vectorscan/src/nfagraph/ng_mcclellan.cpp
2016-12-02 11:31:33 +11:00

617 lines
19 KiB
C++

/*
* Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Build code for McClellan DFA.
*/
#include "ng_mcclellan.h"
#include "grey.h"
#include "nfa/dfa_min.h"
#include "nfa/rdfa.h"
#include "ng_holder.h"
#include "ng_mcclellan_internal.h"
#include "ng_squash.h"
#include "ng_util.h"
#include "ue2common.h"
#include "util/bitfield.h"
#include "util/determinise.h"
#include "util/graph_range.h"
#include "util/make_unique.h"
#include "util/report_manager.h"
#include "util/ue2_containers.h"
#include <algorithm>
#include <functional>
#include <map>
#include <set>
#include <vector>
#include <boost/dynamic_bitset.hpp>
using namespace std;
using boost::dynamic_bitset;
namespace ue2 {
#define FINAL_DFA_STATE_LIMIT 16383
#define DFA_STATE_LIMIT 1024
#define NFA_STATE_LIMIT 256
u16 buildAlphabetFromEquivSets(const std::vector<CharReach> &esets,
array<u16, ALPHABET_SIZE> &alpha,
array<u16, ALPHABET_SIZE> &unalpha) {
u16 i = 0;
for (; i < esets.size(); i++) {
const CharReach &cr = esets[i];
#ifdef DEBUG
DEBUG_PRINTF("eq set: ");
for (size_t s = cr.find_first(); s != CharReach::npos;
s = cr.find_next(s)) {
printf("%02hhx ", (u8)s);
}
printf("-> %u\n", i);
#endif
u16 leader = cr.find_first();
for (size_t s = cr.find_first(); s != CharReach::npos;
s = cr.find_next(s)) {
alpha[s] = i;
}
unalpha[i] = leader;
}
for (u16 j = N_CHARS; j < ALPHABET_SIZE; j++, i++) {
alpha[j] = i;
unalpha[i] = j;
}
return i; // alphabet size
}
void calculateAlphabet(const NGHolder &g, array<u16, ALPHABET_SIZE> &alpha,
array<u16, ALPHABET_SIZE> &unalpha, u16 *alphasize) {
vector<CharReach> esets(1, CharReach::dot());
for (auto v : vertices_range(g)) {
if (is_special(v, g)) {
continue;
}
const CharReach &cr = g[v].char_reach;
for (size_t i = 0; i < esets.size(); i++) {
if (esets[i].count() == 1) {
continue;
}
CharReach t = cr & esets[i];
if (t.any() && t != esets[i]) {
esets[i] &= ~t;
esets.push_back(t);
}
}
}
// for deterministic compiles
sort(esets.begin(), esets.end());
assert(alphasize);
*alphasize = buildAlphabetFromEquivSets(esets, alpha, unalpha);
}
static
bool allExternalReports(const ReportManager &rm,
const flat_set<ReportID> &reports) {
for (auto report_id : reports) {
if (!isExternalReport(rm.getReport(report_id))) {
return false;
}
}
return true;
}
static
dstate_id_t successor(const vector<dstate> &dstates, dstate_id_t c,
const array<u16, ALPHABET_SIZE> &alpha, symbol_t s) {
return dstates[c].next[alpha[s]];
}
void getFullTransitionFromState(const raw_dfa &n, dstate_id_t state,
dstate_id_t *out_table) {
for (u32 i = 0; i < ALPHABET_SIZE; i++) {
out_table[i] = successor(n.states, state, n.alpha_remap, i);
}
}
template<typename stateset>
static
void populateInit(const NGHolder &g, const flat_set<NFAVertex> &unused,
stateset *init, stateset *init_deep,
vector<NFAVertex> *v_by_index) {
for (auto v : vertices_range(g)) {
if (contains(unused, v)) {
continue;
}
u32 vert_id = g[v].index;
assert(vert_id < init->size());
if (is_any_start(v, g)) {
init->set(vert_id);
if (hasSelfLoop(v, g) || is_triggered(g)) {
DEBUG_PRINTF("setting %u\n", vert_id);
init_deep->set(vert_id);
}
}
}
v_by_index->clear();
v_by_index->resize(num_vertices(g), NGHolder::null_vertex());
for (auto v : vertices_range(g)) {
u32 vert_id = g[v].index;
assert((*v_by_index)[vert_id] == NGHolder::null_vertex());
(*v_by_index)[vert_id] = v;
}
if (is_triggered(g)) {
*init_deep = *init;
}
}
template<typename StateSet>
void populateAccepts(const NGHolder &g, const flat_set<NFAVertex> &unused,
StateSet *accept, StateSet *acceptEod) {
for (auto v : inv_adjacent_vertices_range(g.accept, g)) {
if (contains(unused, v)) {
continue;
}
accept->set(g[v].index);
}
for (auto v : inv_adjacent_vertices_range(g.acceptEod, g)) {
if (v == g.accept) {
continue;
}
if (contains(unused, v)) {
continue;
}
acceptEod->set(g[v].index);
}
}
static
bool canPruneEdgesFromAccept(const ReportManager &rm, const NGHolder &g) {
bool seen = false;
u32 ekey = 0;
for (auto v : inv_adjacent_vertices_range(g.accept, g)) {
if (is_special(v, g)) {
continue;
}
for (auto report_id : g[v].reports) {
const Report &ir = rm.getReport(report_id);
if (!isSimpleExhaustible(ir)) {
return false;
}
if (!seen) {
seen = true;
ekey = ir.ekey;
} else if (ekey != ir.ekey) {
return false;
}
}
}
/* need to check accept eod does not have any unseen reports as well */
for (auto v : inv_adjacent_vertices_range(g.acceptEod, g)) {
if (is_special(v, g)) {
continue;
}
for (auto report_id : g[v].reports) {
const Report &ir = rm.getReport(report_id);
if (!isSimpleExhaustible(ir)) {
return false;
}
if (!seen) {
seen = true;
ekey = ir.ekey;
} else if (ekey != ir.ekey) {
return false;
}
}
}
return true;
}
static
bool overhangMatchesTrigger(const vector<vector<CharReach> > &all_triggers,
vector<CharReach>::const_reverse_iterator itb,
vector<CharReach>::const_reverse_iterator ite) {
for (const auto &trigger : all_triggers) {
vector<CharReach>::const_reverse_iterator it = itb;
vector<CharReach>::const_reverse_iterator kt = trigger.rbegin();
for (; it != ite && kt != trigger.rend(); ++it, ++kt) {
if ((*it & *kt).none()) {
/* this trigger does not match the overhang, try next */
goto try_next_trigger;
}
}
return true;
try_next_trigger:;
}
return false; /* no trigger matches the over hang */
}
static
bool triggerAllowed(const NGHolder &g, const NFAVertex v,
const vector<vector<CharReach> > &all_triggers,
const vector<CharReach> &trigger) {
set<NFAVertex> curr;
set<NFAVertex> next;
curr.insert(v);
for (auto it = trigger.rbegin(); it != trigger.rend(); ++it) {
next.clear();
for (auto u : curr) {
assert(u != g.startDs); /* triggered graphs should not use sds */
if (u == g.start) {
if (overhangMatchesTrigger(all_triggers, it, trigger.rend())) {
return true;
}
continue;
}
if ((g[u].char_reach & *it).none()) {
continue;
}
insert(&next, inv_adjacent_vertices(u, g));
}
if (next.empty()) {
return false;
}
next.swap(curr);
}
return true;
}
void markToppableStarts(const NGHolder &g, const flat_set<NFAVertex> &unused,
bool single_trigger,
const vector<vector<CharReach>> &triggers,
dynamic_bitset<> *out) {
if (single_trigger) {
return; /* no live states can lead to new states */
}
for (auto v : vertices_range(g)) {
if (contains(unused, v)) {
continue;
}
for (const auto &trigger : triggers) {
if (triggerAllowed(g, v, triggers, trigger)) {
DEBUG_PRINTF("idx %zu is valid location for top\n", g[v].index);
out->set(g[v].index);
break;
}
}
}
assert(out->test(g[g.start].index));
}
namespace {
template<typename Automaton_Traits>
class Automaton_Base {
public:
using StateSet = typename Automaton_Traits::StateSet;
using StateMap = typename Automaton_Traits::StateMap;
Automaton_Base(const ReportManager *rm_in, const NGHolder &graph_in,
bool single_trigger,
const vector<vector<CharReach>> &triggers, bool prunable_in)
: rm(rm_in), graph(graph_in), numStates(num_vertices(graph)),
unused(getRedundantStarts(graph_in)),
init(Automaton_Traits::init_states(numStates)),
initDS(Automaton_Traits::init_states(numStates)),
squash(Automaton_Traits::init_states(numStates)),
accept(Automaton_Traits::init_states(numStates)),
acceptEod(Automaton_Traits::init_states(numStates)),
toppable(Automaton_Traits::init_states(numStates)),
dead(Automaton_Traits::init_states(numStates)),
prunable(prunable_in) {
populateInit(graph, unused, &init, &initDS, &v_by_index);
populateAccepts(graph, unused, &accept, &acceptEod);
start_anchored = DEAD_STATE + 1;
if (initDS == init) {
start_floating = start_anchored;
} else if (initDS.any()) {
start_floating = start_anchored + 1;
} else {
start_floating = DEAD_STATE;
}
calculateAlphabet(graph, alpha, unalpha, &alphasize);
for (const auto &sq : findSquashers(graph)) {
NFAVertex v = sq.first;
u32 vert_id = graph[v].index;
squash.set(vert_id);
squash_mask[vert_id] = shrinkStateSet(sq.second);
}
cr_by_index = populateCR(graph, v_by_index, alpha);
if (is_triggered(graph)) {
dynamic_bitset<> temp(numStates);
markToppableStarts(graph, unused, single_trigger, triggers,
&temp);
toppable = Automaton_Traits::copy_states(temp, numStates);
}
}
private:
// Convert an NFAStateSet (as used by the squash code) into a StateSet
StateSet shrinkStateSet(const NFAStateSet &in) const {
StateSet out = Automaton_Traits::init_states(numStates);
for (size_t i = in.find_first(); i != in.npos && i < out.size();
i = in.find_next(i)) {
out.set(i);
}
return out;
}
public:
void transition(const StateSet &in, StateSet *next) {
transition_graph(*this, v_by_index, in, next);
}
const vector<StateSet> initial() {
vector<StateSet> rv = {init};
if (start_floating != DEAD_STATE && start_floating != start_anchored) {
rv.push_back(initDS);
}
return rv;
}
private:
void reports_i(const StateSet &in, bool eod, flat_set<ReportID> &rv) {
StateSet acc = in & (eod ? acceptEod : accept);
for (size_t i = acc.find_first(); i != StateSet::npos;
i = acc.find_next(i)) {
NFAVertex v = v_by_index[i];
DEBUG_PRINTF("marking report\n");
const auto &my_reports = graph[v].reports;
rv.insert(my_reports.begin(), my_reports.end());
}
}
public:
void reports(const StateSet &in, flat_set<ReportID> &rv) {
reports_i(in, false, rv);
}
void reportsEod(const StateSet &in, flat_set<ReportID> &rv) {
reports_i(in, true, rv);
}
bool canPrune(const flat_set<ReportID> &test_reports) const {
if (!rm || !prunable || !canPruneEdgesFromAccept(*rm, graph)) {
return false;
}
return allExternalReports(*rm, test_reports);
}
private:
const ReportManager *rm;
public:
const NGHolder &graph;
u32 numStates;
const flat_set<NFAVertex> unused;
vector<NFAVertex> v_by_index;
vector<CharReach> cr_by_index; /* pre alpha'ed */
StateSet init;
StateSet initDS;
StateSet squash; /* states which allow us to mask out other states */
StateSet accept;
StateSet acceptEod;
StateSet toppable; /* states which are allowed to be on when a top arrives,
* triggered dfas only */
StateSet dead;
map<u32, StateSet> squash_mask;
bool prunable;
array<u16, ALPHABET_SIZE> alpha;
array<u16, ALPHABET_SIZE> unalpha;
u16 alphasize;
u16 start_anchored;
u16 start_floating;
};
struct Big_Traits {
using StateSet = dynamic_bitset<>;
using StateMap = map<StateSet, dstate_id_t>;
static StateSet init_states(u32 num) {
return StateSet(num);
}
static StateSet copy_states(const dynamic_bitset<> &in, UNUSED u32 num) {
assert(in.size() == num);
return in;
}
};
class Automaton_Big : public Automaton_Base<Big_Traits> {
public:
Automaton_Big(const ReportManager *rm_in, const NGHolder &graph_in,
bool single_trigger,
const vector<vector<CharReach>> &triggers, bool prunable_in)
: Automaton_Base(rm_in, graph_in, single_trigger, triggers,
prunable_in) {}
};
struct Graph_Traits {
using StateSet = bitfield<NFA_STATE_LIMIT>;
using StateMap = ue2::unordered_map<StateSet, dstate_id_t>;
static StateSet init_states(UNUSED u32 num) {
assert(num <= NFA_STATE_LIMIT);
return StateSet();
}
static StateSet copy_states(const dynamic_bitset<> &in, u32 num) {
StateSet out = init_states(num);
for (size_t i = in.find_first(); i != in.npos && i < out.size();
i = in.find_next(i)) {
out.set(i);
}
return out;
}
};
class Automaton_Graph : public Automaton_Base<Graph_Traits> {
public:
Automaton_Graph(const ReportManager *rm_in, const NGHolder &graph_in,
bool single_trigger,
const vector<vector<CharReach>> &triggers, bool prunable_in)
: Automaton_Base(rm_in, graph_in, single_trigger, triggers,
prunable_in) {}
};
} // namespace
static
bool startIsRedundant(const NGHolder &g) {
set<NFAVertex> start;
set<NFAVertex> startDs;
insert(&start, adjacent_vertices(g.start, g));
insert(&startDs, adjacent_vertices(g.startDs, g));
return start == startDs;
}
flat_set<NFAVertex> getRedundantStarts(const NGHolder &g) {
flat_set<NFAVertex> dead;
if (startIsRedundant(g)) {
dead.insert(g.start);
}
if (proper_out_degree(g.startDs, g) == 0) {
dead.insert(g.startDs);
}
return dead;
}
unique_ptr<raw_dfa> buildMcClellan(const NGHolder &graph,
const ReportManager *rm, bool single_trigger,
const vector<vector<CharReach>> &triggers,
const Grey &grey, bool finalChance) {
if (!grey.allowMcClellan) {
return nullptr;
}
DEBUG_PRINTF("attempting to build ?%d? mcclellan\n", (int)graph.kind);
assert(allMatchStatesHaveReports(graph));
bool prunable = grey.highlanderPruneDFA && has_managed_reports(graph);
assert(rm || !has_managed_reports(graph));
if (!has_managed_reports(graph)) {
rm = nullptr;
}
assert(triggers.empty() == !is_triggered(graph));
/* We must be getting desperate if it is an outfix, so use the final chance
* state limit logic */
u32 state_limit
= (graph.kind == NFA_OUTFIX || finalChance) ? FINAL_DFA_STATE_LIMIT
: DFA_STATE_LIMIT;
unique_ptr<raw_dfa> rdfa = ue2::make_unique<raw_dfa>(graph.kind);
const u32 numStates = num_vertices(graph);
DEBUG_PRINTF("determinising nfa with %u vertices\n", numStates);
if (numStates <= NFA_STATE_LIMIT) {
/* Fast path. Automaton_Graph uses a bitfield internally to represent
* states and is quicker than Automaton_Big. */
Automaton_Graph n(rm, graph, single_trigger, triggers, prunable);
if (determinise(n, rdfa->states, state_limit)) {
DEBUG_PRINTF("state limit exceeded\n");
return nullptr; /* over state limit */
}
rdfa->start_anchored = n.start_anchored;
rdfa->start_floating = n.start_floating;
rdfa->alpha_size = n.alphasize;
rdfa->alpha_remap = n.alpha;
} else {
/* Slow path. Too many states to use Automaton_Graph. */
Automaton_Big n(rm, graph, single_trigger, triggers, prunable);
if (determinise(n, rdfa->states, state_limit)) {
DEBUG_PRINTF("state limit exceeded\n");
return nullptr; /* over state limit */
}
rdfa->start_anchored = n.start_anchored;
rdfa->start_floating = n.start_floating;
rdfa->alpha_size = n.alphasize;
rdfa->alpha_remap = n.alpha;
}
minimize_hopcroft(*rdfa, grey);
DEBUG_PRINTF("after determinised into %zu states, building impl dfa "
"(a,f) = (%hu,%hu)\n", rdfa->states.size(),
rdfa->start_anchored, rdfa->start_floating);
return rdfa;
}
unique_ptr<raw_dfa> buildMcClellan(const NGHolder &g, const ReportManager *rm,
const Grey &grey) {
assert(!is_triggered(g));
vector<vector<CharReach>> triggers;
return buildMcClellan(g, rm, false, triggers, grey);
}
} // namespace ue2