vectorscan/src/rose/rose_build_matchers.cpp

1051 lines
33 KiB
C++

/*
* Copyright (c) 2016-2019, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
* \brief Rose build: code for constructing literal tables.
*/
#include "rose_build_matchers.h"
#include "rose_build_dump.h"
#include "rose_build_impl.h"
#include "rose_build_lit_accel.h"
#include "rose_build_width.h"
#include "hwlm/hwlm_build.h"
#include "hwlm/hwlm_internal.h"
#include "hwlm/hwlm_literal.h"
#include "nfa/castlecompile.h"
#include "nfa/nfa_api_queue.h"
#include "util/charreach_util.h"
#include "util/compile_context.h"
#include "util/compile_error.h"
#include "util/dump_charclass.h"
#include "util/report.h"
#include "util/report_manager.h"
#include "util/verify_types.h"
#include "ue2common.h"
#include <iomanip>
#include <sstream>
#include <boost/range/adaptor/map.hpp>
#include <boost/range/adaptor/reversed.hpp>
using namespace std;
using boost::adaptors::map_values;
namespace ue2 {
#if defined(DEBUG) || defined(DUMP_SUPPORT)
static UNUSED
string dumpMask(const vector<u8> &v) {
ostringstream oss;
for (u8 e : v) {
oss << setfill('0') << setw(2) << hex << (unsigned int)e;
}
return oss.str();
}
#endif
static
bool maskFromLeftGraph(const LeftEngInfo &left, vector<u8> &msk,
vector<u8> &lcmp) {
const u32 lag = left.lag;
const ReportID report = left.leftfix_report;
DEBUG_PRINTF("leftfix with lag %u, report %u\n", lag, report);
assert(left.graph);
const NGHolder &h = *left.graph;
assert(in_degree(h.acceptEod, h) == 1); // no eod reports
// Start with the set of reporter vertices for this leftfix.
set<NFAVertex> curr;
for (auto u : inv_adjacent_vertices_range(h.accept, h)) {
if (contains(h[u].reports, report)) {
curr.insert(u);
}
}
assert(!curr.empty());
size_t i = HWLM_MASKLEN - lag - 1;
do {
if (curr.empty() || contains(curr, h.start)
|| contains(curr, h.startDs)) {
DEBUG_PRINTF("end of the road\n");
break;
}
set<NFAVertex> next;
CharReach cr;
for (NFAVertex v : curr) {
const auto &v_cr = h[v].char_reach;
DEBUG_PRINTF("vertex %zu, reach %s\n", h[v].index,
describeClass(v_cr).c_str());
cr |= v_cr;
insert(&next, inv_adjacent_vertices(v, h));
}
make_and_cmp_mask(cr, &msk.at(i), &lcmp.at(i));
DEBUG_PRINTF("%zu: reach=%s, msk=%u, lcmp=%u\n", i,
describeClass(cr).c_str(), msk[i], lcmp[i]);
curr.swap(next);
} while (i-- > 0);
return true;
}
static
bool maskFromLeftCastle(const LeftEngInfo &left, vector<u8> &msk,
vector<u8> &lcmp) {
const u32 lag = left.lag;
const ReportID report = left.leftfix_report;
DEBUG_PRINTF("leftfix with lag %u, report %u\n", lag, report);
assert(left.castle);
const CastleProto &c = *left.castle;
depth min_width(depth::infinity());
for (const PureRepeat &repeat : c.repeats | map_values) {
if (contains(repeat.reports, report)) {
min_width = min(min_width, repeat.bounds.min);
}
}
DEBUG_PRINTF("castle min width for this report is %s\n",
min_width.str().c_str());
if (!min_width.is_finite() || min_width == depth(0)) {
DEBUG_PRINTF("bad min width\n");
return false;
}
u32 len = min_width;
u32 end = HWLM_MASKLEN - lag;
for (u32 i = end; i > end - min(end, len); i--) {
make_and_cmp_mask(c.reach(), &msk.at(i - 1), &lcmp.at(i - 1));
}
return true;
}
static
bool maskFromLeft(const LeftEngInfo &left, vector<u8> &msk, vector<u8> &lcmp) {
if (left.lag >= HWLM_MASKLEN) {
DEBUG_PRINTF("too much lag\n");
return false;
}
if (left.graph) {
return maskFromLeftGraph(left, msk, lcmp);
} else if (left.castle) {
return maskFromLeftCastle(left, msk, lcmp);
}
return false;
}
static
bool maskFromPreds(const RoseBuildImpl &build, const rose_literal_id &id,
const RoseVertex v, vector<u8> &msk, vector<u8> &lcmp) {
const RoseGraph &g = build.g;
// For right now, wuss out and only handle cases with one pred.
if (in_degree(v, g) != 1) {
return false;
}
// Root successors have no literal before them.
if (build.isRootSuccessor(v)) {
return false;
}
// If we have a single predecessor with a short bound, we may be able to
// fill out a mask with the trailing bytes of the previous literal. This
// allows us to improve literals like the 'bar' in 'fo.bar'.
RoseEdge e = *(in_edges(v, g).first);
u32 bound = g[e].maxBound;
if (bound != g[e].minBound || bound >= HWLM_MASKLEN) {
return false;
}
bound += id.s.length();
if (bound >= HWLM_MASKLEN) {
return false;
}
DEBUG_PRINTF("bound %u\n", bound);
RoseVertex u = source(e, g);
if (g[u].literals.size() != 1) {
DEBUG_PRINTF("u has %zu literals\n", g[u].literals.size());
return false;
}
u32 u_lit_id = *(g[u].literals.begin());
const rose_literal_id &u_id = build.literals.at(u_lit_id);
DEBUG_PRINTF("u has lit: %s\n", escapeString(u_id.s).c_str());
// Number of characters to take from the back of u's literal.
size_t u_len = u_id.s.length();
size_t u_sublen = min(u_len, (size_t)HWLM_MASKLEN - bound);
size_t i = HWLM_MASKLEN - (bound + u_sublen);
ue2_literal::const_iterator it, ite;
for (it = u_id.s.begin() + (u_len - u_sublen), ite = u_id.s.end();
it != ite; ++it) {
make_and_cmp_mask(*it, &msk.at(i), &lcmp.at(i));
++i;
}
return true;
}
static
bool addSurroundingMask(const RoseBuildImpl &build, const rose_literal_id &id,
const RoseVertex v, vector<u8> &msk, vector<u8> &lcmp) {
// Start with zero masks.
msk.assign(HWLM_MASKLEN, 0);
lcmp.assign(HWLM_MASKLEN, 0);
const LeftEngInfo &left = build.g[v].left;
if (left && left.lag < HWLM_MASKLEN) {
if (maskFromLeft(left, msk, lcmp)) {
DEBUG_PRINTF("mask from a leftfix!\n");
return true;
}
}
if (id.s.length() < HWLM_MASKLEN) {
if (maskFromPreds(build, id, v, msk, lcmp)) {
DEBUG_PRINTF("mask from preds!\n");
return true;
}
}
return false;
}
static
bool hamsterMaskCombine(vector<u8> &msk, vector<u8> &lcmp,
const vector<u8> &v_msk, const vector<u8> &v_cmp) {
assert(msk.size() == HWLM_MASKLEN && lcmp.size() == HWLM_MASKLEN);
assert(v_msk.size() == HWLM_MASKLEN && v_cmp.size() == HWLM_MASKLEN);
u8 all_masks = 0;
for (size_t i = 0; i < HWLM_MASKLEN; i++) {
u8 filter = ~(lcmp[i] ^ v_cmp[i]);
msk[i] &= v_msk[i];
msk[i] &= filter;
lcmp[i] &= filter;
all_masks |= msk[i];
}
// Return false if we have no bits on in any mask elements.
return all_masks != 0;
}
static
bool addSurroundingMask(const RoseBuildImpl &build, const rose_literal_id &id,
const rose_literal_info &info, vector<u8> &msk,
vector<u8> &lcmp) {
if (!build.cc.grey.roseHamsterMasks) {
return false;
}
if (!info.delayed_ids.empty()) {
// Not safe to add masks to delayed literals at this late stage.
return false;
}
msk.assign(HWLM_MASKLEN, 0);
lcmp.assign(HWLM_MASKLEN, 0);
size_t num = 0;
vector<u8> v_msk, v_cmp;
for (RoseVertex v : info.vertices) {
if (!addSurroundingMask(build, id, v, v_msk, v_cmp)) {
DEBUG_PRINTF("no mask\n");
return false;
}
if (!num++) {
// First (or only) vertex, this becomes the mask/lcmp pair.
msk = v_msk;
lcmp = v_cmp;
} else {
// Multiple vertices with potentially different masks. We combine
// them into an 'advisory' mask.
if (!hamsterMaskCombine(msk, lcmp, v_msk, v_cmp)) {
DEBUG_PRINTF("mask went to zero\n");
return false;
}
}
}
normaliseLiteralMask(id.s, msk, lcmp);
if (msk.empty()) {
DEBUG_PRINTF("no mask\n");
return false;
}
DEBUG_PRINTF("msk=%s, lcmp=%s\n", dumpMask(msk).c_str(),
dumpMask(lcmp).c_str());
return true;
}
void findMoreLiteralMasks(RoseBuildImpl &build) {
if (!build.cc.grey.roseHamsterMasks) {
return;
}
vector<u32> candidates;
for (u32 id = 0; id < build.literals.size(); id++) {
const auto &lit = build.literals.at(id);
if (lit.delay || build.isDelayed(id)) {
continue;
}
// Literal masks are only allowed for literals that will end up in an
// HWLM table.
switch (lit.table) {
case ROSE_FLOATING:
case ROSE_EOD_ANCHORED:
case ROSE_ANCHORED_SMALL_BLOCK:
break;
default:
continue;
}
candidates.emplace_back(id);
}
for (const u32 &id : candidates) {
const auto &lit = build.literals.at(id);
auto &lit_info = build.literal_info.at(id);
vector<u8> msk, lcmp;
if (!addSurroundingMask(build, lit, lit_info, msk, lcmp)) {
continue;
}
DEBUG_PRINTF("found surrounding mask for lit_id=%u (%s)\n", id,
dumpString(lit.s).c_str());
u32 new_id = build.getLiteralId(lit.s, msk, lcmp, lit.delay, lit.table);
if (new_id == id) {
continue;
}
DEBUG_PRINTF("replacing with new lit_id=%u\n", new_id);
// Note that our new literal may already exist and have vertices, etc.
// We assume that this transform is happening prior to group assignment.
assert(lit_info.group_mask == 0);
auto &new_info = build.literal_info.at(new_id);
// Move the vertices across.
new_info.vertices.insert(begin(lit_info.vertices),
end(lit_info.vertices));
for (auto v : lit_info.vertices) {
build.g[v].literals.erase(id);
build.g[v].literals.insert(new_id);
}
lit_info.vertices.clear();
// Preserve other properties.
new_info.requires_benefits = lit_info.requires_benefits;
}
}
// The mask already associated with the literal and any mask due to
// mixed-case is mandatory.
static
void addLiteralMask(const rose_literal_id &id, vector<u8> &msk,
vector<u8> &lcmp) {
const size_t suffix_len = min(id.s.length(), size_t{HWLM_MASKLEN});
bool mixed_suffix = mixed_sensitivity_in(id.s.end() - suffix_len,
id.s.end());
if (id.msk.empty() && !mixed_suffix) {
return;
}
while (msk.size() < HWLM_MASKLEN) {
msk.insert(msk.begin(), 0);
lcmp.insert(lcmp.begin(), 0);
}
if (!id.msk.empty()) {
assert(id.msk.size() <= HWLM_MASKLEN);
assert(id.msk.size() == id.cmp.size());
for (size_t i = 0; i < id.msk.size(); i++) {
size_t mand_offset = msk.size() - i - 1;
size_t lit_offset = id.msk.size() - i - 1;
msk[mand_offset] = id.msk[lit_offset];
lcmp[mand_offset] = id.cmp[lit_offset];
}
}
if (mixed_suffix) {
auto it = id.s.rbegin();
for (size_t i = 0; i < suffix_len; ++i, ++it) {
const auto &c = *it;
if (!c.nocase) {
size_t offset = HWLM_MASKLEN - i - 1;
DEBUG_PRINTF("offset %zu must match 0x%02x exactly\n", offset,
c.c);
make_and_cmp_mask(c, &msk[offset], &lcmp[offset]);
}
}
}
normaliseLiteralMask(id.s, msk, lcmp);
}
static
bool isDirectHighlander(const RoseBuildImpl &build, const u32 id,
const rose_literal_info &info) {
if (!build.isDirectReport(id)) {
return false;
}
auto is_simple_exhaustible = [&build](ReportID rid) {
const Report &report = build.rm.getReport(rid);
return isSimpleExhaustible(report);
};
assert(!info.vertices.empty());
for (const auto &v : info.vertices) {
const auto &reports = build.g[v].reports;
assert(!reports.empty());
if (!all_of(begin(reports), end(reports),
is_simple_exhaustible)) {
return false;
}
}
return true;
}
// Called by isNoRunsLiteral below.
static
bool isNoRunsVertex(const RoseBuildImpl &build, RoseVertex u) {
const RoseGraph &g = build.g;
if (!g[u].isBoring()) {
DEBUG_PRINTF("u=%zu is not boring\n", g[u].index);
return false;
}
if (!g[u].reports.empty()) {
DEBUG_PRINTF("u=%zu has accept\n", g[u].index);
return false;
}
/* TODO: handle non-root roles as well. It can't be that difficult... */
if (in_degree(u, g) != 1) {
DEBUG_PRINTF("u=%zu is not a root role\n", g[u].index);
return false;
}
RoseEdge e = edge(build.root, u, g);
if (!e) {
DEBUG_PRINTF("u=%zu is not a root role\n", g[u].index);
return false;
}
if (g[e].minBound != 0 || g[e].maxBound != ROSE_BOUND_INF) {
DEBUG_PRINTF("u=%zu has bounds from root\n", g[u].index);
return false;
}
for (const auto &oe : out_edges_range(u, g)) {
RoseVertex v = target(oe, g);
if (g[oe].maxBound != ROSE_BOUND_INF) {
DEBUG_PRINTF("edge (%zu,%zu) has max bound\n", g[u].index,
g[v].index);
return false;
}
if (g[v].left) {
DEBUG_PRINTF("v=%zu has rose prefix\n", g[v].index);
return false;
}
}
return true;
}
static
bool isNoRunsLiteral(const RoseBuildImpl &build, const u32 id,
const rose_literal_info &info, const size_t max_len) {
DEBUG_PRINTF("lit id %u\n", id);
if (info.requires_benefits) {
DEBUG_PRINTF("requires benefits\n"); // which would need confirm
return false;
}
size_t len = build.literals.at(id).s.length();
if (len > max_len) {
DEBUG_PRINTF("long literal, requires confirm\n");
return false;
}
if (len > ROSE_SHORT_LITERAL_LEN_MAX) {
DEBUG_PRINTF("medium-length literal, requires confirm\n");
return false;
}
if (isDirectHighlander(build, id, info)) {
DEBUG_PRINTF("highlander direct report\n");
return true;
}
// Undelayed vertices.
for (RoseVertex v : info.vertices) {
if (!isNoRunsVertex(build, v)) {
return false;
}
}
// Delayed vertices.
for (u32 d : info.delayed_ids) {
assert(d < build.literal_info.size());
const rose_literal_info &delayed_info = build.literal_info.at(d);
assert(delayed_info.undelayed_id == id);
for (RoseVertex v : delayed_info.vertices) {
if (!isNoRunsVertex(build, v)) {
return false;
}
}
}
DEBUG_PRINTF("is no-runs literal\n");
return true;
}
static
bool isNoRunsFragment(const RoseBuildImpl &build, const LitFragment &f,
const size_t max_len) {
// For the fragment to be marked "no runs", every literal it fires must
// need no further confirmation work.
return all_of_in(f.lit_ids, [&](u32 lit_id) {
const auto &info = build.literal_info.at(lit_id);
return isNoRunsLiteral(build, lit_id, info, max_len);
});
}
static
const raw_puff &getChainedPuff(const RoseBuildImpl &build,
const Report &report) {
DEBUG_PRINTF("chained report, event %u\n", report.onmatch);
// MPV has already been moved to the outfixes vector.
assert(!build.mpv_outfix);
auto mpv_outfix_it = find_if(
begin(build.outfixes), end(build.outfixes),
[](const OutfixInfo &outfix) { return outfix.is_nonempty_mpv(); });
assert(mpv_outfix_it != end(build.outfixes));
const auto *mpv = mpv_outfix_it->mpv();
u32 puff_index = report.onmatch - MQE_TOP_FIRST;
assert(puff_index < mpv->triggered_puffettes.size());
return mpv->triggered_puffettes.at(puff_index);
}
/**
* \brief Returns a conservative estimate of the minimum offset at which the
* given literal can lead to a report.
*
* TODO: This could be made more precise by calculating a "distance to accept"
* for every vertex in the graph; right now we're only accurate for leaf nodes.
*/
static
u64a literalMinReportOffset(const RoseBuildImpl &build,
const rose_literal_id &lit,
const rose_literal_info &info) {
const auto &g = build.g;
const u32 lit_len = verify_u32(lit.elength());
u64a lit_min_offset = UINT64_MAX;
for (const auto &v : info.vertices) {
DEBUG_PRINTF("vertex %zu min_offset=%u\n", g[v].index, g[v].min_offset);
u64a vert_offset = g[v].min_offset;
if (vert_offset >= lit_min_offset) {
continue;
}
u64a min_offset = UINT64_MAX;
for (const auto &id : g[v].reports) {
const Report &report = build.rm.getReport(id);
DEBUG_PRINTF("report id %u, min offset=%llu\n", id,
report.minOffset);
if (report.type == INTERNAL_ROSE_CHAIN) {
// This vertex triggers an MPV, which will fire reports after
// repeating for a while.
assert(report.minOffset == 0); // Should not have bounds.
const auto &puff = getChainedPuff(build, report);
DEBUG_PRINTF("chained puff repeats=%u\n", puff.repeats);
const Report &puff_report = build.rm.getReport(puff.report);
DEBUG_PRINTF("puff report %u, min offset=%llu\n", puff.report,
puff_report.minOffset);
min_offset = min(min_offset, max(vert_offset + puff.repeats,
puff_report.minOffset));
} else {
DEBUG_PRINTF("report min offset=%llu\n", report.minOffset);
min_offset = min(min_offset, max(vert_offset,
report.minOffset));
}
}
if (g[v].suffix) {
depth suffix_width = findMinWidth(g[v].suffix, g[v].suffix.top);
assert(suffix_width.is_reachable());
DEBUG_PRINTF("suffix with width %s\n", suffix_width.str().c_str());
min_offset = min(min_offset, vert_offset + suffix_width);
}
if (!isLeafNode(v, g) || min_offset == UINT64_MAX) {
min_offset = vert_offset;
}
lit_min_offset = min(lit_min_offset, min_offset);
}
// If this literal in the undelayed literal corresponding to some delayed
// literals, we must take their minimum offsets into account.
for (const u32 &delayed_id : info.delayed_ids) {
const auto &delayed_lit = build.literals.at(delayed_id);
const auto &delayed_info = build.literal_info.at(delayed_id);
u64a delayed_min_offset = literalMinReportOffset(build, delayed_lit,
delayed_info);
DEBUG_PRINTF("delayed_id=%u, min_offset = %llu\n", delayed_id,
delayed_min_offset);
lit_min_offset = min(lit_min_offset, delayed_min_offset);
}
// If we share a vertex with a shorter literal, our min offset might dip
// below the length of this one.
lit_min_offset = max(lit_min_offset, u64a{lit_len});
return lit_min_offset;
}
template<class Container>
void trim_to_suffix(Container &c, size_t len) {
if (c.size() <= len) {
return;
}
size_t suffix_len = c.size() - len;
c.erase(c.begin(), c.begin() + suffix_len);
}
namespace {
/** \brief Prototype for literal matcher construction. */
struct MatcherProto {
/** \brief Literal fragments used to construct the literal matcher. */
vector<hwlmLiteral> lits;
/** \brief Longer literals used for acceleration analysis. */
vector<AccelString> accel_lits;
/** \brief The history required by the literal matcher. */
size_t history_required = 0;
/** \brief Insert the contents of another MatcherProto. */
void insert(const MatcherProto &a);
};
}
static
void addFragmentLiteral(const RoseBuildImpl &build, MatcherProto &mp,
const LitFragment &f, u32 id, size_t max_len) {
const rose_literal_id &lit = build.literals.at(id);
DEBUG_PRINTF("lit='%s' (len %zu)\n", dumpString(lit.s).c_str(),
lit.s.length());
vector<u8> msk = lit.msk; // copy
vector<u8> lcmp = lit.cmp; // copy
bool noruns = isNoRunsFragment(build, f, max_len);
DEBUG_PRINTF("fragment is %s\n", noruns ? "noruns" : "not noruns");
auto lit_final = lit.s; // copy
if (lit_final.length() > ROSE_SHORT_LITERAL_LEN_MAX) {
DEBUG_PRINTF("truncating to tail of length %zu\n",
size_t{ROSE_SHORT_LITERAL_LEN_MAX});
lit_final.erase(0, lit_final.length() - ROSE_SHORT_LITERAL_LEN_MAX);
// We shouldn't have set a threshold below 8 chars.
assert(msk.size() <= ROSE_SHORT_LITERAL_LEN_MAX);
assert(!noruns);
}
addLiteralMask(lit, msk, lcmp);
const auto &s_final = lit_final.get_string();
bool nocase = lit_final.any_nocase();
DEBUG_PRINTF("id=%u, s='%s', nocase=%d, noruns=%d, msk=%s, lcmp=%s\n",
f.fragment_id, escapeString(s_final).c_str(), (int)nocase,
noruns, dumpMask(msk).c_str(), dumpMask(lcmp).c_str());
if (!maskIsConsistent(s_final, nocase, msk, lcmp)) {
DEBUG_PRINTF("msk/lcmp for literal can't match, skipping\n");
return;
}
const auto &groups = f.groups;
mp.lits.emplace_back(std::move(s_final), nocase, noruns, f.fragment_id,
groups, msk, lcmp);
}
static
void addAccelLiteral(MatcherProto &mp, const rose_literal_id &lit,
const rose_literal_info &info, size_t max_len) {
const auto &s = lit.s; // copy
DEBUG_PRINTF("lit='%s' (len %zu)\n", dumpString(s).c_str(), s.length());
vector<u8> msk = lit.msk; // copy
vector<u8> lcmp = lit.cmp; // copy
addLiteralMask(lit, msk, lcmp);
if (!maskIsConsistent(s.get_string(), s.any_nocase(), msk, lcmp)) {
DEBUG_PRINTF("msk/lcmp for literal can't match, skipping\n");
return;
}
// Literals used for acceleration must be limited to max_len, as that's all
// we can see in history.
string s_final = lit.s.get_string();
trim_to_suffix(s_final, max_len);
trim_to_suffix(msk, max_len);
trim_to_suffix(lcmp, max_len);
mp.accel_lits.emplace_back(s_final, lit.s.any_nocase(), msk, lcmp,
info.group_mask);
}
/**
* \brief Build up a vector of literals (and associated other data) for the
* given table.
*
* If max_offset is specified (and not ROSE_BOUND_INF), then literals that can
* only lead to a pattern match after max_offset may be excluded.
*/
static
MatcherProto makeMatcherProto(const RoseBuildImpl &build,
const vector<LitFragment> &fragments,
rose_literal_table table, bool delay_rebuild,
size_t max_len, u32 max_offset = ROSE_BOUND_INF) {
MatcherProto mp;
if (delay_rebuild) {
assert(table == ROSE_FLOATING);
assert(build.cc.streaming);
}
vector<u32> used_lit_ids;
for (const auto &f : fragments) {
assert(!f.lit_ids.empty());
// All literals that share a fragment are in the same table.
if (build.literals.at(f.lit_ids.front()).table != table) {
continue; // next fragment.
}
DEBUG_PRINTF("fragment %u, %zu lit_ids\n", f.fragment_id,
f.lit_ids.size());
used_lit_ids.clear();
for (u32 id : f.lit_ids) {
const rose_literal_id &lit = build.literals.at(id);
assert(id < build.literal_info.size());
const auto &info = build.literal_info.at(id);
if (lit.delay) {
continue; /* delay id's are virtual-ish */
}
// When building the delay rebuild table, we only want to include
// literals that have delayed variants.
if (delay_rebuild && info.delayed_ids.empty()) {
DEBUG_PRINTF("not needed for delay rebuild\n");
continue;
}
if (max_offset != ROSE_BOUND_INF) {
u64a min_report = literalMinReportOffset(build, lit, info);
if (min_report > max_offset) {
DEBUG_PRINTF("min report offset=%llu exceeds "
"max_offset=%u\n", min_report, max_offset);
continue;
}
}
used_lit_ids.emplace_back(id);
}
if (used_lit_ids.empty()) {
continue; // next fragment.
}
// Build our fragment (for the HWLM matcher) from the first literal.
addFragmentLiteral(build, mp, f, used_lit_ids.front(), max_len);
for (u32 id : used_lit_ids) {
const rose_literal_id &lit = build.literals.at(id);
assert(id < build.literal_info.size());
const auto &info = build.literal_info.at(id);
// All literals contribute accel information.
addAccelLiteral(mp, lit, info, max_len);
// All literals contribute to history requirement in streaming mode.
if (build.cc.streaming) {
size_t lit_hist_len =
max(lit.msk.size(), min(lit.s.length(), max_len));
lit_hist_len = lit_hist_len ? lit_hist_len - 1 : 0;
DEBUG_PRINTF("lit requires %zu bytes of history\n",
lit_hist_len);
assert(lit_hist_len <= build.cc.grey.maxHistoryAvailable);
mp.history_required = max(mp.history_required, lit_hist_len);
}
}
}
sort_and_unique(mp.lits);
sort_and_unique(mp.accel_lits);
return mp;
}
void MatcherProto::insert(const MatcherProto &a) {
::ue2::insert(&lits, lits.end(), a.lits);
::ue2::insert(&accel_lits, accel_lits.end(), a.accel_lits);
sort_and_unique(lits);
sort_and_unique(accel_lits);
history_required = max(history_required, a.history_required);
}
static
void buildAccel(const RoseBuildImpl &build,
const vector<AccelString> &accel_lits, HWLM &hwlm) {
if (!build.cc.grey.hamsterAccelForward) {
return;
}
if (hwlm.type == HWLM_ENGINE_NOOD) {
return;
}
buildForwardAccel(&hwlm, accel_lits, build.getInitialGroups());
}
bytecode_ptr<HWLM>
buildHWLMMatcher(const RoseBuildImpl &build, const LitProto *litProto) {
if (!litProto) {
return nullptr;
}
auto hwlm = hwlmBuild(*litProto->hwlmProto, build.cc,
build.getInitialGroups());
if (!hwlm) {
throw CompileError("Unable to generate bytecode.");
}
buildAccel(build, litProto->accel_lits, *hwlm);
DEBUG_PRINTF("built eod-anchored literal table size %zu bytes\n",
hwlm.size());
return hwlm;
}
unique_ptr<LitProto>
buildFloatingMatcherProto(const RoseBuildImpl &build,
const vector<LitFragment> &fragments,
size_t longLitLengthThreshold,
rose_group *fgroups,
size_t *historyRequired) {
DEBUG_PRINTF("Floating literal matcher\n");
*fgroups = 0;
auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, false,
longLitLengthThreshold);
if (mp.lits.empty()) {
DEBUG_PRINTF("empty floating matcher\n");
return nullptr;
}
dumpMatcherLiterals(mp.lits, "floating", build.cc.grey);
for (const hwlmLiteral &lit : mp.lits) {
*fgroups |= lit.groups;
}
if (build.cc.streaming) {
DEBUG_PRINTF("history_required=%zu\n", mp.history_required);
assert(mp.history_required <= build.cc.grey.maxHistoryAvailable);
*historyRequired = max(*historyRequired, mp.history_required);
}
auto proto = hwlmBuildProto(mp.lits, false, build.cc);
if (!proto) {
throw CompileError("Unable to generate literal matcher proto.");
}
return std::make_unique<LitProto>(std::move(proto), mp.accel_lits);
}
unique_ptr<LitProto>
buildDelayRebuildMatcherProto(const RoseBuildImpl &build,
const vector<LitFragment> &fragments,
size_t longLitLengthThreshold) {
DEBUG_PRINTF("Delay literal matcher\n");
if (!build.cc.streaming) {
DEBUG_PRINTF("not streaming\n");
return nullptr;
}
auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, true,
longLitLengthThreshold);
if (mp.lits.empty()) {
DEBUG_PRINTF("empty delay rebuild matcher\n");
return nullptr;
}
dumpMatcherLiterals(mp.lits, "delay_rebuild", build.cc.grey);
auto proto = hwlmBuildProto(mp.lits, false, build.cc);
if (!proto) {
throw CompileError("Unable to generate literal matcher proto.");
}
return std::make_unique<LitProto>(std::move(proto), mp.accel_lits);
}
unique_ptr<LitProto>
buildSmallBlockMatcherProto(const RoseBuildImpl &build,
const vector<LitFragment> &fragments) {
DEBUG_PRINTF("Small block literal matcher\n");
if (build.cc.streaming) {
DEBUG_PRINTF("streaming mode\n");
return nullptr;
}
u32 float_min = findMinWidth(build, ROSE_FLOATING);
if (float_min > ROSE_SMALL_BLOCK_LEN) {
DEBUG_PRINTF("floating table has large min width %u, fail\n",
float_min);
return nullptr;
}
auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, false,
ROSE_SMALL_BLOCK_LEN, ROSE_SMALL_BLOCK_LEN);
if (mp.lits.empty()) {
DEBUG_PRINTF("no floating table\n");
return nullptr;
} else if (mp.lits.size() == 1) {
DEBUG_PRINTF("single floating literal, noodle will be fast enough\n");
return nullptr;
}
auto mp_anchored = makeMatcherProto(build, fragments,
ROSE_ANCHORED_SMALL_BLOCK, false,
ROSE_SMALL_BLOCK_LEN,
ROSE_SMALL_BLOCK_LEN);
if (mp_anchored.lits.empty()) {
DEBUG_PRINTF("no small-block anchored literals\n");
return nullptr;
}
mp.insert(mp_anchored);
dumpMatcherLiterals(mp.lits, "smallblock", build.cc.grey);
// None of our literals should be longer than the small block limit.
assert(all_of(begin(mp.lits), end(mp.lits), [](const hwlmLiteral &lit) {
return lit.s.length() <= ROSE_SMALL_BLOCK_LEN;
}));
if (mp.lits.empty()) {
DEBUG_PRINTF("no literals shorter than small block len\n");
return nullptr;
}
auto proto = hwlmBuildProto(mp.lits, false, build.cc);
if (!proto) {
throw CompileError("Unable to generate literal matcher proto.");
}
return std::make_unique<LitProto>(std::move(proto), mp.accel_lits);
}
unique_ptr<LitProto>
buildEodAnchoredMatcherProto(const RoseBuildImpl &build,
const vector<LitFragment> &fragments) {
DEBUG_PRINTF("Eod anchored literal matcher\n");
auto mp = makeMatcherProto(build, fragments, ROSE_EOD_ANCHORED, false,
build.ematcher_region_size);
if (mp.lits.empty()) {
DEBUG_PRINTF("no eod anchored literals\n");
assert(!build.ematcher_region_size);
return nullptr;
}
dumpMatcherLiterals(mp.lits, "eod", build.cc.grey);
assert(build.ematcher_region_size);
auto proto = hwlmBuildProto(mp.lits, false, build.cc);
if (!proto) {
throw CompileError("Unable to generate literal matcher proto.");
}
return std::make_unique<LitProto>(std::move(proto), mp.accel_lits);
}
} // namespace ue2