int8x16_t)a, (int8x16_t)b);
}
static really_inline m128 andnot128(m128 a, m128 b) {
return (m128) and128(not128(a),b);
}
// aligned load
static really_inline m128 load128(const void *ptr) {
assert(ISALIGNED_N(ptr, alignof(m128)));
return (m128) vec_xl(0, (const int32_t*)ptr);
}
// aligned store
static really_inline void store128(void *ptr, m128 a) {
assert(ISALIGNED_N(ptr, alignof(m128)));
vec_st(a, 0, (int32_t*)ptr);
}
// unaligned load
static really_inline m128 loadu128(const void *ptr) {
return (m128) vec_xl(0, (const int32_t*)ptr);
}
// unaligned store
static really_inline void storeu128(void *ptr, m128 a) {
vec_xst(a, 0, (int32_t*)ptr);
}
// packed unaligned store of first N bytes
static really_inline
void storebytes128(void *ptr, m128 a, unsigned int n) {
assert(n <= sizeof(a));
memcpy(ptr, &a, n);
}
// packed unaligned load of first N bytes, pad with zero
static really_inline
m128 loadbytes128(const void *ptr, unsigned int n) {
m128 a = zeroes128();
assert(n <= sizeof(a));
memcpy(&a, ptr, n);
return a;
}
#define CASE_ALIGN_VECTORS(a, b, offset) case offset: return (m128)vec_sld((int8x16_t)(b), (int8x16_t)(a), (16 - offset)); break;
static really_really_inline
m128 palignr_imm(m128 r, m128 l, int offset) {
switch (offset) {
case 0: return l; break;
CASE_ALIGN_VECTORS(l, r, 1);
CASE_ALIGN_VECTORS(l, r, 2);
CASE_ALIGN_VECTORS(l, r, 3);
CASE_ALIGN_VECTORS(l, r, 4);
CASE_ALIGN_VECTORS(l, r, 5);
CASE_ALIGN_VECTORS(l, r, 6);
CASE_ALIGN_VECTORS(l, r, 7);
CASE_ALIGN_VECTORS(l, r, 8);
CASE_ALIGN_VECTORS(l, r, 9);
CASE_ALIGN_VECTORS(l, r, 10);
CASE_ALIGN_VECTORS(l, r, 11);
CASE_ALIGN_VECTORS(l, r, 12);
CASE_ALIGN_VECTORS(l, r, 13);
CASE_ALIGN_VECTORS(l, r, 14);
CASE_ALIGN_VECTORS(l, r, 15);
case 16: return r; break;
default: return zeroes128(); break;
}
}
static really_really_inline
m128 palignr(m128 r, m128 l, int offset) {
#if defined(HS_OPTIMIZE)
// need a faster way to do this.
return palignr_imm(r, l, offset);
#else
return palignr_imm(r, l, offset);
#endif
}
#undef CASE_ALIGN_VECTORS
static really_really_inline
m128 rshiftbyte_m128(m128 a, unsigned b) {
return rshift_m128(a,b);
}
static really_really_inline
m128 lshiftbyte_m128(m128 a, unsigned b) {
return lshift_m128(a,b);
}
static really_inline
m128 variable_byte_shift_m128(m128 in, s32 amount) {
assert(amount >= -16 && amount <= 16);
if (amount < 0){
return palignr_imm(zeroes128(), in, -amount);
} else{
return palignr_imm(in, zeroes128(), 16 - amount);
}
}
static really_inline
m128 mask1bit128(unsigned int n) {
assert(n < sizeof(m128) * 8);
u32 mask_idx = ((n % 8) * 64) + 95;
mask_idx -= n / 8;
return loadu128(&simd_onebit_masks[mask_idx]);
}
// switches on bit N in the given vector.
static really_inline
void setbit128(m128 *ptr, unsigned int n) {
*ptr = or128(mask1bit128(n), *ptr);
}
// switches off bit N in the given vector.
static really_inline
void clearbit128(m128 *ptr, unsigned int n) {
*ptr = andnot128(mask1bit128(n), *ptr);
}
// tests bit N in the given vector.
static really_inline
char testbit128(m128 val, unsigned int n) {
const m128 mask = mask1bit128(n);
return isnonzero128(and128(mask, val));
}
static really_inline
m128 pshufb_m128(m128 a, m128 b) {
/* On Intel, if bit 0x80 is set, then result is zero, otherwise which the lane it is &0xf.
In NEON or PPC, if >=16, then the result is zero, otherwise it is that lane.
below is the version that is converted from Intel to PPC. */
uint8x16_t mask =(uint8x16_t)vec_cmpge((uint8x16_t)b, (uint8x16_t)vec_splats((uint8_t)0x80));
uint8x16_t res = vec_perm ((uint8x16_t)a, (uint8x16_t)a, (uint8x16_t)b);
return (m128) vec_sel((uint8x16_t)res, (uint8x16_t)zeroes128(), (uint8x16_t)mask);
}
static really_inline
m128 max_u8_m128(m128 a, m128 b) {
return (m128) vec_max((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 min_u8_m128(m128 a, m128 b) {
return (m128) vec_min((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 sadd_u8_m128(m128 a, m128 b) {
return (m128) vec_adds((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 sub_u8_m128(m128 a, m128 b) {
return (m128) vec_sub((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 set4x32(u32 x3, u32 x2, u32 x1, u32 x0) {
uint32x4_t v = { x0, x1, x2, x3 };
return (m128) v;
}
static really_inline
m128 set2x64(u64a hi, u64a lo) {
uint64x2_t v = { lo, hi };
return (m128) v;
}
#endif // ARCH_PPC64EL_SIMD_UTILS_H