vectorscan/src/rose/program_runtime.c

3174 lines
120 KiB
C

/*
* Copyright (c) 2015-2019, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
* \brief Rose runtime: program interpreter.
*/
#include "program_runtime.h"
#include "catchup.h"
#include "counting_miracle.h"
#include "infix.h"
#include "match.h"
#include "miracle.h"
#include "report.h"
#include "rose_common.h"
#include "rose_internal.h"
#include "rose_program.h"
#include "rose_types.h"
#include "validate_mask.h"
#include "validate_shufti.h"
#include "runtime.h"
#include "util/compare.h"
#include "util/copybytes.h"
#include "util/fatbit.h"
#include "util/multibit.h"
/* Inline implementation follows. */
static rose_inline
void rosePushDelayedMatch(const struct RoseEngine *t,
struct hs_scratch *scratch, u32 delay,
u32 delay_index, u64a offset) {
assert(delay);
const u32 src_slot_index = delay;
u32 slot_index = (src_slot_index + offset) & DELAY_MASK;
struct RoseContext *tctxt = &scratch->tctxt;
if (offset + src_slot_index <= tctxt->delayLastEndOffset) {
DEBUG_PRINTF("skip too late\n");
return;
}
const u32 delay_count = t->delay_count;
struct fatbit **delaySlots = getDelaySlots(scratch);
struct fatbit *slot = delaySlots[slot_index];
DEBUG_PRINTF("pushing tab %u into slot %u\n", delay_index, slot_index);
if (!(tctxt->filledDelayedSlots & (1U << slot_index))) {
tctxt->filledDelayedSlots |= 1U << slot_index;
fatbit_clear(slot);
}
fatbit_set(slot, delay_count, delay_index);
}
static rose_inline
void recordAnchoredLiteralMatch(const struct RoseEngine *t,
struct hs_scratch *scratch, u32 anch_id,
u64a end) {
assert(end);
if (end <= t->floatingMinLiteralMatchOffset) {
return;
}
struct fatbit **anchoredLiteralRows = getAnchoredLiteralLog(scratch);
DEBUG_PRINTF("record %u (of %u) @ %llu\n", anch_id, t->anchored_count, end);
if (!bf64_set(&scratch->al_log_sum, end - 1)) {
// first time, clear row
DEBUG_PRINTF("clearing %llu/%u\n", end - 1, t->anchored_count);
fatbit_clear(anchoredLiteralRows[end - 1]);
}
assert(anch_id < t->anchored_count);
fatbit_set(anchoredLiteralRows[end - 1], t->anchored_count, anch_id);
}
static rose_inline
char roseLeftfixCheckMiracles(const struct RoseEngine *t,
const struct LeftNfaInfo *left,
struct core_info *ci, struct mq *q, u64a end,
const char is_infix) {
if (!is_infix && left->transient) {
// Miracles won't help us with transient leftfix engines; they only
// scan for a limited time anyway.
return 1;
}
if (!left->stopTable) {
return 1;
}
DEBUG_PRINTF("looking for miracle on queue %u\n", q->nfa->queueIndex);
const s64a begin_loc = q_cur_loc(q);
const s64a end_loc = end - ci->buf_offset;
s64a miracle_loc;
if (roseMiracleOccurs(t, left, ci, begin_loc, end_loc, &miracle_loc)) {
goto found_miracle;
}
if (roseCountingMiracleOccurs(t, left, ci, begin_loc, end_loc,
&miracle_loc)) {
goto found_miracle;
}
return 1;
found_miracle:
DEBUG_PRINTF("miracle at %lld\n", miracle_loc);
assert(miracle_loc >= begin_loc);
// If we're a prefix, then a miracle effectively results in us needing to
// re-init our state and start fresh.
if (!is_infix) {
if (miracle_loc != begin_loc) {
DEBUG_PRINTF("re-init prefix state\n");
q->cur = q->end = 0;
pushQueueAt(q, 0, MQE_START, miracle_loc);
pushQueueAt(q, 1, MQE_TOP, miracle_loc);
nfaQueueInitState(q->nfa, q);
}
return 1;
}
// Otherwise, we're an infix. Remove tops before the miracle from the queue
// and re-init at that location.
q_skip_forward_to(q, miracle_loc);
if (q_last_type(q) == MQE_START) {
DEBUG_PRINTF("miracle caused infix to die\n");
return 0;
}
DEBUG_PRINTF("re-init infix state\n");
assert(q->items[q->cur].type == MQE_START);
q->items[q->cur].location = miracle_loc;
nfaQueueInitState(q->nfa, q);
return 1;
}
static rose_inline
hwlmcb_rv_t roseTriggerSuffix(const struct RoseEngine *t,
struct hs_scratch *scratch, u32 qi, u32 top,
u64a som, u64a end) {
DEBUG_PRINTF("suffix qi=%u, top event=%u\n", qi, top);
struct core_info *ci = &scratch->core_info;
u8 *aa = getActiveLeafArray(t, ci->state);
const u32 aaCount = t->activeArrayCount;
const u32 qCount = t->queueCount;
struct mq *q = &scratch->queues[qi];
const struct NfaInfo *info = getNfaInfoByQueue(t, qi);
const struct NFA *nfa = getNfaByInfo(t, info);
s64a loc = (s64a)end - ci->buf_offset;
assert(loc <= (s64a)ci->len && loc >= -(s64a)ci->hlen);
if (!mmbit_set(aa, aaCount, qi)) {
initQueue(q, qi, t, scratch);
nfaQueueInitState(nfa, q);
pushQueueAt(q, 0, MQE_START, loc);
fatbit_set(scratch->aqa, qCount, qi);
} else if (info->no_retrigger) {
DEBUG_PRINTF("yawn\n");
/* nfa only needs one top; we can go home now */
return HWLM_CONTINUE_MATCHING;
} else if (!fatbit_set(scratch->aqa, qCount, qi)) {
initQueue(q, qi, t, scratch);
loadStreamState(nfa, q, 0);
pushQueueAt(q, 0, MQE_START, 0);
} else if (isQueueFull(q)) {
DEBUG_PRINTF("queue %u full -> catching up nfas\n", qi);
if (info->eod) {
/* can catch up suffix independently no pq */
q->context = NULL;
pushQueueNoMerge(q, MQE_END, loc);
nfaQueueExecRose(q->nfa, q, MO_INVALID_IDX);
q->cur = q->end = 0;
pushQueueAt(q, 0, MQE_START, loc);
} else if (ensureQueueFlushed(t, scratch, qi, loc)
== HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
assert(top == MQE_TOP || (top >= MQE_TOP_FIRST && top < MQE_INVALID));
pushQueueSom(q, top, loc, som);
if (q_cur_loc(q) == (s64a)ci->len && !info->eod) {
/* we may not run the nfa; need to ensure state is fine */
DEBUG_PRINTF("empty run\n");
pushQueueNoMerge(q, MQE_END, loc);
char alive = nfaQueueExec(nfa, q, loc);
if (alive) {
q->cur = q->end = 0;
pushQueueAt(q, 0, MQE_START, loc);
} else {
mmbit_unset(aa, aaCount, qi);
fatbit_unset(scratch->aqa, qCount, qi);
}
}
return HWLM_CONTINUE_MATCHING;
}
static really_inline
char roseTestLeftfix(const struct RoseEngine *t, struct hs_scratch *scratch,
u32 qi, u32 leftfixLag, ReportID leftfixReport, u64a end,
const char is_infix) {
struct core_info *ci = &scratch->core_info;
u32 ri = queueToLeftIndex(t, qi);
const struct LeftNfaInfo *left = getLeftTable(t) + ri;
DEBUG_PRINTF("testing %s %s %u/%u with lag %u (maxLag=%u)\n",
(left->transient ? "transient" : "active"),
(is_infix ? "infix" : "prefix"),
ri, qi, leftfixLag, left->maxLag);
assert(leftfixLag <= left->maxLag);
assert(left->infix == is_infix);
assert(!is_infix || !left->transient); // Only prefixes can be transient.
struct mq *q = scratch->queues + qi;
char *state = scratch->core_info.state;
u8 *activeLeftArray = getActiveLeftArray(t, state);
u32 qCount = t->queueCount;
u32 arCount = t->activeLeftCount;
if (!mmbit_isset(activeLeftArray, arCount, ri)) {
DEBUG_PRINTF("engine is dead nothing to see here\n");
return 0;
}
if (unlikely(end < leftfixLag)) {
assert(0); /* lag is the literal length */
return 0;
}
if (nfaSupportsZombie(getNfaByQueue(t, qi)) && ci->buf_offset
&& !fatbit_isset(scratch->aqa, qCount, qi)
&& isZombie(t, state, left)) {
DEBUG_PRINTF("zombie\n");
return 1;
}
if (!fatbit_set(scratch->aqa, qCount, qi)) {
DEBUG_PRINTF("initing q %u\n", qi);
initRoseQueue(t, qi, left, scratch);
if (ci->buf_offset) { // there have been writes before us!
s32 sp;
if (!is_infix && left->transient) {
sp = -(s32)ci->hlen;
} else {
sp = -(s32)loadRoseDelay(t, state, left);
}
/* transient nfas are always started fresh -> state not maintained
* at stream boundary */
pushQueueAt(q, 0, MQE_START, sp);
if (is_infix || (ci->buf_offset + sp > 0 && !left->transient)) {
loadStreamState(q->nfa, q, sp);
} else {
pushQueueAt(q, 1, MQE_TOP, sp);
nfaQueueInitState(q->nfa, q);
}
} else { // first write ever
pushQueueAt(q, 0, MQE_START, 0);
pushQueueAt(q, 1, MQE_TOP, 0);
nfaQueueInitState(q->nfa, q);
}
}
s64a loc = (s64a)end - ci->buf_offset - leftfixLag;
assert(loc >= q_cur_loc(q) || left->eager);
assert(leftfixReport != MO_INVALID_IDX);
if (!is_infix && left->transient) {
s64a start_loc = loc - left->transient;
if (q_cur_loc(q) < start_loc) {
q->cur = q->end = 0;
pushQueueAt(q, 0, MQE_START, start_loc);
pushQueueAt(q, 1, MQE_TOP, start_loc);
nfaQueueInitState(q->nfa, q);
}
}
if (q_cur_loc(q) < loc || q_last_type(q) != MQE_START) {
if (is_infix) {
if (infixTooOld(q, loc)) {
DEBUG_PRINTF("infix %u died of old age\n", ri);
goto nfa_dead;
}
reduceInfixQueue(q, loc, left->maxQueueLen, q->nfa->maxWidth);
}
if (!roseLeftfixCheckMiracles(t, left, ci, q, end, is_infix)) {
DEBUG_PRINTF("leftfix %u died due to miracle\n", ri);
goto nfa_dead;
}
#ifdef DEBUG
debugQueue(q);
#endif
pushQueueNoMerge(q, MQE_END, loc);
char rv = nfaQueueExecRose(q->nfa, q, leftfixReport);
if (!rv) { /* nfa is dead */
DEBUG_PRINTF("leftfix %u died while trying to catch up\n", ri);
goto nfa_dead;
}
// Queue must have next start loc before we call nfaInAcceptState.
q->cur = q->end = 0;
pushQueueAt(q, 0, MQE_START, loc);
DEBUG_PRINTF("checking for report %u\n", leftfixReport);
DEBUG_PRINTF("leftfix done %hhd\n", (signed char)rv);
return rv == MO_MATCHES_PENDING;
} else if (q_cur_loc(q) > loc) {
/* an eager leftfix may have already progressed past loc if there is no
* match at loc. */
assert(left->eager);
return 0;
} else {
assert(q_cur_loc(q) == loc);
DEBUG_PRINTF("checking for report %u\n", leftfixReport);
char rv = nfaInAcceptState(q->nfa, leftfixReport, q);
DEBUG_PRINTF("leftfix done %hhd\n", (signed char)rv);
return rv;
}
nfa_dead:
mmbit_unset(activeLeftArray, arCount, ri);
scratch->tctxt.groups &= left->squash_mask;
return 0;
}
static rose_inline
char roseTestPrefix(const struct RoseEngine *t, struct hs_scratch *scratch,
u32 qi, u32 leftfixLag, ReportID leftfixReport, u64a end) {
return roseTestLeftfix(t, scratch, qi, leftfixLag, leftfixReport, end, 0);
}
static rose_inline
char roseTestInfix(const struct RoseEngine *t, struct hs_scratch *scratch,
u32 qi, u32 leftfixLag, ReportID leftfixReport, u64a end) {
return roseTestLeftfix(t, scratch, qi, leftfixLag, leftfixReport, end, 1);
}
static rose_inline
void roseTriggerInfix(const struct RoseEngine *t, struct hs_scratch *scratch,
u64a start, u64a end, u32 qi, u32 topEvent, u8 cancel) {
struct core_info *ci = &scratch->core_info;
s64a loc = (s64a)end - ci->buf_offset;
u32 ri = queueToLeftIndex(t, qi);
assert(topEvent < MQE_INVALID);
const struct LeftNfaInfo *left = getLeftInfoByQueue(t, qi);
assert(!left->transient);
DEBUG_PRINTF("rose %u (qi=%u) event %u\n", ri, qi, topEvent);
struct mq *q = scratch->queues + qi;
const struct NfaInfo *info = getNfaInfoByQueue(t, qi);
char *state = ci->state;
u8 *activeLeftArray = getActiveLeftArray(t, state);
const u32 arCount = t->activeLeftCount;
char alive = mmbit_set(activeLeftArray, arCount, ri);
if (alive && info->no_retrigger) {
DEBUG_PRINTF("yawn\n");
return;
}
struct fatbit *aqa = scratch->aqa;
const u32 qCount = t->queueCount;
if (alive && nfaSupportsZombie(getNfaByInfo(t, info)) && ci->buf_offset &&
!fatbit_isset(aqa, qCount, qi) && isZombie(t, state, left)) {
DEBUG_PRINTF("yawn - zombie\n");
return;
}
if (cancel) {
DEBUG_PRINTF("dominating top: (re)init\n");
fatbit_set(aqa, qCount, qi);
initRoseQueue(t, qi, left, scratch);
pushQueueAt(q, 0, MQE_START, loc);
nfaQueueInitState(q->nfa, q);
} else if (!fatbit_set(aqa, qCount, qi)) {
DEBUG_PRINTF("initing %u\n", qi);
initRoseQueue(t, qi, left, scratch);
if (alive) {
s32 sp = -(s32)loadRoseDelay(t, state, left);
pushQueueAt(q, 0, MQE_START, sp);
loadStreamState(q->nfa, q, sp);
} else {
pushQueueAt(q, 0, MQE_START, loc);
nfaQueueInitState(q->nfa, q);
}
} else if (!alive) {
q->cur = q->end = 0;
pushQueueAt(q, 0, MQE_START, loc);
nfaQueueInitState(q->nfa, q);
} else if (isQueueFull(q)) {
reduceInfixQueue(q, loc, left->maxQueueLen, q->nfa->maxWidth);
if (isQueueFull(q)) {
/* still full - reduceInfixQueue did nothing */
DEBUG_PRINTF("queue %u full (%u items) -> catching up nfa\n", qi,
q->end - q->cur);
pushQueueNoMerge(q, MQE_END, loc);
nfaQueueExecRose(q->nfa, q, MO_INVALID_IDX);
q->cur = q->end = 0;
pushQueueAt(q, 0, MQE_START, loc);
}
}
pushQueueSom(q, topEvent, loc, start);
}
static rose_inline
hwlmcb_rv_t roseReport(const struct RoseEngine *t, struct hs_scratch *scratch,
u64a end, ReportID onmatch, s32 offset_adjust,
u32 ekey) {
DEBUG_PRINTF("firing callback onmatch=%u, end=%llu\n", onmatch, end);
updateLastMatchOffset(&scratch->tctxt, end);
int cb_rv = roseDeliverReport(end, onmatch, offset_adjust, scratch, ekey);
if (cb_rv == MO_HALT_MATCHING) {
DEBUG_PRINTF("termination requested\n");
return HWLM_TERMINATE_MATCHING;
}
if (ekey == INVALID_EKEY || cb_rv == ROSE_CONTINUE_MATCHING_NO_EXHAUST) {
return HWLM_CONTINUE_MATCHING;
}
return roseHaltIfExhausted(t, scratch);
}
/* catches up engines enough to ensure any earlier mpv triggers are enqueued
* and then adds the trigger to the mpv queue. */
static rose_inline
hwlmcb_rv_t roseCatchUpAndHandleChainMatch(const struct RoseEngine *t,
struct hs_scratch *scratch,
u32 event, u64a top_squash_distance,
u64a end, const char in_catchup) {
if (!in_catchup &&
roseCatchUpMpvFeeders(t, scratch, end) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
return roseHandleChainMatch(t, scratch, event, top_squash_distance, end,
in_catchup);
}
static rose_inline
void roseHandleSom(struct hs_scratch *scratch, const struct som_operation *sr,
u64a end) {
DEBUG_PRINTF("end=%llu, minMatchOffset=%llu\n", end,
scratch->tctxt.minMatchOffset);
updateLastMatchOffset(&scratch->tctxt, end);
handleSomInternal(scratch, sr, end);
}
static rose_inline
hwlmcb_rv_t roseReportSom(const struct RoseEngine *t,
struct hs_scratch *scratch, u64a start, u64a end,
ReportID onmatch, s32 offset_adjust, u32 ekey) {
DEBUG_PRINTF("firing som callback onmatch=%u, start=%llu, end=%llu\n",
onmatch, start, end);
updateLastMatchOffset(&scratch->tctxt, end);
int cb_rv = roseDeliverSomReport(start, end, onmatch, offset_adjust,
scratch, ekey);
if (cb_rv == MO_HALT_MATCHING) {
DEBUG_PRINTF("termination requested\n");
return HWLM_TERMINATE_MATCHING;
}
if (ekey == INVALID_EKEY || cb_rv == ROSE_CONTINUE_MATCHING_NO_EXHAUST) {
return HWLM_CONTINUE_MATCHING;
}
return roseHaltIfExhausted(t, scratch);
}
static rose_inline
void roseHandleSomSom(struct hs_scratch *scratch,
const struct som_operation *sr, u64a start, u64a end) {
DEBUG_PRINTF("start=%llu, end=%llu, minMatchOffset=%llu\n", start, end,
scratch->tctxt.minMatchOffset);
updateLastMatchOffset(&scratch->tctxt, end);
setSomFromSomAware(scratch, sr, start, end);
}
static rose_inline
hwlmcb_rv_t roseSetExhaust(const struct RoseEngine *t,
struct hs_scratch *scratch, u32 ekey) {
assert(scratch);
assert(scratch->magic == SCRATCH_MAGIC);
struct core_info *ci = &scratch->core_info;
assert(!can_stop_matching(scratch));
assert(!isExhausted(ci->rose, ci->exhaustionVector, ekey));
markAsMatched(ci->rose, ci->exhaustionVector, ekey);
return roseHaltIfExhausted(t, scratch);
}
static really_inline
int reachHasBit(const u8 *reach, u8 c) {
return !!(reach[c / 8U] & (u8)1U << (c % 8U));
}
/*
* Generate a 8-byte valid_mask with #high bytes 0 from the highest side
* and #low bytes 0 from the lowest side
* and (8 - high - low) bytes '0xff' in the middle.
*/
static rose_inline
u64a generateValidMask(const s32 high, const s32 low) {
assert(high + low < 8);
DEBUG_PRINTF("high %d low %d\n", high, low);
const u64a ones = ~0ull;
return (ones << ((high + low) * 8)) >> (high * 8);
}
/*
* Do the single-byte check if only one lookaround entry exists
* and it's a single mask.
* Return success if the byte is in the future or before history
* (offset is greater than (history) buffer length).
*/
static rose_inline
int roseCheckByte(const struct core_info *ci, u8 and_mask, u8 cmp_mask,
u8 negation, s32 checkOffset, u64a end) {
DEBUG_PRINTF("end=%llu, buf_offset=%llu, buf_end=%llu\n", end,
ci->buf_offset, ci->buf_offset + ci->len);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
const s64a base_offset = end - ci->buf_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("checkOffset=%d offset=%lld\n", checkOffset, offset);
u8 c;
if (offset >= 0) {
if (offset >= (s64a)ci->len) {
DEBUG_PRINTF("in the future\n");
return 1;
} else {
assert(offset < (s64a)ci->len);
DEBUG_PRINTF("check byte in buffer\n");
c = ci->buf[offset];
}
} else {
if (offset >= -(s64a) ci->hlen) {
DEBUG_PRINTF("check byte in history\n");
c = ci->hbuf[ci->hlen + offset];
} else {
DEBUG_PRINTF("before history and return\n");
return 1;
}
}
if (((and_mask & c) != cmp_mask) ^ negation) {
DEBUG_PRINTF("char 0x%02x at offset %lld failed byte check\n",
c, offset);
return 0;
}
DEBUG_PRINTF("real offset=%lld char=%02x\n", offset, c);
DEBUG_PRINTF("OK :)\n");
return 1;
}
static rose_inline
int roseCheckMask(const struct core_info *ci, u64a and_mask, u64a cmp_mask,
u64a neg_mask, s32 checkOffset, u64a end) {
const s64a base_offset = (s64a)end - ci->buf_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("rel offset %lld\n",base_offset);
DEBUG_PRINTF("checkOffset %d offset %lld\n", checkOffset, offset);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
u64a data = 0;
u64a valid_data_mask = ~0ULL; // mask for validate check.
//A 0xff byte means that this byte is in the buffer.
s32 shift_l = 0; // size of bytes in the future.
s32 shift_r = 0; // size of bytes before the history.
s32 h_len = 0; // size of bytes in the history buffer.
s32 c_len = 8; // size of bytes in the current buffer.
if (offset < 0) {
// in or before history buffer.
if (offset + 8 <= -(s64a)ci->hlen) {
DEBUG_PRINTF("before history and return\n");
return 1;
}
const u8 *h_start = ci->hbuf; // start pointer in history buffer.
if (offset < -(s64a)ci->hlen) {
// some bytes are before history.
shift_r = -(offset + (s64a)ci->hlen);
DEBUG_PRINTF("shift_r %d", shift_r);
} else {
h_start += ci->hlen + offset;
}
if (offset + 7 < 0) {
DEBUG_PRINTF("all in history buffer\n");
data = partial_load_u64a(h_start, 8 - shift_r);
} else {
// history part
c_len = offset + 8;
h_len = -offset - shift_r;
DEBUG_PRINTF("%d bytes in history\n", h_len);
s64a data_h = 0;
data_h = partial_load_u64a(h_start, h_len);
// current part
if (c_len > (s64a)ci->len) {
shift_l = c_len - ci->len;
c_len = ci->len;
}
data = partial_load_u64a(ci->buf, c_len);
data <<= h_len << 3;
data |= data_h;
}
if (shift_r) {
data <<= shift_r << 3;
}
} else {
// current buffer.
if (offset + c_len > (s64a)ci->len) {
if (offset >= (s64a)ci->len) {
DEBUG_PRINTF("all in the future\n");
return 1;
}
// some bytes in the future.
shift_l = offset + c_len - ci->len;
c_len = ci->len - offset;
data = partial_load_u64a(ci->buf + offset, c_len);
} else {
data = unaligned_load_u64a(ci->buf + offset);
}
}
if (shift_l || shift_r) {
valid_data_mask = generateValidMask(shift_l, shift_r);
}
DEBUG_PRINTF("valid_data_mask %llx\n", valid_data_mask);
if (validateMask(data, valid_data_mask,
and_mask, cmp_mask, neg_mask)) {
DEBUG_PRINTF("check mask successfully\n");
return 1;
} else {
return 0;
}
}
static rose_inline
int roseCheckMask32(const struct core_info *ci, const u8 *and_mask,
const u8 *cmp_mask, const u32 neg_mask,
s32 checkOffset, u64a end) {
const s64a base_offset = (s64a)end - ci->buf_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("end %lld base_offset %lld\n", end, base_offset);
DEBUG_PRINTF("checkOffset %d offset %lld\n", checkOffset, offset);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
m256 data = zeroes256(); // consists of the following four parts.
s32 c_shift = 0; // blank bytes after current.
s32 h_shift = 0; // blank bytes before history.
s32 h_len = 32; // number of bytes from history buffer.
s32 c_len = 0; // number of bytes from current buffer.
/* h_shift + h_len + c_len + c_shift = 32 need to be hold.*/
if (offset < 0) {
s32 h_offset = 0; // the start offset in history buffer.
if (offset < -(s64a)ci->hlen) {
if (offset + 32 <= -(s64a)ci->hlen) {
DEBUG_PRINTF("all before history\n");
return 1;
}
h_shift = -(offset + (s64a)ci->hlen);
h_len = 32 - h_shift;
} else {
h_offset = ci->hlen + offset;
}
if (offset + 32 > 0) {
// part in current buffer.
c_len = offset + 32;
h_len = -(offset + h_shift);
if (c_len > (s64a)ci->len) {
// out of current buffer.
c_shift = c_len - ci->len;
c_len = ci->len;
}
copy_upto_32_bytes((u8 *)&data - offset, ci->buf, c_len);
}
assert(h_shift + h_len + c_len + c_shift == 32);
copy_upto_32_bytes((u8 *)&data + h_shift, ci->hbuf + h_offset, h_len);
} else {
if (offset + 32 > (s64a)ci->len) {
if (offset >= (s64a)ci->len) {
DEBUG_PRINTF("all in the future.\n");
return 1;
}
c_len = ci->len - offset;
c_shift = 32 - c_len;
copy_upto_32_bytes((u8 *)&data, ci->buf + offset, c_len);
} else {
data = loadu256(ci->buf + offset);
}
}
DEBUG_PRINTF("h_shift %d c_shift %d\n", h_shift, c_shift);
DEBUG_PRINTF("h_len %d c_len %d\n", h_len, c_len);
// we use valid_data_mask to blind bytes before history/in the future.
u32 valid_data_mask;
valid_data_mask = (~0u) << (h_shift + c_shift) >> (c_shift);
m256 and_mask_m256 = loadu256(and_mask);
m256 cmp_mask_m256 = loadu256(cmp_mask);
if (validateMask32(data, valid_data_mask, and_mask_m256,
cmp_mask_m256, neg_mask)) {
DEBUG_PRINTF("Mask32 passed\n");
return 1;
}
return 0;
}
// get 128/256 bits data from history and current buffer.
// return data and valid_data_mask.
static rose_inline
u32 getBufferDataComplex(const struct core_info *ci, const s64a loc,
u8 *data, const u32 data_len) {
assert(data_len == 16 || data_len == 32);
s32 c_shift = 0; // blank bytes after current.
s32 h_shift = 0; // blank bytes before history.
s32 h_len = data_len; // number of bytes from history buffer.
s32 c_len = 0; // number of bytes from current buffer.
if (loc < 0) {
s32 h_offset = 0; // the start offset in history buffer.
if (loc < -(s64a)ci->hlen) {
if (loc + data_len <= -(s64a)ci->hlen) {
DEBUG_PRINTF("all before history\n");
return 0;
}
h_shift = -(loc + (s64a)ci->hlen);
h_len = data_len - h_shift;
} else {
h_offset = ci->hlen + loc;
}
if (loc + data_len > 0) {
// part in current buffer.
c_len = loc + data_len;
h_len = -(loc + h_shift);
if (c_len > (s64a)ci->len) {
// out of current buffer.
c_shift = c_len - ci->len;
c_len = ci->len;
}
copy_upto_32_bytes(data - loc, ci->buf, c_len);
}
assert(h_shift + h_len + c_len + c_shift == (s32)data_len);
copy_upto_32_bytes(data + h_shift, ci->hbuf + h_offset, h_len);
} else {
if (loc + data_len > (s64a)ci->len) {
if (loc >= (s64a)ci->len) {
DEBUG_PRINTF("all in the future.\n");
return 0;
}
c_len = ci->len - loc;
c_shift = data_len - c_len;
copy_upto_32_bytes(data, ci->buf + loc, c_len);
} else {
if (data_len == 16) {
storeu128(data, loadu128(ci->buf + loc));
return 0xffff;
} else {
storeu256(data, loadu256(ci->buf + loc));
return 0xffffffff;
}
}
}
DEBUG_PRINTF("h_shift %d c_shift %d\n", h_shift, c_shift);
DEBUG_PRINTF("h_len %d c_len %d\n", h_len, c_len);
if (data_len == 16) {
return (u16)(0xffff << (h_shift + c_shift)) >> c_shift;
} else {
return (~0u) << (h_shift + c_shift) >> c_shift;
}
}
static rose_inline
m128 getData128(const struct core_info *ci, s64a offset, u32 *valid_data_mask) {
if (offset > 0 && offset + sizeof(m128) <= ci->len) {
*valid_data_mask = 0xffff;
return loadu128(ci->buf + offset);
}
ALIGN_DIRECTIVE u8 data[sizeof(m128)];
*valid_data_mask = getBufferDataComplex(ci, offset, data, 16);
return *(m128 *)data;
}
static rose_inline
m256 getData256(const struct core_info *ci, s64a offset, u32 *valid_data_mask) {
if (offset > 0 && offset + sizeof(m256) <= ci->len) {
*valid_data_mask = ~0u;
return loadu256(ci->buf + offset);
}
ALIGN_AVX_DIRECTIVE u8 data[sizeof(m256)];
*valid_data_mask = getBufferDataComplex(ci, offset, data, 32);
return *(m256 *)data;
}
static rose_inline
int roseCheckShufti16x8(const struct core_info *ci, const u8 *nib_mask,
const u8 *bucket_select_mask, u32 neg_mask,
s32 checkOffset, u64a end) {
const s64a base_offset = (s64a)end - ci->buf_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("end %lld base_offset %lld\n", end, base_offset);
DEBUG_PRINTF("checkOffset %d offset %lld\n", checkOffset, offset);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
u32 valid_data_mask = 0;
m128 data = getData128(ci, offset, &valid_data_mask);
if (unlikely(!valid_data_mask)) {
return 1;
}
m256 nib_mask_m256 = loadu256(nib_mask);
m128 bucket_select_mask_m128 = loadu128(bucket_select_mask);
if (validateShuftiMask16x8(data, nib_mask_m256,
bucket_select_mask_m128,
neg_mask, valid_data_mask)) {
DEBUG_PRINTF("check shufti 16x8 successfully\n");
return 1;
} else {
return 0;
}
}
static rose_inline
int roseCheckShufti16x16(const struct core_info *ci, const u8 *hi_mask,
const u8 *lo_mask, const u8 *bucket_select_mask,
u32 neg_mask, s32 checkOffset, u64a end) {
const s64a base_offset = (s64a)end - ci->buf_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("end %lld base_offset %lld\n", end, base_offset);
DEBUG_PRINTF("checkOffset %d offset %lld\n", checkOffset, offset);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
u32 valid_data_mask = 0;
m128 data = getData128(ci, offset, &valid_data_mask);
if (unlikely(!valid_data_mask)) {
return 1;
}
m256 data_m256 = set2x128(data);
m256 hi_mask_m256 = loadu256(hi_mask);
m256 lo_mask_m256 = loadu256(lo_mask);
m256 bucket_select_mask_m256 = loadu256(bucket_select_mask);
if (validateShuftiMask16x16(data_m256, hi_mask_m256, lo_mask_m256,
bucket_select_mask_m256,
neg_mask, valid_data_mask)) {
DEBUG_PRINTF("check shufti 16x16 successfully\n");
return 1;
} else {
return 0;
}
}
static rose_inline
int roseCheckShufti32x8(const struct core_info *ci, const u8 *hi_mask,
const u8 *lo_mask, const u8 *bucket_select_mask,
u32 neg_mask, s32 checkOffset, u64a end) {
const s64a base_offset = (s64a)end - ci->buf_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("end %lld base_offset %lld\n", end, base_offset);
DEBUG_PRINTF("checkOffset %d offset %lld\n", checkOffset, offset);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
u32 valid_data_mask = 0;
m256 data = getData256(ci, offset, &valid_data_mask);
if (unlikely(!valid_data_mask)) {
return 1;
}
m128 hi_mask_m128 = loadu128(hi_mask);
m128 lo_mask_m128 = loadu128(lo_mask);
m256 hi_mask_m256 = set2x128(hi_mask_m128);
m256 lo_mask_m256 = set2x128(lo_mask_m128);
m256 bucket_select_mask_m256 = loadu256(bucket_select_mask);
if (validateShuftiMask32x8(data, hi_mask_m256, lo_mask_m256,
bucket_select_mask_m256,
neg_mask, valid_data_mask)) {
DEBUG_PRINTF("check shufti 32x8 successfully\n");
return 1;
} else {
return 0;
}
}
static rose_inline
int roseCheckShufti32x16(const struct core_info *ci, const u8 *hi_mask,
const u8 *lo_mask, const u8 *bucket_select_mask_hi,
const u8 *bucket_select_mask_lo, u32 neg_mask,
s32 checkOffset, u64a end) {
const s64a base_offset = (s64a)end - ci->buf_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("end %lld base_offset %lld\n", end, base_offset);
DEBUG_PRINTF("checkOffset %d offset %lld\n", checkOffset, offset);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
u32 valid_data_mask = 0;
m256 data = getData256(ci, offset, &valid_data_mask);
if (unlikely(!valid_data_mask)) {
return 1;
}
m256 hi_mask_1 = loadu2x128(hi_mask);
m256 hi_mask_2 = loadu2x128(hi_mask + 16);
m256 lo_mask_1 = loadu2x128(lo_mask);
m256 lo_mask_2 = loadu2x128(lo_mask + 16);
m256 bucket_mask_hi = loadu256(bucket_select_mask_hi);
m256 bucket_mask_lo = loadu256(bucket_select_mask_lo);
if (validateShuftiMask32x16(data, hi_mask_1, hi_mask_2,
lo_mask_1, lo_mask_2, bucket_mask_hi,
bucket_mask_lo, neg_mask, valid_data_mask)) {
DEBUG_PRINTF("check shufti 32x16 successfully\n");
return 1;
} else {
return 0;
}
}
static rose_inline
int roseCheckSingleLookaround(const struct RoseEngine *t,
const struct hs_scratch *scratch,
s8 checkOffset, u32 lookaroundReachIndex,
u64a end) {
assert(lookaroundReachIndex != MO_INVALID_IDX);
const struct core_info *ci = &scratch->core_info;
DEBUG_PRINTF("end=%llu, buf_offset=%llu, buf_end=%llu\n", end,
ci->buf_offset, ci->buf_offset + ci->len);
const s64a base_offset = end - ci->buf_offset;
const s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("base_offset=%lld\n", base_offset);
DEBUG_PRINTF("checkOffset=%d offset=%lld\n", checkOffset, offset);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
const u8 *reach = getByOffset(t, lookaroundReachIndex);
u8 c;
if (offset >= 0 && offset < (s64a)ci->len) {
c = ci->buf[offset];
} else if (offset < 0 && offset >= -(s64a)ci->hlen) {
c = ci->hbuf[ci->hlen + offset];
} else {
return 1;
}
if (!reachHasBit(reach, c)) {
DEBUG_PRINTF("char 0x%02x failed reach check\n", c);
return 0;
}
DEBUG_PRINTF("OK :)\n");
return 1;
}
/**
* \brief Scan around a literal, checking that that "lookaround" reach masks
* are satisfied.
*/
static rose_inline
int roseCheckLookaround(const struct RoseEngine *t,
const struct hs_scratch *scratch,
u32 lookaroundLookIndex, u32 lookaroundReachIndex,
u32 lookaroundCount, u64a end) {
assert(lookaroundLookIndex != MO_INVALID_IDX);
assert(lookaroundReachIndex != MO_INVALID_IDX);
assert(lookaroundCount > 0);
const struct core_info *ci = &scratch->core_info;
DEBUG_PRINTF("end=%llu, buf_offset=%llu, buf_end=%llu\n", end,
ci->buf_offset, ci->buf_offset + ci->len);
const s8 *look = getByOffset(t, lookaroundLookIndex);
const s8 *look_end = look + lookaroundCount;
assert(look < look_end);
const u8 *reach = getByOffset(t, lookaroundReachIndex);
// The following code assumes that the lookaround structures are ordered by
// increasing offset.
const s64a base_offset = end - ci->buf_offset;
DEBUG_PRINTF("base_offset=%lld\n", base_offset);
DEBUG_PRINTF("first look has offset %d\n", *look);
// If our first check tells us we need to look at an offset before the
// start of the stream, this role cannot match.
if (unlikely(*look < 0 && (u64a)(0 - *look) > end)) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
// Skip over offsets that are before the history buffer.
do {
s64a offset = base_offset + *look;
if (offset >= -(s64a)ci->hlen) {
goto in_history;
}
DEBUG_PRINTF("look=%d before history\n", *look);
look++;
reach += REACH_BITVECTOR_LEN;
} while (look < look_end);
// History buffer.
DEBUG_PRINTF("scan history (%zu looks left)\n", look_end - look);
for (; look < look_end; ++look, reach += REACH_BITVECTOR_LEN) {
in_history:
;
s64a offset = base_offset + *look;
DEBUG_PRINTF("reach=%p, rel offset=%lld\n", reach, offset);
if (offset >= 0) {
DEBUG_PRINTF("in buffer\n");
goto in_buffer;
}
assert(offset >= -(s64a)ci->hlen && offset < 0);
u8 c = ci->hbuf[ci->hlen + offset];
if (!reachHasBit(reach, c)) {
DEBUG_PRINTF("char 0x%02x failed reach check\n", c);
return 0;
}
}
// Current buffer.
DEBUG_PRINTF("scan buffer (%zu looks left)\n", look_end - look);
for (; look < look_end; ++look, reach += REACH_BITVECTOR_LEN) {
in_buffer:
;
s64a offset = base_offset + *look;
DEBUG_PRINTF("reach=%p, rel offset=%lld\n", reach, offset);
if (offset >= (s64a)ci->len) {
DEBUG_PRINTF("in the future\n");
break;
}
assert(offset >= 0 && offset < (s64a)ci->len);
u8 c = ci->buf[offset];
if (!reachHasBit(reach, c)) {
DEBUG_PRINTF("char 0x%02x failed reach check\n", c);
return 0;
}
}
DEBUG_PRINTF("OK :)\n");
return 1;
}
/**
* \brief Trying to find a matching path by the corresponding path mask of
* every lookaround location.
*/
static rose_inline
int roseMultipathLookaround(const struct RoseEngine *t,
const struct hs_scratch *scratch,
u32 multipathLookaroundLookIndex,
u32 multipathLookaroundReachIndex,
u32 multipathLookaroundCount,
s32 last_start, const u8 *start_mask,
u64a end) {
assert(multipathLookaroundCount > 0);
const struct core_info *ci = &scratch->core_info;
DEBUG_PRINTF("end=%llu, buf_offset=%llu, buf_end=%llu\n", end,
ci->buf_offset, ci->buf_offset + ci->len);
const s8 *look = getByOffset(t, multipathLookaroundLookIndex);
const s8 *look_end = look + multipathLookaroundCount;
assert(look < look_end);
const u8 *reach = getByOffset(t, multipathLookaroundReachIndex);
const s64a base_offset = (s64a)end - ci->buf_offset;
DEBUG_PRINTF("base_offset=%lld\n", base_offset);
u8 path = 0xff;
assert(last_start < 0);
if (unlikely((u64a)(0 - last_start) > end)) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
s8 base_look_offset = *look;
do {
s64a offset = base_offset + *look;
u32 start_offset = (u32)(*look - base_look_offset);
DEBUG_PRINTF("start_mask[%u] = %x\n", start_offset,
start_mask[start_offset]);
path = start_mask[start_offset];
if (offset >= -(s64a)ci->hlen) {
break;
}
DEBUG_PRINTF("look=%d before history\n", *look);
look++;
reach += MULTI_REACH_BITVECTOR_LEN;
} while (look < look_end);
DEBUG_PRINTF("scan history (%zu looks left)\n", look_end - look);
for (; look < look_end; ++look, reach += MULTI_REACH_BITVECTOR_LEN) {
s64a offset = base_offset + *look;
DEBUG_PRINTF("reach=%p, rel offset=%lld\n", reach, offset);
if (offset >= 0) {
DEBUG_PRINTF("in buffer\n");
break;
}
assert(offset >= -(s64a)ci->hlen && offset < 0);
u8 c = ci->hbuf[ci->hlen + offset];
path &= reach[c];
DEBUG_PRINTF("reach[%x] = %02x path = %0xx\n", c, reach[c], path);
if (!path) {
DEBUG_PRINTF("char 0x%02x failed reach check\n", c);
return 0;
}
}
DEBUG_PRINTF("scan buffer (%zu looks left)\n", look_end - look);
for(; look < look_end; ++look, reach += MULTI_REACH_BITVECTOR_LEN) {
s64a offset = base_offset + *look;
DEBUG_PRINTF("reach=%p, rel offset=%lld\n", reach, offset);
if (offset >= (s64a)ci->len) {
DEBUG_PRINTF("in the future\n");
break;
}
assert(offset >= 0 && offset < (s64a)ci->len);
u8 c = ci->buf[offset];
path &= reach[c];
DEBUG_PRINTF("reach[%x] = %02x path = %0xx\n", c, reach[c], path);
if (!path) {
DEBUG_PRINTF("char 0x%02x failed reach check\n", c);
return 0;
}
}
DEBUG_PRINTF("OK :)\n");
return 1;
}
static never_inline
int roseCheckMultipathShufti16x8(const struct hs_scratch *scratch,
const struct ROSE_STRUCT_CHECK_MULTIPATH_SHUFTI_16x8 *ri,
u64a end) {
const struct core_info *ci = &scratch->core_info;
s32 checkOffset = ri->base_offset;
const s64a base_offset = (s64a)end - ci->buf_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("end %lld base_offset %lld\n", end, base_offset);
DEBUG_PRINTF("checkOffset %d offset %lld\n", checkOffset, offset);
assert(ri->last_start <= 0);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
if ((u64a)(0 - ri->last_start) > end) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
}
u32 valid_data_mask;
m128 data_init = getData128(ci, offset, &valid_data_mask);
m128 data_select_mask = loadu128(ri->data_select_mask);
u32 valid_path_mask = 0;
if (unlikely(!(valid_data_mask & 1))) {
DEBUG_PRINTF("lose part of backward data\n");
DEBUG_PRINTF("valid_data_mask %x\n", valid_data_mask);
m128 expand_valid;
u64a expand_mask = 0x8080808080808080ULL;
u64a valid_lo = expand64(valid_data_mask & 0xff, expand_mask);
u64a valid_hi = expand64(valid_data_mask >> 8, expand_mask);
DEBUG_PRINTF("expand_hi %llx\n", valid_hi);
DEBUG_PRINTF("expand_lo %llx\n", valid_lo);
expand_valid = set64x2(valid_hi, valid_lo);
valid_path_mask = ~movemask128(pshufb_m128(expand_valid,
data_select_mask));
}
m128 data = pshufb_m128(data_init, data_select_mask);
m256 nib_mask = loadu256(ri->nib_mask);
m128 bucket_select_mask = loadu128(ri->bucket_select_mask);
u32 hi_bits_mask = ri->hi_bits_mask;
u32 lo_bits_mask = ri->lo_bits_mask;
u32 neg_mask = ri->neg_mask;
if (validateMultipathShuftiMask16x8(data, nib_mask,
bucket_select_mask,
hi_bits_mask, lo_bits_mask,
neg_mask, valid_path_mask)) {
DEBUG_PRINTF("check multi-path shufti-16x8 successfully\n");
return 1;
} else {
return 0;
}
}
static never_inline
int roseCheckMultipathShufti32x8(const struct hs_scratch *scratch,
const struct ROSE_STRUCT_CHECK_MULTIPATH_SHUFTI_32x8 *ri,
u64a end) {
const struct core_info *ci = &scratch->core_info;
s32 checkOffset = ri->base_offset;
const s64a base_offset = (s64a)end - ci->buf_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("end %lld base_offset %lld\n", end, base_offset);
DEBUG_PRINTF("checkOffset %d offset %lld\n", checkOffset, offset);
assert(ri->last_start <= 0);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
if ((u64a)(0 - ri->last_start) > end) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
}
u32 valid_data_mask;
m128 data_m128 = getData128(ci, offset, &valid_data_mask);
m256 data_double = set2x128(data_m128);
m256 data_select_mask = loadu256(ri->data_select_mask);
u32 valid_path_mask = 0;
m256 expand_valid;
if (unlikely(!(valid_data_mask & 1))) {
DEBUG_PRINTF("lose part of backward data\n");
DEBUG_PRINTF("valid_data_mask %x\n", valid_data_mask);
u64a expand_mask = 0x8080808080808080ULL;
u64a valid_lo = expand64(valid_data_mask & 0xff, expand_mask);
u64a valid_hi = expand64(valid_data_mask >> 8, expand_mask);
DEBUG_PRINTF("expand_hi %llx\n", valid_hi);
DEBUG_PRINTF("expand_lo %llx\n", valid_lo);
expand_valid = set64x4(valid_hi, valid_lo, valid_hi,
valid_lo);
valid_path_mask = ~movemask256(pshufb_m256(expand_valid,
data_select_mask));
}
m256 data = pshufb_m256(data_double, data_select_mask);
m256 hi_mask = loadu2x128(ri->hi_mask);
m256 lo_mask = loadu2x128(ri->lo_mask);
m256 bucket_select_mask = loadu256(ri->bucket_select_mask);
u32 hi_bits_mask = ri->hi_bits_mask;
u32 lo_bits_mask = ri->lo_bits_mask;
u32 neg_mask = ri->neg_mask;
if (validateMultipathShuftiMask32x8(data, hi_mask, lo_mask,
bucket_select_mask,
hi_bits_mask, lo_bits_mask,
neg_mask, valid_path_mask)) {
DEBUG_PRINTF("check multi-path shufti-32x8 successfully\n");
return 1;
} else {
return 0;
}
}
static never_inline
int roseCheckMultipathShufti32x16(const struct hs_scratch *scratch,
const struct ROSE_STRUCT_CHECK_MULTIPATH_SHUFTI_32x16 *ri,
u64a end) {
const struct core_info *ci = &scratch->core_info;
const s64a base_offset = (s64a)end - ci->buf_offset;
s32 checkOffset = ri->base_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("end %lld base_offset %lld\n", end, base_offset);
DEBUG_PRINTF("checkOffset %d offset %lld\n", checkOffset, offset);
assert(ri->last_start <= 0);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
if ((u64a)(0 - ri->last_start) > end) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
}
u32 valid_data_mask;
m128 data_m128 = getData128(ci, offset, &valid_data_mask);
m256 data_double = set2x128(data_m128);
m256 data_select_mask = loadu256(ri->data_select_mask);
u32 valid_path_mask = 0;
m256 expand_valid;
if (unlikely(!(valid_data_mask & 1))) {
DEBUG_PRINTF("lose part of backward data\n");
DEBUG_PRINTF("valid_data_mask %x\n", valid_data_mask);
u64a expand_mask = 0x8080808080808080ULL;
u64a valid_lo = expand64(valid_data_mask & 0xff, expand_mask);
u64a valid_hi = expand64(valid_data_mask >> 8, expand_mask);
DEBUG_PRINTF("expand_hi %llx\n", valid_hi);
DEBUG_PRINTF("expand_lo %llx\n", valid_lo);
expand_valid = set64x4(valid_hi, valid_lo, valid_hi,
valid_lo);
valid_path_mask = ~movemask256(pshufb_m256(expand_valid,
data_select_mask));
}
m256 data = pshufb_m256(data_double, data_select_mask);
m256 hi_mask_1 = loadu2x128(ri->hi_mask);
m256 hi_mask_2 = loadu2x128(ri->hi_mask + 16);
m256 lo_mask_1 = loadu2x128(ri->lo_mask);
m256 lo_mask_2 = loadu2x128(ri->lo_mask + 16);
m256 bucket_select_mask_hi = loadu256(ri->bucket_select_mask_hi);
m256 bucket_select_mask_lo = loadu256(ri->bucket_select_mask_lo);
u32 hi_bits_mask = ri->hi_bits_mask;
u32 lo_bits_mask = ri->lo_bits_mask;
u32 neg_mask = ri->neg_mask;
if (validateMultipathShuftiMask32x16(data, hi_mask_1, hi_mask_2,
lo_mask_1, lo_mask_2,
bucket_select_mask_hi,
bucket_select_mask_lo,
hi_bits_mask, lo_bits_mask,
neg_mask, valid_path_mask)) {
DEBUG_PRINTF("check multi-path shufti-32x16 successfully\n");
return 1;
} else {
return 0;
}
}
static never_inline
int roseCheckMultipathShufti64(const struct hs_scratch *scratch,
const struct ROSE_STRUCT_CHECK_MULTIPATH_SHUFTI_64 *ri,
u64a end) {
const struct core_info *ci = &scratch->core_info;
const s64a base_offset = (s64a)end - ci->buf_offset;
s32 checkOffset = ri->base_offset;
s64a offset = base_offset + checkOffset;
DEBUG_PRINTF("end %lld base_offset %lld\n", end, base_offset);
DEBUG_PRINTF("checkOffset %d offset %lld\n", checkOffset, offset);
if (unlikely(checkOffset < 0 && (u64a)(0 - checkOffset) > end)) {
if ((u64a)(0 - ri->last_start) > end) {
DEBUG_PRINTF("too early, fail\n");
return 0;
}
}
u32 valid_data_mask;
m128 data_m128 = getData128(ci, offset, &valid_data_mask);
m256 data_m256 = set2x128(data_m128);
m256 data_select_mask_1 = loadu256(ri->data_select_mask);
m256 data_select_mask_2 = loadu256(ri->data_select_mask + 32);
u64a valid_path_mask = 0;
m256 expand_valid;
if (unlikely(!(valid_data_mask & 1))) {
DEBUG_PRINTF("lose part of backward data\n");
DEBUG_PRINTF("valid_data_mask %x\n", valid_data_mask);
u64a expand_mask = 0x8080808080808080ULL;
u64a valid_lo = expand64(valid_data_mask & 0xff, expand_mask);
u64a valid_hi = expand64(valid_data_mask >> 8, expand_mask);
DEBUG_PRINTF("expand_hi %llx\n", valid_hi);
DEBUG_PRINTF("expand_lo %llx\n", valid_lo);
expand_valid = set64x4(valid_hi, valid_lo, valid_hi,
valid_lo);
u32 valid_path_1 = movemask256(pshufb_m256(expand_valid,
data_select_mask_1));
u32 valid_path_2 = movemask256(pshufb_m256(expand_valid,
data_select_mask_2));
valid_path_mask = ~((u64a)valid_path_1 | (u64a)valid_path_2 << 32);
}
m256 data_1 = pshufb_m256(data_m256, data_select_mask_1);
m256 data_2 = pshufb_m256(data_m256, data_select_mask_2);
m256 hi_mask = loadu2x128(ri->hi_mask);
m256 lo_mask = loadu2x128(ri->lo_mask);
m256 bucket_select_mask_1 = loadu256(ri->bucket_select_mask);
m256 bucket_select_mask_2 = loadu256(ri->bucket_select_mask + 32);
u64a hi_bits_mask = ri->hi_bits_mask;
u64a lo_bits_mask = ri->lo_bits_mask;
u64a neg_mask = ri->neg_mask;
if (validateMultipathShuftiMask64(data_1, data_2, hi_mask, lo_mask,
bucket_select_mask_1,
bucket_select_mask_2, hi_bits_mask,
lo_bits_mask, neg_mask,
valid_path_mask)) {
DEBUG_PRINTF("check multi-path shufti-64 successfully\n");
return 1;
} else {
return 0;
}
}
static rose_inline
int roseNfaEarliestSom(u64a start, UNUSED u64a end, UNUSED ReportID id,
void *context) {
assert(context);
u64a *som = context;
*som = MIN(*som, start);
return MO_CONTINUE_MATCHING;
}
static rose_inline
u64a roseGetHaigSom(const struct RoseEngine *t, struct hs_scratch *scratch,
const u32 qi, UNUSED const u32 leftfixLag) {
u32 ri = queueToLeftIndex(t, qi);
UNUSED const struct LeftNfaInfo *left = getLeftTable(t) + ri;
DEBUG_PRINTF("testing %s prefix %u/%u with lag %u (maxLag=%u)\n",
left->transient ? "transient" : "active", ri, qi,
leftfixLag, left->maxLag);
assert(leftfixLag <= left->maxLag);
struct mq *q = scratch->queues + qi;
u64a start = ~0ULL;
/* switch the callback + context for a fun one */
q->cb = roseNfaEarliestSom;
q->context = &start;
nfaReportCurrentMatches(q->nfa, q);
/* restore the old callback + context */
q->cb = roseNfaAdaptor;
q->context = NULL;
DEBUG_PRINTF("earliest som is %llu\n", start);
return start;
}
static rose_inline
char roseCheckBounds(u64a end, u64a min_bound, u64a max_bound) {
DEBUG_PRINTF("check offset=%llu against bounds [%llu,%llu]\n", end,
min_bound, max_bound);
assert(min_bound <= max_bound);
return end >= min_bound && end <= max_bound;
}
static rose_inline
hwlmcb_rv_t roseEnginesEod(const struct RoseEngine *rose,
struct hs_scratch *scratch, u64a offset,
u32 iter_offset) {
const char is_streaming = rose->mode != HS_MODE_BLOCK;
/* data, len is used for state decompress, should be full available data */
u8 key = 0;
if (is_streaming) {
const u8 *eod_data = scratch->core_info.hbuf;
size_t eod_len = scratch->core_info.hlen;
key = eod_len ? eod_data[eod_len - 1] : 0;
}
const u8 *aa = getActiveLeafArray(rose, scratch->core_info.state);
const u32 aaCount = rose->activeArrayCount;
const u32 qCount = rose->queueCount;
struct fatbit *aqa = scratch->aqa;
const struct mmbit_sparse_iter *it = getByOffset(rose, iter_offset);
assert(ISALIGNED(it));
u32 idx = 0;
struct mmbit_sparse_state si_state[MAX_SPARSE_ITER_STATES];
for (u32 qi = mmbit_sparse_iter_begin(aa, aaCount, &idx, it, si_state);
qi != MMB_INVALID;
qi = mmbit_sparse_iter_next(aa, aaCount, qi, &idx, it, si_state)) {
DEBUG_PRINTF("checking nfa %u\n", qi);
struct mq *q = scratch->queues + qi;
if (!fatbit_set(aqa, qCount, qi)) {
initQueue(q, qi, rose, scratch);
}
assert(q->nfa == getNfaByQueue(rose, qi));
assert(nfaAcceptsEod(q->nfa));
if (is_streaming) {
// Decompress stream state.
nfaExpandState(q->nfa, q->state, q->streamState, offset, key);
}
if (nfaCheckFinalState(q->nfa, q->state, q->streamState, offset,
roseReportAdaptor,
scratch) == MO_HALT_MATCHING) {
DEBUG_PRINTF("user instructed us to stop\n");
return HWLM_TERMINATE_MATCHING;
}
}
return HWLM_CONTINUE_MATCHING;
}
static rose_inline
hwlmcb_rv_t roseSuffixesEod(const struct RoseEngine *rose,
struct hs_scratch *scratch, u64a offset) {
const u8 *aa = getActiveLeafArray(rose, scratch->core_info.state);
const u32 aaCount = rose->activeArrayCount;
for (u32 qi = mmbit_iterate(aa, aaCount, MMB_INVALID); qi != MMB_INVALID;
qi = mmbit_iterate(aa, aaCount, qi)) {
DEBUG_PRINTF("checking nfa %u\n", qi);
struct mq *q = scratch->queues + qi;
assert(q->nfa == getNfaByQueue(rose, qi));
assert(nfaAcceptsEod(q->nfa));
/* We have just been triggered. */
assert(fatbit_isset(scratch->aqa, rose->queueCount, qi));
pushQueueNoMerge(q, MQE_END, scratch->core_info.len);
q->context = NULL;
/* rose exec is used as we don't want to / can't raise matches in the
* history buffer. */
if (!nfaQueueExecRose(q->nfa, q, MO_INVALID_IDX)) {
DEBUG_PRINTF("nfa is dead\n");
continue;
}
if (nfaCheckFinalState(q->nfa, q->state, q->streamState, offset,
roseReportAdaptor,
scratch) == MO_HALT_MATCHING) {
DEBUG_PRINTF("user instructed us to stop\n");
return HWLM_TERMINATE_MATCHING;
}
}
return HWLM_CONTINUE_MATCHING;
}
static rose_inline
hwlmcb_rv_t roseMatcherEod(const struct RoseEngine *rose,
struct hs_scratch *scratch, u64a offset) {
assert(rose->ematcherOffset);
assert(rose->ematcherRegionSize);
// Clear role state and active engines, since we have already handled all
// outstanding work there.
DEBUG_PRINTF("clear role state and active leaf array\n");
char *state = scratch->core_info.state;
mmbit_clear(getRoleState(state), rose->rolesWithStateCount);
mmbit_clear(getActiveLeafArray(rose, state), rose->activeArrayCount);
const char is_streaming = rose->mode != HS_MODE_BLOCK;
size_t eod_len;
const u8 *eod_data;
if (!is_streaming) { /* Block */
eod_data = scratch->core_info.buf;
eod_len = scratch->core_info.len;
} else { /* Streaming */
eod_len = scratch->core_info.hlen;
eod_data = scratch->core_info.hbuf;
}
assert(eod_data);
assert(eod_len);
DEBUG_PRINTF("%zu bytes of eod data to scan at offset %llu\n", eod_len,
offset);
// If we don't have enough bytes to produce a match from an EOD table scan,
// there's no point scanning.
if (eod_len < rose->eodmatcherMinWidth) {
DEBUG_PRINTF("too short for min width %u\n", rose->eodmatcherMinWidth);
return HWLM_CONTINUE_MATCHING;
}
// Ensure that we only need scan the last N bytes, where N is the length of
// the eod-anchored matcher region.
size_t adj = eod_len - MIN(eod_len, rose->ematcherRegionSize);
const struct HWLM *etable = getByOffset(rose, rose->ematcherOffset);
hwlmExec(etable, eod_data, eod_len, adj, roseCallback, scratch,
scratch->tctxt.groups);
// We may need to fire delayed matches.
if (cleanUpDelayed(rose, scratch, 0, offset) == HWLM_TERMINATE_MATCHING) {
DEBUG_PRINTF("user instructed us to stop\n");
return HWLM_TERMINATE_MATCHING;
}
roseFlushLastByteHistory(rose, scratch, offset);
return HWLM_CONTINUE_MATCHING;
}
static rose_inline
int roseCheckLongLiteral(const struct RoseEngine *t,
const struct hs_scratch *scratch, u64a end,
u32 lit_offset, u32 lit_length, char nocase) {
const struct core_info *ci = &scratch->core_info;
const u8 *lit = getByOffset(t, lit_offset);
DEBUG_PRINTF("check lit at %llu, length %u\n", end, lit_length);
DEBUG_PRINTF("base buf_offset=%llu\n", ci->buf_offset);
if (end < lit_length) {
DEBUG_PRINTF("too short!\n");
return 0;
}
// If any portion of the literal matched in the current buffer, check it.
if (end > ci->buf_offset) {
u32 scan_len = MIN(end - ci->buf_offset, lit_length);
u64a scan_start = end - ci->buf_offset - scan_len;
DEBUG_PRINTF("checking suffix (%u bytes) in buf[%llu:%llu]\n", scan_len,
scan_start, end);
if (cmpForward(ci->buf + scan_start, lit + lit_length - scan_len,
scan_len, nocase)) {
DEBUG_PRINTF("cmp of suffix failed\n");
return 0;
}
}
// If the entirety of the literal was in the current block, we are done.
if (end - lit_length >= ci->buf_offset) {
DEBUG_PRINTF("literal confirmed in current block\n");
return 1;
}
// We still have a prefix which we must test against the buffer prepared by
// the long literal table. This is only done in streaming mode.
assert(t->mode != HS_MODE_BLOCK);
const u8 *ll_buf;
size_t ll_len;
if (nocase) {
ll_buf = scratch->tctxt.ll_buf_nocase;
ll_len = scratch->tctxt.ll_len_nocase;
} else {
ll_buf = scratch->tctxt.ll_buf;
ll_len = scratch->tctxt.ll_len;
}
assert(ll_buf);
u64a lit_start_offset = end - lit_length;
u32 prefix_len = MIN(lit_length, ci->buf_offset - lit_start_offset);
u32 hist_rewind = ci->buf_offset - lit_start_offset;
DEBUG_PRINTF("ll_len=%zu, hist_rewind=%u\n", ll_len, hist_rewind);
if (hist_rewind > ll_len) {
DEBUG_PRINTF("not enough history\n");
return 0;
}
DEBUG_PRINTF("check prefix len=%u from hist (len %zu, rewind %u)\n",
prefix_len, ll_len, hist_rewind);
assert(hist_rewind <= ll_len);
if (cmpForward(ll_buf + ll_len - hist_rewind, lit, prefix_len, nocase)) {
DEBUG_PRINTF("cmp of prefix failed\n");
return 0;
}
DEBUG_PRINTF("cmp succeeded\n");
return 1;
}
static rose_inline
int roseCheckMediumLiteral(const struct RoseEngine *t,
const struct hs_scratch *scratch, u64a end,
u32 lit_offset, u32 lit_length, char nocase) {
const struct core_info *ci = &scratch->core_info;
const u8 *lit = getByOffset(t, lit_offset);
DEBUG_PRINTF("check lit at %llu, length %u\n", end, lit_length);
DEBUG_PRINTF("base buf_offset=%llu\n", ci->buf_offset);
if (end < lit_length) {
DEBUG_PRINTF("too short!\n");
return 0;
}
// If any portion of the literal matched in the current buffer, check it.
if (end > ci->buf_offset) {
u32 scan_len = MIN(end - ci->buf_offset, lit_length);
u64a scan_start = end - ci->buf_offset - scan_len;
DEBUG_PRINTF("checking suffix (%u bytes) in buf[%llu:%llu]\n", scan_len,
scan_start, end);
if (cmpForward(ci->buf + scan_start, lit + lit_length - scan_len,
scan_len, nocase)) {
DEBUG_PRINTF("cmp of suffix failed\n");
return 0;
}
}
// If the entirety of the literal was in the current block, we are done.
if (end - lit_length >= ci->buf_offset) {
DEBUG_PRINTF("literal confirmed in current block\n");
return 1;
}
// We still have a prefix which we must test against the history buffer.
assert(t->mode != HS_MODE_BLOCK);
u64a lit_start_offset = end - lit_length;
u32 prefix_len = MIN(lit_length, ci->buf_offset - lit_start_offset);
u32 hist_rewind = ci->buf_offset - lit_start_offset;
DEBUG_PRINTF("hlen=%zu, hist_rewind=%u\n", ci->hlen, hist_rewind);
// History length check required for confirm in the EOD and delayed
// rebuild paths.
if (hist_rewind > ci->hlen) {
DEBUG_PRINTF("not enough history\n");
return 0;
}
DEBUG_PRINTF("check prefix len=%u from hist (len %zu, rewind %u)\n",
prefix_len, ci->hlen, hist_rewind);
assert(hist_rewind <= ci->hlen);
if (cmpForward(ci->hbuf + ci->hlen - hist_rewind, lit, prefix_len,
nocase)) {
DEBUG_PRINTF("cmp of prefix failed\n");
return 0;
}
DEBUG_PRINTF("cmp succeeded\n");
return 1;
}
static
void updateSeqPoint(struct RoseContext *tctxt, u64a offset,
const char from_mpv) {
if (from_mpv) {
updateMinMatchOffsetFromMpv(tctxt, offset);
} else {
updateMinMatchOffset(tctxt, offset);
}
}
static rose_inline
hwlmcb_rv_t flushActiveCombinations(const struct RoseEngine *t,
struct hs_scratch *scratch) {
u8 *cvec = (u8 *)scratch->core_info.combVector;
if (!mmbit_any(cvec, t->ckeyCount)) {
return HWLM_CONTINUE_MATCHING;
}
u64a end = scratch->tctxt.lastCombMatchOffset;
for (u32 i = mmbit_iterate(cvec, t->ckeyCount, MMB_INVALID);
i != MMB_INVALID; i = mmbit_iterate(cvec, t->ckeyCount, i)) {
const struct CombInfo *combInfoMap = (const struct CombInfo *)
((const char *)t + t->combInfoMapOffset);
const struct CombInfo *ci = combInfoMap + i;
if ((ci->min_offset != 0) && (end < ci->min_offset)) {
DEBUG_PRINTF("halt: before min_offset=%llu\n", ci->min_offset);
continue;
}
if ((ci->max_offset != MAX_OFFSET) && (end > ci->max_offset)) {
DEBUG_PRINTF("halt: after max_offset=%llu\n", ci->max_offset);
continue;
}
DEBUG_PRINTF("check ekey %u\n", ci->ekey);
if (ci->ekey != INVALID_EKEY) {
assert(ci->ekey < t->ekeyCount);
const char *evec = scratch->core_info.exhaustionVector;
if (isExhausted(t, evec, ci->ekey)) {
DEBUG_PRINTF("ekey %u already set, match is exhausted\n",
ci->ekey);
continue;
}
}
DEBUG_PRINTF("check ckey %u\n", i);
char *lvec = scratch->core_info.logicalVector;
if (!isLogicalCombination(t, lvec, ci->start, ci->result)) {
DEBUG_PRINTF("Logical Combination Failed!\n");
continue;
}
DEBUG_PRINTF("Logical Combination Passed!\n");
if (roseReport(t, scratch, end, ci->id, 0,
ci->ekey) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
clearCvec(t, (char *)cvec);
return HWLM_CONTINUE_MATCHING;
}
static rose_inline
hwlmcb_rv_t checkPurelyNegatives(const struct RoseEngine *t,
struct hs_scratch *scratch, u64a end) {
for (u32 i = 0; i < t->ckeyCount; i++) {
const struct CombInfo *combInfoMap = (const struct CombInfo *)
((const char *)t + t->combInfoMapOffset);
const struct CombInfo *ci = combInfoMap + i;
if ((ci->min_offset != 0) && (end < ci->min_offset)) {
DEBUG_PRINTF("halt: before min_offset=%llu\n", ci->min_offset);
continue;
}
if ((ci->max_offset != MAX_OFFSET) && (end > ci->max_offset)) {
DEBUG_PRINTF("halt: after max_offset=%llu\n", ci->max_offset);
continue;
}
DEBUG_PRINTF("check ekey %u\n", ci->ekey);
if (ci->ekey != INVALID_EKEY) {
assert(ci->ekey < t->ekeyCount);
const char *evec = scratch->core_info.exhaustionVector;
if (isExhausted(t, evec, ci->ekey)) {
DEBUG_PRINTF("ekey %u already set, match is exhausted\n",
ci->ekey);
continue;
}
}
DEBUG_PRINTF("check ckey %u purely negative\n", i);
char *lvec = scratch->core_info.logicalVector;
if (!isPurelyNegativeMatch(t, lvec, ci->start, ci->result)) {
DEBUG_PRINTF("Logical Combination from purely negative Failed!\n");
continue;
}
DEBUG_PRINTF("Logical Combination from purely negative Passed!\n");
if (roseReport(t, scratch, end, ci->id, 0,
ci->ekey) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
return HWLM_CONTINUE_MATCHING;
}
#if !defined(_WIN32)
#define PROGRAM_CASE(name) \
case ROSE_INSTR_##name: { \
LABEL_ROSE_INSTR_##name: \
DEBUG_PRINTF("instruction: " #name " (pc=%u)\n", \
programOffset + (u32)(pc - pc_base)); \
const struct ROSE_STRUCT_##name *ri = \
(const struct ROSE_STRUCT_##name *)pc;
#define PROGRAM_NEXT_INSTRUCTION \
pc += ROUNDUP_N(sizeof(*ri), ROSE_INSTR_MIN_ALIGN); \
goto *(next_instr[*(const u8 *)pc]); \
}
#define PROGRAM_NEXT_INSTRUCTION_JUMP \
goto *(next_instr[*(const u8 *)pc]);
#else
#define PROGRAM_CASE(name) \
case ROSE_INSTR_##name: { \
DEBUG_PRINTF("instruction: " #name " (pc=%u)\n", \
programOffset + (u32)(pc - pc_base)); \
const struct ROSE_STRUCT_##name *ri = \
(const struct ROSE_STRUCT_##name *)pc;
#define PROGRAM_NEXT_INSTRUCTION \
pc += ROUNDUP_N(sizeof(*ri), ROSE_INSTR_MIN_ALIGN); \
break; \
}
#define PROGRAM_NEXT_INSTRUCTION_JUMP continue;
#endif
hwlmcb_rv_t roseRunProgram(const struct RoseEngine *t,
struct hs_scratch *scratch, u32 programOffset,
u64a som, u64a end, u8 prog_flags) {
DEBUG_PRINTF("program=%u, offsets [%llu,%llu], flags=%u\n", programOffset,
som, end, prog_flags);
assert(programOffset != ROSE_INVALID_PROG_OFFSET);
assert(programOffset >= sizeof(struct RoseEngine));
assert(programOffset < t->size);
const char in_anchored = prog_flags & ROSE_PROG_FLAG_IN_ANCHORED;
const char in_catchup = prog_flags & ROSE_PROG_FLAG_IN_CATCHUP;
const char from_mpv = prog_flags & ROSE_PROG_FLAG_FROM_MPV;
const char skip_mpv_catchup = prog_flags & ROSE_PROG_FLAG_SKIP_MPV_CATCHUP;
const char *pc_base = getByOffset(t, programOffset);
const char *pc = pc_base;
// Local sparse iterator state for programs that use the SPARSE_ITER_BEGIN
// and SPARSE_ITER_NEXT instructions.
struct mmbit_sparse_state si_state[MAX_SPARSE_ITER_STATES];
// If this program has an effect, work_done will be set to one (which may
// allow the program to squash groups).
int work_done = 0;
struct RoseContext *tctxt = &scratch->tctxt;
assert(*(const u8 *)pc != ROSE_INSTR_END);
#if !defined(_WIN32)
static const void *next_instr[] = {
&&LABEL_ROSE_INSTR_END, //!< End of program.
&&LABEL_ROSE_INSTR_ANCHORED_DELAY, //!< Delay until after anchored matcher.
&&LABEL_ROSE_INSTR_CHECK_LIT_EARLY, //!< Skip matches before floating min offset.
&&LABEL_ROSE_INSTR_CHECK_GROUPS, //!< Check that literal groups are on.
&&LABEL_ROSE_INSTR_CHECK_ONLY_EOD, //!< Role matches only at EOD.
&&LABEL_ROSE_INSTR_CHECK_BOUNDS, //!< Bounds on distance from offset 0.
&&LABEL_ROSE_INSTR_CHECK_NOT_HANDLED, //!< Test & set role in "handled".
&&LABEL_ROSE_INSTR_CHECK_SINGLE_LOOKAROUND, //!< Single lookaround check.
&&LABEL_ROSE_INSTR_CHECK_LOOKAROUND, //!< Lookaround check.
&&LABEL_ROSE_INSTR_CHECK_MASK, //!< 8-bytes mask check.
&&LABEL_ROSE_INSTR_CHECK_MASK_32, //!< 32-bytes and/cmp/neg mask check.
&&LABEL_ROSE_INSTR_CHECK_BYTE, //!< Single Byte check.
&&LABEL_ROSE_INSTR_CHECK_SHUFTI_16x8, //!< Check 16-byte data by 8-bucket shufti.
&&LABEL_ROSE_INSTR_CHECK_SHUFTI_32x8, //!< Check 32-byte data by 8-bucket shufti.
&&LABEL_ROSE_INSTR_CHECK_SHUFTI_16x16, //!< Check 16-byte data by 16-bucket shufti.
&&LABEL_ROSE_INSTR_CHECK_SHUFTI_32x16, //!< Check 32-byte data by 16-bucket shufti.
&&LABEL_ROSE_INSTR_CHECK_INFIX, //!< Infix engine must be in accept state.
&&LABEL_ROSE_INSTR_CHECK_PREFIX, //!< Prefix engine must be in accept state.
&&LABEL_ROSE_INSTR_PUSH_DELAYED, //!< Push delayed literal matches.
&&LABEL_ROSE_INSTR_DUMMY_NOP, //!< NOP. Should not exist in build programs.
&&LABEL_ROSE_INSTR_CATCH_UP, //!< Catch up engines, anchored matches.
&&LABEL_ROSE_INSTR_CATCH_UP_MPV, //!< Catch up the MPV.
&&LABEL_ROSE_INSTR_SOM_ADJUST, //!< Set SOM from a distance to EOM.
&&LABEL_ROSE_INSTR_SOM_LEFTFIX, //!< Acquire SOM from a leftfix engine.
&&LABEL_ROSE_INSTR_SOM_FROM_REPORT, //!< Acquire SOM from a som_operation.
&&LABEL_ROSE_INSTR_SOM_ZERO, //!< Set SOM to zero.
&&LABEL_ROSE_INSTR_TRIGGER_INFIX, //!< Trigger an infix engine.
&&LABEL_ROSE_INSTR_TRIGGER_SUFFIX, //!< Trigger a suffix engine.
&&LABEL_ROSE_INSTR_DEDUPE, //!< Run deduplication for report.
&&LABEL_ROSE_INSTR_DEDUPE_SOM, //!< Run deduplication for SOM report.
&&LABEL_ROSE_INSTR_REPORT_CHAIN, //!< Fire a chained report (MPV).
&&LABEL_ROSE_INSTR_REPORT_SOM_INT, //!< Manipulate SOM only.
&&LABEL_ROSE_INSTR_REPORT_SOM_AWARE, //!< Manipulate SOM from SOM-aware source.
&&LABEL_ROSE_INSTR_REPORT,
&&LABEL_ROSE_INSTR_REPORT_EXHAUST,
&&LABEL_ROSE_INSTR_REPORT_SOM,
&&LABEL_ROSE_INSTR_REPORT_SOM_EXHAUST,
&&LABEL_ROSE_INSTR_DEDUPE_AND_REPORT,
&&LABEL_ROSE_INSTR_FINAL_REPORT,
&&LABEL_ROSE_INSTR_CHECK_EXHAUSTED, //!< Check if an ekey has already been set.
&&LABEL_ROSE_INSTR_CHECK_MIN_LENGTH, //!< Check (EOM - SOM) against min length.
&&LABEL_ROSE_INSTR_SET_STATE, //!< Switch a state index on.
&&LABEL_ROSE_INSTR_SET_GROUPS, //!< Set some literal group bits.
&&LABEL_ROSE_INSTR_SQUASH_GROUPS, //!< Conditionally turn off some groups.
&&LABEL_ROSE_INSTR_CHECK_STATE, //!< Test a single bit in the state multibit.
&&LABEL_ROSE_INSTR_SPARSE_ITER_BEGIN, //!< Begin running a sparse iter over states.
&&LABEL_ROSE_INSTR_SPARSE_ITER_NEXT, //!< Continue running sparse iter over states.
&&LABEL_ROSE_INSTR_SPARSE_ITER_ANY, //!< Test for any bit in the sparse iterator.
&&LABEL_ROSE_INSTR_ENGINES_EOD,
&&LABEL_ROSE_INSTR_SUFFIXES_EOD,
&&LABEL_ROSE_INSTR_MATCHER_EOD,
&&LABEL_ROSE_INSTR_CHECK_LONG_LIT,
&&LABEL_ROSE_INSTR_CHECK_LONG_LIT_NOCASE,
&&LABEL_ROSE_INSTR_CHECK_MED_LIT,
&&LABEL_ROSE_INSTR_CHECK_MED_LIT_NOCASE,
&&LABEL_ROSE_INSTR_CLEAR_WORK_DONE,
&&LABEL_ROSE_INSTR_MULTIPATH_LOOKAROUND,
&&LABEL_ROSE_INSTR_CHECK_MULTIPATH_SHUFTI_16x8,
&&LABEL_ROSE_INSTR_CHECK_MULTIPATH_SHUFTI_32x8,
&&LABEL_ROSE_INSTR_CHECK_MULTIPATH_SHUFTI_32x16,
&&LABEL_ROSE_INSTR_CHECK_MULTIPATH_SHUFTI_64,
&&LABEL_ROSE_INSTR_INCLUDED_JUMP,
&&LABEL_ROSE_INSTR_SET_LOGICAL,
&&LABEL_ROSE_INSTR_SET_COMBINATION,
&&LABEL_ROSE_INSTR_FLUSH_COMBINATION,
&&LABEL_ROSE_INSTR_SET_EXHAUST,
&&LABEL_ROSE_INSTR_LAST_FLUSH_COMBINATION
};
#endif
for (;;) {
assert(ISALIGNED_N(pc, ROSE_INSTR_MIN_ALIGN));
assert(pc >= pc_base);
assert((size_t)(pc - pc_base) < t->size);
const u8 code = *(const u8 *)pc;
assert(code <= LAST_ROSE_INSTRUCTION);
switch ((enum RoseInstructionCode)code) {
PROGRAM_CASE(END) {
DEBUG_PRINTF("finished\n");
return HWLM_CONTINUE_MATCHING;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(ANCHORED_DELAY) {
if (in_anchored && end > t->floatingMinLiteralMatchOffset) {
DEBUG_PRINTF("delay until playback\n");
tctxt->groups |= ri->groups;
work_done = 1;
recordAnchoredLiteralMatch(t, scratch, ri->anch_id, end);
assert(ri->done_jump); // must progress
pc += ri->done_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_LIT_EARLY) {
if (end < ri->min_offset) {
DEBUG_PRINTF("halt: before min_offset=%u\n",
ri->min_offset);
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_GROUPS) {
DEBUG_PRINTF("groups=0x%llx, checking instr groups=0x%llx\n",
tctxt->groups, ri->groups);
if (!(ri->groups & tctxt->groups)) {
DEBUG_PRINTF("halt: no groups are set\n");
return HWLM_CONTINUE_MATCHING;
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_ONLY_EOD) {
struct core_info *ci = &scratch->core_info;
if (end != ci->buf_offset + ci->len) {
DEBUG_PRINTF("should only match at end of data\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_BOUNDS) {
if (!roseCheckBounds(end, ri->min_bound, ri->max_bound)) {
DEBUG_PRINTF("failed bounds check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_NOT_HANDLED) {
struct fatbit *handled = scratch->handled_roles;
if (fatbit_set(handled, t->handledKeyCount, ri->key)) {
DEBUG_PRINTF("key %u already set\n", ri->key);
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_SINGLE_LOOKAROUND) {
if (!roseCheckSingleLookaround(t, scratch, ri->offset,
ri->reach_index, end)) {
DEBUG_PRINTF("failed lookaround check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_LOOKAROUND) {
if (!roseCheckLookaround(t, scratch, ri->look_index,
ri->reach_index, ri->count, end)) {
DEBUG_PRINTF("failed lookaround check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_MASK) {
struct core_info *ci = &scratch->core_info;
if (!roseCheckMask(ci, ri->and_mask, ri->cmp_mask,
ri->neg_mask, ri->offset, end)) {
DEBUG_PRINTF("failed mask check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_MASK_32) {
struct core_info *ci = &scratch->core_info;
if (!roseCheckMask32(ci, ri->and_mask, ri->cmp_mask,
ri->neg_mask, ri->offset, end)) {
assert(ri->fail_jump);
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_BYTE) {
const struct core_info *ci = &scratch->core_info;
if (!roseCheckByte(ci, ri->and_mask, ri->cmp_mask,
ri->negation, ri->offset, end)) {
DEBUG_PRINTF("failed byte check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_SHUFTI_16x8) {
const struct core_info *ci = &scratch->core_info;
if (!roseCheckShufti16x8(ci, ri->nib_mask,
ri->bucket_select_mask,
ri->neg_mask, ri->offset, end)) {
assert(ri->fail_jump);
pc += ri-> fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_SHUFTI_32x8) {
const struct core_info *ci = &scratch->core_info;
if (!roseCheckShufti32x8(ci, ri->hi_mask, ri->lo_mask,
ri->bucket_select_mask,
ri->neg_mask, ri->offset, end)) {
assert(ri->fail_jump);
pc += ri-> fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_SHUFTI_16x16) {
const struct core_info *ci = &scratch->core_info;
if (!roseCheckShufti16x16(ci, ri->hi_mask, ri->lo_mask,
ri->bucket_select_mask,
ri->neg_mask, ri->offset, end)) {
assert(ri->fail_jump);
pc += ri-> fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_SHUFTI_32x16) {
const struct core_info *ci = &scratch->core_info;
if (!roseCheckShufti32x16(ci, ri->hi_mask, ri->lo_mask,
ri->bucket_select_mask_hi,
ri->bucket_select_mask_lo,
ri->neg_mask, ri->offset, end)) {
assert(ri->fail_jump);
pc += ri-> fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_INFIX) {
if (!roseTestInfix(t, scratch, ri->queue, ri->lag, ri->report,
end)) {
DEBUG_PRINTF("failed infix check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_PREFIX) {
if (!roseTestPrefix(t, scratch, ri->queue, ri->lag, ri->report,
end)) {
DEBUG_PRINTF("failed prefix check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(PUSH_DELAYED) {
rosePushDelayedMatch(t, scratch, ri->delay, ri->index, end);
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(DUMMY_NOP) {
assert(0);
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CATCH_UP) {
if (roseCatchUpTo(t, scratch, end) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CATCH_UP_MPV) {
if (from_mpv || skip_mpv_catchup) {
DEBUG_PRINTF("skipping mpv catchup\n");
} else if (roseCatchUpMPV(t,
end - scratch->core_info.buf_offset,
scratch) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SOM_ADJUST) {
assert(ri->distance <= end);
som = end - ri->distance;
DEBUG_PRINTF("som is (end - %u) = %llu\n", ri->distance, som);
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SOM_LEFTFIX) {
som = roseGetHaigSom(t, scratch, ri->queue, ri->lag);
DEBUG_PRINTF("som from leftfix is %llu\n", som);
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SOM_FROM_REPORT) {
som = handleSomExternal(scratch, &ri->som, end);
DEBUG_PRINTF("som from report %u is %llu\n", ri->som.onmatch,
som);
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SOM_ZERO) {
DEBUG_PRINTF("setting SOM to zero\n");
som = 0;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(TRIGGER_INFIX) {
roseTriggerInfix(t, scratch, som, end, ri->queue, ri->event,
ri->cancel);
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(TRIGGER_SUFFIX) {
if (roseTriggerSuffix(t, scratch, ri->queue, ri->event, som,
end) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(DEDUPE) {
updateSeqPoint(tctxt, end, from_mpv);
const char do_som = t->hasSom; // TODO: constant propagate
const char is_external_report = 1;
enum DedupeResult rv =
dedupeCatchup(t, scratch, end, som, end + ri->offset_adjust,
ri->dkey, ri->offset_adjust,
is_external_report, ri->quash_som, do_som);
switch (rv) {
case DEDUPE_HALT:
return HWLM_TERMINATE_MATCHING;
case DEDUPE_SKIP:
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
case DEDUPE_CONTINUE:
break;
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(DEDUPE_SOM) {
updateSeqPoint(tctxt, end, from_mpv);
const char is_external_report = 0;
const char do_som = 1;
enum DedupeResult rv =
dedupeCatchup(t, scratch, end, som, end + ri->offset_adjust,
ri->dkey, ri->offset_adjust,
is_external_report, ri->quash_som, do_som);
switch (rv) {
case DEDUPE_HALT:
return HWLM_TERMINATE_MATCHING;
case DEDUPE_SKIP:
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
case DEDUPE_CONTINUE:
break;
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(REPORT_CHAIN) {
// Note: sequence points updated inside this function.
if (roseCatchUpAndHandleChainMatch(
t, scratch, ri->event, ri->top_squash_distance, end,
in_catchup) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(REPORT_SOM_INT) {
updateSeqPoint(tctxt, end, from_mpv);
roseHandleSom(scratch, &ri->som, end);
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(REPORT_SOM_AWARE) {
updateSeqPoint(tctxt, end, from_mpv);
roseHandleSomSom(scratch, &ri->som, som, end);
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(REPORT) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust,
INVALID_EKEY) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(REPORT_EXHAUST) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust,
ri->ekey) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(REPORT_SOM) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseReportSom(t, scratch, som, end, ri->onmatch,
ri->offset_adjust,
INVALID_EKEY) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(REPORT_SOM_EXHAUST) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseReportSom(t, scratch, som, end, ri->onmatch,
ri->offset_adjust,
ri->ekey) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(DEDUPE_AND_REPORT) {
updateSeqPoint(tctxt, end, from_mpv);
const char do_som = t->hasSom; // TODO: constant propagate
const char is_external_report = 1;
enum DedupeResult rv =
dedupeCatchup(t, scratch, end, som, end + ri->offset_adjust,
ri->dkey, ri->offset_adjust,
is_external_report, ri->quash_som, do_som);
switch (rv) {
case DEDUPE_HALT:
return HWLM_TERMINATE_MATCHING;
case DEDUPE_SKIP:
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
case DEDUPE_CONTINUE:
break;
}
const u32 ekey = INVALID_EKEY;
if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust,
ekey) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(FINAL_REPORT) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust,
INVALID_EKEY) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
/* One-shot specialisation: this instruction always terminates
* execution of the program. */
return HWLM_CONTINUE_MATCHING;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_EXHAUSTED) {
DEBUG_PRINTF("check ekey %u\n", ri->ekey);
assert(ri->ekey != INVALID_EKEY);
assert(ri->ekey < t->ekeyCount);
const char *evec = scratch->core_info.exhaustionVector;
if (isExhausted(t, evec, ri->ekey)) {
DEBUG_PRINTF("ekey %u already set, match is exhausted\n",
ri->ekey);
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_MIN_LENGTH) {
DEBUG_PRINTF("check min length %llu (adj %d)\n", ri->min_length,
ri->end_adj);
assert(ri->min_length > 0);
assert(ri->end_adj == 0 || ri->end_adj == -1);
assert(som == HS_OFFSET_PAST_HORIZON || som <= end);
if (som != HS_OFFSET_PAST_HORIZON &&
((end + ri->end_adj) - som < ri->min_length)) {
DEBUG_PRINTF("failed check, match len %llu\n",
(u64a)((end + ri->end_adj) - som));
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SET_STATE) {
DEBUG_PRINTF("set state index %u\n", ri->index);
mmbit_set(getRoleState(scratch->core_info.state),
t->rolesWithStateCount, ri->index);
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SET_GROUPS) {
tctxt->groups |= ri->groups;
DEBUG_PRINTF("set groups 0x%llx -> 0x%llx\n", ri->groups,
tctxt->groups);
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SQUASH_GROUPS) {
assert(popcount64(ri->groups) == 63); // Squash only one group.
if (work_done) {
tctxt->groups &= ri->groups;
DEBUG_PRINTF("squash groups 0x%llx -> 0x%llx\n", ri->groups,
tctxt->groups);
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_STATE) {
DEBUG_PRINTF("check state %u\n", ri->index);
const u8 *roles = getRoleState(scratch->core_info.state);
if (!mmbit_isset(roles, t->rolesWithStateCount, ri->index)) {
DEBUG_PRINTF("state not on\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SPARSE_ITER_BEGIN) {
DEBUG_PRINTF("iter_offset=%u\n", ri->iter_offset);
const struct mmbit_sparse_iter *it =
getByOffset(t, ri->iter_offset);
assert(ISALIGNED(it));
const u8 *roles = getRoleState(scratch->core_info.state);
u32 idx = 0;
u32 i = mmbit_sparse_iter_begin(roles, t->rolesWithStateCount,
&idx, it, si_state);
if (i == MMB_INVALID) {
DEBUG_PRINTF("no states in sparse iter are on\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
fatbit_clear(scratch->handled_roles);
const u32 *jumps = getByOffset(t, ri->jump_table);
DEBUG_PRINTF("state %u (idx=%u) is on, jump to %u\n", i, idx,
jumps[idx]);
pc = pc_base + jumps[idx];
PROGRAM_NEXT_INSTRUCTION_JUMP
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SPARSE_ITER_NEXT) {
DEBUG_PRINTF("iter_offset=%u, state=%u\n", ri->iter_offset,
ri->state);
const struct mmbit_sparse_iter *it =
getByOffset(t, ri->iter_offset);
assert(ISALIGNED(it));
const u8 *roles = getRoleState(scratch->core_info.state);
u32 idx = 0;
u32 i = mmbit_sparse_iter_next(roles, t->rolesWithStateCount,
ri->state, &idx, it, si_state);
if (i == MMB_INVALID) {
DEBUG_PRINTF("no more states in sparse iter are on\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
const u32 *jumps = getByOffset(t, ri->jump_table);
DEBUG_PRINTF("state %u (idx=%u) is on, jump to %u\n", i, idx,
jumps[idx]);
pc = pc_base + jumps[idx];
PROGRAM_NEXT_INSTRUCTION_JUMP
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SPARSE_ITER_ANY) {
DEBUG_PRINTF("iter_offset=%u\n", ri->iter_offset);
const struct mmbit_sparse_iter *it =
getByOffset(t, ri->iter_offset);
assert(ISALIGNED(it));
const u8 *roles = getRoleState(scratch->core_info.state);
u32 idx = 0;
u32 i = mmbit_sparse_iter_begin(roles, t->rolesWithStateCount,
&idx, it, si_state);
if (i == MMB_INVALID) {
DEBUG_PRINTF("no states in sparse iter are on\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
DEBUG_PRINTF("state %u (idx=%u) is on\n", i, idx);
fatbit_clear(scratch->handled_roles);
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(ENGINES_EOD) {
if (roseEnginesEod(t, scratch, end, ri->iter_offset) ==
HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SUFFIXES_EOD) {
if (roseSuffixesEod(t, scratch, end) ==
HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(MATCHER_EOD) {
if (roseMatcherEod(t, scratch, end) ==
HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_LONG_LIT) {
const char nocase = 0;
if (!roseCheckLongLiteral(t, scratch, end, ri->lit_offset,
ri->lit_length, nocase)) {
DEBUG_PRINTF("failed long lit check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_LONG_LIT_NOCASE) {
const char nocase = 1;
if (!roseCheckLongLiteral(t, scratch, end, ri->lit_offset,
ri->lit_length, nocase)) {
DEBUG_PRINTF("failed nocase long lit check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_MED_LIT) {
const char nocase = 0;
if (!roseCheckMediumLiteral(t, scratch, end, ri->lit_offset,
ri->lit_length, nocase)) {
DEBUG_PRINTF("failed lit check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_MED_LIT_NOCASE) {
const char nocase = 1;
if (!roseCheckMediumLiteral(t, scratch, end, ri->lit_offset,
ri->lit_length, nocase)) {
DEBUG_PRINTF("failed long lit check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CLEAR_WORK_DONE) {
DEBUG_PRINTF("clear work_done flag\n");
work_done = 0;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(MULTIPATH_LOOKAROUND) {
if (!roseMultipathLookaround(t, scratch, ri->look_index,
ri->reach_index, ri->count,
ri->last_start, ri->start_mask,
end)) {
DEBUG_PRINTF("failed multi-path lookaround check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_MULTIPATH_SHUFTI_16x8) {
if (!roseCheckMultipathShufti16x8(scratch, ri, end)) {
DEBUG_PRINTF("failed multi-path shufti 16x8 check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_MULTIPATH_SHUFTI_32x8) {
if (!roseCheckMultipathShufti32x8(scratch, ri, end)) {
DEBUG_PRINTF("failed multi-path shufti 32x8 check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_MULTIPATH_SHUFTI_32x16) {
if (!roseCheckMultipathShufti32x16(scratch, ri, end)) {
DEBUG_PRINTF("failed multi-path shufti 32x16 check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(CHECK_MULTIPATH_SHUFTI_64) {
if (!roseCheckMultipathShufti64(scratch, ri, end)) {
DEBUG_PRINTF("failed multi-path shufti 64 check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(INCLUDED_JUMP) {
if (scratch->fdr_conf) {
// squash the bucket of included literal
u8 shift = scratch->fdr_conf_offset & ~7U;
u64a mask = ((~(u64a)ri->squash) << shift);
*(scratch->fdr_conf) &= mask;
pc = getByOffset(t, ri->child_offset);
pc_base = pc;
programOffset = (const u8 *)pc_base -(const u8 *)t;
DEBUG_PRINTF("pc_base %p pc %p child_offset %u squash %u\n",
pc_base, pc, ri->child_offset, ri->squash);
work_done = 0;
PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SET_LOGICAL) {
DEBUG_PRINTF("set logical value of lkey %u, offset_adjust=%d\n",
ri->lkey, ri->offset_adjust);
assert(ri->lkey != INVALID_LKEY);
assert(ri->lkey < t->lkeyCount);
char *lvec = scratch->core_info.logicalVector;
setLogicalVal(t, lvec, ri->lkey, 1);
updateLastCombMatchOffset(tctxt, end + ri->offset_adjust);
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SET_COMBINATION) {
DEBUG_PRINTF("set ckey %u as active\n", ri->ckey);
assert(ri->ckey != INVALID_CKEY);
assert(ri->ckey < t->ckeyCount);
char *cvec = scratch->core_info.combVector;
setCombinationActive(t, cvec, ri->ckey);
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(FLUSH_COMBINATION) {
assert(end >= tctxt->lastCombMatchOffset);
if (end > tctxt->lastCombMatchOffset) {
if (flushActiveCombinations(t, scratch)
== HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(SET_EXHAUST) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseSetExhaust(t, scratch, ri->ekey)
== HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(LAST_FLUSH_COMBINATION) {
assert(end >= tctxt->lastCombMatchOffset);
if (flushActiveCombinations(t, scratch)
== HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
if (checkPurelyNegatives(t, scratch, end)
== HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
PROGRAM_NEXT_INSTRUCTION
default: {
assert(0); // unreachable
scratch->core_info.status |= STATUS_ERROR;
return HWLM_TERMINATE_MATCHING;
}
}
}
assert(0); // unreachable
return HWLM_CONTINUE_MATCHING;
}
#define L_PROGRAM_CASE(name) \
case ROSE_INSTR_##name: { \
DEBUG_PRINTF("l_instruction: " #name " (pc=%u)\n", \
programOffset + (u32)(pc - pc_base)); \
const struct ROSE_STRUCT_##name *ri = \
(const struct ROSE_STRUCT_##name *)pc;
#define L_PROGRAM_NEXT_INSTRUCTION \
pc += ROUNDUP_N(sizeof(*ri), ROSE_INSTR_MIN_ALIGN); \
break; \
}
#define L_PROGRAM_NEXT_INSTRUCTION_JUMP continue;
hwlmcb_rv_t roseRunProgram_l(const struct RoseEngine *t,
struct hs_scratch *scratch, u32 programOffset,
u64a som, u64a end, u8 prog_flags) {
DEBUG_PRINTF("program=%u, offsets [%llu,%llu], flags=%u\n", programOffset,
som, end, prog_flags);
assert(programOffset != ROSE_INVALID_PROG_OFFSET);
assert(programOffset >= sizeof(struct RoseEngine));
assert(programOffset < t->size);
const char from_mpv = prog_flags & ROSE_PROG_FLAG_FROM_MPV;
const char *pc_base = getByOffset(t, programOffset);
const char *pc = pc_base;
// If this program has an effect, work_done will be set to one (which may
// allow the program to squash groups).
int work_done = 0;
struct RoseContext *tctxt = &scratch->tctxt;
assert(*(const u8 *)pc != ROSE_INSTR_END);
for (;;) {
assert(ISALIGNED_N(pc, ROSE_INSTR_MIN_ALIGN));
assert(pc >= pc_base);
assert((size_t)(pc - pc_base) < t->size);
const u8 code = *(const u8 *)pc;
assert(code <= LAST_ROSE_INSTRUCTION);
switch ((enum RoseInstructionCode)code) {
L_PROGRAM_CASE(END) {
DEBUG_PRINTF("finished\n");
return HWLM_CONTINUE_MATCHING;
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(CATCH_UP) {
if (roseCatchUpTo(t, scratch, end) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(SOM_FROM_REPORT) {
som = handleSomExternal(scratch, &ri->som, end);
DEBUG_PRINTF("som from report %u is %llu\n", ri->som.onmatch,
som);
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(DEDUPE) {
updateSeqPoint(tctxt, end, from_mpv);
const char do_som = t->hasSom; // TODO: constant propagate
const char is_external_report = 1;
enum DedupeResult rv =
dedupeCatchup(t, scratch, end, som, end + ri->offset_adjust,
ri->dkey, ri->offset_adjust,
is_external_report, ri->quash_som, do_som);
switch (rv) {
case DEDUPE_HALT:
return HWLM_TERMINATE_MATCHING;
case DEDUPE_SKIP:
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
L_PROGRAM_NEXT_INSTRUCTION_JUMP
case DEDUPE_CONTINUE:
break;
}
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(DEDUPE_SOM) {
updateSeqPoint(tctxt, end, from_mpv);
const char is_external_report = 0;
const char do_som = 1;
enum DedupeResult rv =
dedupeCatchup(t, scratch, end, som, end + ri->offset_adjust,
ri->dkey, ri->offset_adjust,
is_external_report, ri->quash_som, do_som);
switch (rv) {
case DEDUPE_HALT:
return HWLM_TERMINATE_MATCHING;
case DEDUPE_SKIP:
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
L_PROGRAM_NEXT_INSTRUCTION_JUMP
case DEDUPE_CONTINUE:
break;
}
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(REPORT) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust,
INVALID_EKEY) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(REPORT_EXHAUST) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust,
ri->ekey) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(REPORT_SOM) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseReportSom(t, scratch, som, end, ri->onmatch,
ri->offset_adjust,
INVALID_EKEY) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(DEDUPE_AND_REPORT) {
updateSeqPoint(tctxt, end, from_mpv);
const char do_som = t->hasSom; // TODO: constant propagate
const char is_external_report = 1;
enum DedupeResult rv =
dedupeCatchup(t, scratch, end, som, end + ri->offset_adjust,
ri->dkey, ri->offset_adjust,
is_external_report, ri->quash_som, do_som);
switch (rv) {
case DEDUPE_HALT:
return HWLM_TERMINATE_MATCHING;
case DEDUPE_SKIP:
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
L_PROGRAM_NEXT_INSTRUCTION_JUMP
case DEDUPE_CONTINUE:
break;
}
const u32 ekey = INVALID_EKEY;
if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust,
ekey) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(FINAL_REPORT) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust,
INVALID_EKEY) == HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
/* One-shot specialisation: this instruction always terminates
* execution of the program. */
return HWLM_CONTINUE_MATCHING;
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(CHECK_EXHAUSTED) {
DEBUG_PRINTF("check ekey %u\n", ri->ekey);
assert(ri->ekey != INVALID_EKEY);
assert(ri->ekey < t->ekeyCount);
const char *evec = scratch->core_info.exhaustionVector;
if (isExhausted(t, evec, ri->ekey)) {
DEBUG_PRINTF("ekey %u already set, match is exhausted\n",
ri->ekey);
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
L_PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(SQUASH_GROUPS) {
assert(popcount64(ri->groups) == 63); // Squash only one group.
if (work_done) {
tctxt->groups &= ri->groups;
DEBUG_PRINTF("squash groups 0x%llx -> 0x%llx\n", ri->groups,
tctxt->groups);
}
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(CHECK_LONG_LIT) {
const char nocase = 0;
if (!roseCheckLongLiteral(t, scratch, end, ri->lit_offset,
ri->lit_length, nocase)) {
DEBUG_PRINTF("failed long lit check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
L_PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(CHECK_LONG_LIT_NOCASE) {
const char nocase = 1;
if (!roseCheckLongLiteral(t, scratch, end, ri->lit_offset,
ri->lit_length, nocase)) {
DEBUG_PRINTF("failed nocase long lit check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
L_PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(CHECK_MED_LIT) {
const char nocase = 0;
if (!roseCheckMediumLiteral(t, scratch, end, ri->lit_offset,
ri->lit_length, nocase)) {
DEBUG_PRINTF("failed lit check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
L_PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(CHECK_MED_LIT_NOCASE) {
const char nocase = 1;
if (!roseCheckMediumLiteral(t, scratch, end, ri->lit_offset,
ri->lit_length, nocase)) {
DEBUG_PRINTF("failed long lit check\n");
assert(ri->fail_jump); // must progress
pc += ri->fail_jump;
L_PROGRAM_NEXT_INSTRUCTION_JUMP
}
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(CLEAR_WORK_DONE) {
DEBUG_PRINTF("clear work_done flag\n");
work_done = 0;
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(SET_LOGICAL) {
DEBUG_PRINTF("set logical value of lkey %u, offset_adjust=%d\n",
ri->lkey, ri->offset_adjust);
assert(ri->lkey != INVALID_LKEY);
assert(ri->lkey < t->lkeyCount);
char *lvec = scratch->core_info.logicalVector;
setLogicalVal(t, lvec, ri->lkey, 1);
updateLastCombMatchOffset(tctxt, end + ri->offset_adjust);
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(SET_COMBINATION) {
DEBUG_PRINTF("set ckey %u as active\n", ri->ckey);
assert(ri->ckey != INVALID_CKEY);
assert(ri->ckey < t->ckeyCount);
char *cvec = scratch->core_info.combVector;
setCombinationActive(t, cvec, ri->ckey);
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(FLUSH_COMBINATION) {
assert(end >= tctxt->lastCombMatchOffset);
if (end > tctxt->lastCombMatchOffset) {
if (flushActiveCombinations(t, scratch)
== HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(SET_EXHAUST) {
updateSeqPoint(tctxt, end, from_mpv);
if (roseSetExhaust(t, scratch, ri->ekey)
== HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
work_done = 1;
}
L_PROGRAM_NEXT_INSTRUCTION
L_PROGRAM_CASE(LAST_FLUSH_COMBINATION) {
assert(end >= tctxt->lastCombMatchOffset);
if (flushActiveCombinations(t, scratch)
== HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
if (checkPurelyNegatives(t, scratch, end)
== HWLM_TERMINATE_MATCHING) {
return HWLM_TERMINATE_MATCHING;
}
}
L_PROGRAM_NEXT_INSTRUCTION
default: {
assert(0); // unreachable
scratch->core_info.status |= STATUS_ERROR;
return HWLM_TERMINATE_MATCHING;
}
}
}
assert(0); // unreachable
return HWLM_CONTINUE_MATCHING;
}
#undef L_PROGRAM_CASE
#undef L_PROGRAM_NEXT_INSTRUCTION
#undef L_PROGRAM_NEXT_INSTRUCTION_JUMP
#undef PROGRAM_CASE
#undef PROGRAM_NEXT_INSTRUCTION
#undef PROGRAM_NEXT_INSTRUCTION_JUMP