vectorscan/src/rose/rose_build_bytecode.cpp
2023-10-03 20:24:39 +03:00

3896 lines
128 KiB
C++

/*
* Copyright (c) 2015-2020, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "rose_build_impl.h"
#include "ue2common.h"
#include "grey.h"
#include "hs_compile.h" // for HS_MODE_*
#include "rose_build_add_internal.h"
#include "rose_build_anchored.h"
#include "rose_build_dump.h"
#include "rose_build_engine_blob.h"
#include "rose_build_exclusive.h"
#include "rose_build_groups.h"
#include "rose_build_infix.h"
#include "rose_build_long_lit.h"
#include "rose_build_lookaround.h"
#include "rose_build_matchers.h"
#include "rose_build_misc.h"
#include "rose_build_program.h"
#include "rose_build_resources.h"
#include "rose_build_scatter.h"
#include "rose_build_util.h"
#include "rose_build_width.h"
#include "rose_internal.h"
#include "rose_program.h"
#include "hwlm/hwlm.h" /* engine types */
#include "hwlm/hwlm_build.h"
#include "hwlm/hwlm_literal.h"
#include "nfa/castlecompile.h"
#include "nfa/goughcompile.h"
#include "nfa/mcclellancompile.h"
#include "nfa/mcclellancompile_util.h"
#include "nfa/mcsheng_compile.h"
#include "nfa/nfa_api_queue.h"
#include "nfa/nfa_build_util.h"
#include "nfa/nfa_internal.h"
#include "nfa/shengcompile.h"
#include "nfa/shufticompile.h"
#include "nfa/tamaramacompile.h"
#include "nfa/tamarama_internal.h"
#include "nfagraph/ng_execute.h"
#include "nfagraph/ng_holder.h"
#include "nfagraph/ng_lbr.h"
#include "nfagraph/ng_limex.h"
#include "nfagraph/ng_mcclellan.h"
#include "nfagraph/ng_repeat.h"
#include "nfagraph/ng_reports.h"
#include "nfagraph/ng_revacc.h"
#include "nfagraph/ng_stop.h"
#include "nfagraph/ng_util.h"
#include "nfagraph/ng_width.h"
#include "smallwrite/smallwrite_build.h"
#include "som/slot_manager.h"
#include "util/bitutils.h"
#include "util/boundary_reports.h"
#include "util/charreach.h"
#include "util/charreach_util.h"
#include "util/compile_context.h"
#include "util/compile_error.h"
#include "util/container.h"
#include "util/fatbit_build.h"
#include "util/graph_range.h"
#include "util/insertion_ordered.h"
#include "util/multibit_build.h"
#include "util/noncopyable.h"
#include "util/order_check.h"
#include "util/popcount.h"
#include "util/queue_index_factory.h"
#include "util/report_manager.h"
#include "util/ue2string.h"
#include "util/verify_types.h"
#include <algorithm>
#include <array>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <utility>
#include <boost/range/adaptor/map.hpp>
using namespace std;
using boost::adaptors::map_values;
using boost::adaptors::map_keys;
namespace ue2 {
/* The rose bytecode construction is a giant cesspit.
*
* One issue is that bits and pieces are constructed piecemeal and these
* sections are used by later in the construction process. Until the very end of
* the construction there is no useful invariant holding for the bytecode. This
* makes reordering / understanding the construction process awkward as there
* are hidden dependencies everywhere. We should start by shifting towards
* a model where the bytecode is only written to during the construction so that
* the dependencies can be understood by us mere mortals.
*
* I am sure the construction process is also bad from a number of other
* standpoints as well but the can come later.
*
* Actually, one other annoying issues the plague of member functions on the
* impl which tightly couples the internals of this file to all the other rose
* build files. Need more egregiously awesome free functions.
*/
namespace /* anon */ {
struct build_context : noncopyable {
/** \brief information about engines to the left of a vertex */
map<RoseVertex, left_build_info> leftfix_info;
/** \brief mapping from suffix to queue index. */
map<suffix_id, u32> suffixes;
/** \brief engine info by queue. */
map<u32, engine_info> engine_info_by_queue;
/** \brief Simple cache of programs written to engine blob, used for
* deduplication. */
unordered_map<RoseProgram, u32, RoseProgramHash,
RoseProgramEquivalence> program_cache;
/** \brief State indices, for those roles that have them.
* Each vertex present has a unique state index in the range
* [0, roleStateIndices.size()). */
unordered_map<RoseVertex, u32> roleStateIndices;
/** \brief Mapping from queue index to bytecode offset for built engines
* that have already been pushed into the engine_blob. */
unordered_map<u32, u32> engineOffsets;
/** \brief List of long literals (ones with CHECK_LONG_LIT instructions)
* that need hash table support. */
vector<ue2_case_string> longLiterals;
/** \brief Contents of the Rose bytecode immediately following the
* RoseEngine. */
RoseEngineBlob engine_blob;
/** \brief True if this Rose engine has an MPV engine. */
bool needs_mpv_catchup = false;
/** \brief Resources in use (tracked as programs are added). */
RoseResources resources;
};
/** \brief subengine info including built engine and
* corresponding triggering rose vertices */
struct ExclusiveSubengine {
bytecode_ptr<NFA> nfa;
vector<RoseVertex> vertices;
};
/** \brief exclusive info to build tamarama */
struct ExclusiveInfo : noncopyable {
// subengine info
vector<ExclusiveSubengine> subengines;
// all the report in tamarama
set<ReportID> reports;
// assigned queue id
u32 queue;
};
}
static
void add_nfa_to_blob(build_context &bc, NFA &nfa) {
u32 qi = nfa.queueIndex;
u32 nfa_offset = bc.engine_blob.add(nfa, nfa.length);
DEBUG_PRINTF("added nfa qi=%u, type=%u, length=%u at offset=%u\n", qi,
nfa.type, nfa.length, nfa_offset);
assert(!contains(bc.engineOffsets, qi));
bc.engineOffsets.emplace(qi, nfa_offset);
}
static
u32 countRosePrefixes(const vector<LeftNfaInfo> &roses) {
u32 num = 0;
for (const auto &r : roses) {
if (!r.infix) {
num++;
}
}
return num;
}
/**
* \brief True if this Rose engine needs to run a catch up whenever a literal
* report is generated.
*
* Catch up is necessary if there are output-exposed engines (suffixes,
* outfixes).
*/
static
bool needsCatchup(const RoseBuildImpl &build) {
/* Note: we could be more selective about when we need to generate catch up
* instructions rather than just a boolean yes/no - for instance, if we know
* that a role can only match before the point that an outfix/suffix could
* match, we do not strictly need a catchup instruction.
*
* However, this would add a certain amount of complexity to the
* catchup logic and would likely have limited applicability - how many
* reporting roles have a fixed max offset and how much time is spent on
* catchup for these cases?
*/
if (!build.outfixes.empty()) {
/* TODO: check that they have non-eod reports */
DEBUG_PRINTF("has outfixes\n");
return true;
}
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (g[v].suffix) {
/* TODO: check that they have non-eod reports */
DEBUG_PRINTF("vertex %zu has suffix\n", g[v].index);
return true;
}
}
DEBUG_PRINTF("no need for catch-up on report\n");
return false;
}
static
bool isPureFloating(const RoseResources &resources, const CompileContext &cc) {
if (!resources.has_floating) {
DEBUG_PRINTF("no floating table\n");
return false;
}
if (resources.has_outfixes || resources.has_suffixes ||
resources.has_leftfixes) {
DEBUG_PRINTF("has engines\n");
return false;
}
if (resources.has_anchored) {
DEBUG_PRINTF("has anchored matcher\n");
return false;
}
if (resources.has_eod) {
DEBUG_PRINTF("has eod work to do\n");
return false;
}
if (resources.has_states) {
DEBUG_PRINTF("has states\n");
return false;
}
if (resources.has_lit_delay) {
DEBUG_PRINTF("has delayed literals\n");
return false;
}
if (cc.streaming && resources.has_lit_check) {
DEBUG_PRINTF("has long literals in streaming mode, which needs long "
"literal table support\n");
return false;
}
if (resources.checks_groups) {
DEBUG_PRINTF("has group checks\n");
return false;
}
DEBUG_PRINTF("pure floating literals\n");
return true;
}
static
bool isSingleOutfix(const RoseBuildImpl &tbi) {
for (auto v : vertices_range(tbi.g)) {
if (tbi.isAnyStart(v)) {
continue;
}
if (tbi.hasLiteralInTable(v, ROSE_ANCHORED_SMALL_BLOCK)) {
continue;
}
DEBUG_PRINTF("has role\n");
return false;
}
if (tbi.ssm.numSomSlots()) {
return false;
}
if (!tbi.boundary.report_at_eod.empty()) {
return false; /* streaming runtime makes liberal use of broken flag */
}
return tbi.outfixes.size() == 1;
}
static
u8 pickRuntimeImpl(const RoseBuildImpl &build, const RoseResources &resources,
UNUSED u32 outfixEndQueue) {
DEBUG_PRINTF("has_outfixes=%d\n", resources.has_outfixes);
DEBUG_PRINTF("has_suffixes=%d\n", resources.has_suffixes);
DEBUG_PRINTF("has_leftfixes=%d\n", resources.has_leftfixes);
DEBUG_PRINTF("has_literals=%d\n", resources.has_literals);
DEBUG_PRINTF("has_states=%d\n", resources.has_states);
DEBUG_PRINTF("checks_groups=%d\n", resources.checks_groups);
DEBUG_PRINTF("has_lit_delay=%d\n", resources.has_lit_delay);
DEBUG_PRINTF("has_lit_check=%d\n", resources.has_lit_check);
DEBUG_PRINTF("has_anchored=%d\n", resources.has_anchored);
DEBUG_PRINTF("has_floating=%d\n", resources.has_floating);
DEBUG_PRINTF("has_eod=%d\n", resources.has_eod);
if (isPureFloating(resources, build.cc)) {
return ROSE_RUNTIME_PURE_LITERAL;
}
if (isSingleOutfix(build)) {
return ROSE_RUNTIME_SINGLE_OUTFIX;
}
return ROSE_RUNTIME_FULL_ROSE;
}
/**
* \brief True if this Rose engine needs to run MPV catch up in front of
* non-MPV reports.
*/
static
bool needsMpvCatchup(const RoseBuildImpl &build) {
const auto &outfixes = build.outfixes;
bool has_mpv =
any_of(begin(outfixes), end(outfixes), [](const OutfixInfo &outfix) {
return outfix.is_nonempty_mpv();
});
if (!has_mpv) {
DEBUG_PRINTF("no mpv\n");
return false;
}
if (isSingleOutfix(build)) {
DEBUG_PRINTF("single outfix\n");
return false;
}
return true;
}
static
void fillStateOffsets(const RoseBuildImpl &build, u32 rolesWithStateCount,
u32 anchorStateSize, u32 activeArrayCount,
u32 activeLeftCount, u32 laggedRoseCount,
u32 longLitStreamStateRequired, u32 historyRequired,
RoseStateOffsets *so) {
u32 curr_offset = 0;
// First, runtime status (stores per-stream state, like whether we need a
// delay rebuild or have been told to halt matching.)
curr_offset += sizeof(u8);
// Role state storage.
curr_offset += mmbit_size(rolesWithStateCount);
so->activeLeafArray = curr_offset; /* TODO: limit size of array */
curr_offset += mmbit_size(activeArrayCount);
so->activeLeafArray_size = mmbit_size(activeArrayCount);
so->activeLeftArray = curr_offset; /* TODO: limit size of array */
curr_offset += mmbit_size(activeLeftCount);
so->activeLeftArray_size = mmbit_size(activeLeftCount);
so->longLitState = curr_offset;
curr_offset += longLitStreamStateRequired;
so->longLitState_size = longLitStreamStateRequired;
// ONE WHOLE BYTE for each active leftfix with lag.
so->leftfixLagTable = curr_offset;
curr_offset += laggedRoseCount;
so->anchorState = curr_offset;
curr_offset += anchorStateSize;
so->groups = curr_offset;
so->groups_size = (build.group_end + 7) / 8;
assert(so->groups_size <= sizeof(u64a));
curr_offset += so->groups_size;
// The history consists of the bytes in the history only. YAY
so->history = curr_offset;
curr_offset += historyRequired;
// Exhaustion multibit.
so->exhausted = curr_offset;
curr_offset += mmbit_size(build.rm.numEkeys());
so->exhausted_size = mmbit_size(build.rm.numEkeys());
// Logical multibit.
so->logicalVec = curr_offset;
so->logicalVec_size = mmbit_size(build.rm.numLogicalKeys() +
build.rm.numLogicalOps());
curr_offset += so->logicalVec_size;
// Combination multibit.
so->combVec = curr_offset;
so->combVec_size = mmbit_size(build.rm.numCkeys());
curr_offset += so->combVec_size;
// SOM locations and valid/writeable multibit structures.
if (build.ssm.numSomSlots()) {
const u32 somWidth = build.ssm.somPrecision();
if (somWidth) { // somWidth is zero in block mode.
curr_offset = ROUNDUP_N(curr_offset, somWidth);
so->somLocation = curr_offset;
curr_offset += build.ssm.numSomSlots() * somWidth;
} else {
so->somLocation = 0;
}
so->somValid = curr_offset;
curr_offset += mmbit_size(build.ssm.numSomSlots());
so->somWritable = curr_offset;
curr_offset += mmbit_size(build.ssm.numSomSlots());
so->somMultibit_size = mmbit_size(build.ssm.numSomSlots());
} else {
// No SOM handling, avoid growing the stream state any further.
so->somLocation = 0;
so->somValid = 0;
so->somWritable = 0;
}
// note: state space for mask nfas is allocated later
so->nfaStateBegin = curr_offset;
so->end = curr_offset;
}
// Get the mask of initial vertices due to root and anchored_root.
rose_group RoseBuildImpl::getInitialGroups() const {
rose_group groups = getSuccGroups(root)
| getSuccGroups(anchored_root)
| boundary_group_mask;
DEBUG_PRINTF("initial groups = %016llx\n", groups);
return groups;
}
static
bool nfaStuckOn(const NGHolder &g) {
assert(!proper_out_degree(g.startDs, g));
set<NFAVertex> succ;
insert(&succ, adjacent_vertices(g.start, g));
succ.erase(g.startDs);
set<NFAVertex> asucc;
set<u32> tops;
set<u32> done_tops;
for (const auto &e : out_edges_range(g.start, g)) {
insert(&tops, g[e].tops);
if (!g[target(e, g)].char_reach.all()) {
continue;
}
asucc.clear();
insert(&asucc, adjacent_vertices(target(e, g), g));
if (asucc == succ) {
insert(&done_tops, g[e].tops);
}
}
return tops == done_tops;
}
namespace {
struct PredTopPair {
PredTopPair(RoseVertex v, u32 t) : pred(v), top(t) {}
bool operator<(const PredTopPair &b) const {
const PredTopPair &a = *this;
ORDER_CHECK(pred);
ORDER_CHECK(top);
return false;
}
RoseVertex pred;
u32 top;
};
}
static
void findFixedDepthTops(const RoseGraph &g, const set<PredTopPair> &triggers,
map<u32, u32> *fixed_depth_tops) {
DEBUG_PRINTF("|trig| %zu\n", triggers.size());
/* find all pred roles for this holder, group by top */
/* if all pred roles for a given top have the same min and max offset, we
* add the top to the fixed_depth_top map */
map<u32, set<RoseVertex> > pred_by_top;
for (const auto &ptp : triggers) {
u32 top = ptp.top;
RoseVertex u = ptp.pred;
pred_by_top[top].insert(u);
}
for (const auto &e : pred_by_top) {
u32 top = e.first;
const set<RoseVertex> &preds = e.second;
if (!g[*preds.begin()].fixedOffset()) {
continue;
}
u32 depth = g[*preds.begin()].min_offset;
for (RoseVertex u : preds) {
if (g[u].min_offset != depth || g[u].max_offset != depth) {
goto next_top;
}
}
DEBUG_PRINTF("%u at depth %u\n", top, depth);
(*fixed_depth_tops)[top] = depth;
next_top:;
}
}
/**
* \brief Heuristic for picking between a DFA or NFA implementation of an
* engine.
*/
static
bytecode_ptr<NFA> pickImpl(bytecode_ptr<NFA> dfa_impl,
bytecode_ptr<NFA> nfa_impl,
bool fast_nfa) {
assert(nfa_impl);
assert(dfa_impl);
assert(isDfaType(dfa_impl->type));
// If our NFA is an LBR, it always wins.
if (isLbrType(nfa_impl->type)) {
return nfa_impl;
}
// if our DFA is an accelerated Sheng, it always wins.
if (isShengType(dfa_impl->type) && has_accel(*dfa_impl)) {
return dfa_impl;
}
bool d_accel = has_accel(*dfa_impl);
bool n_accel = has_accel(*nfa_impl);
bool d_big = isBigDfaType(dfa_impl->type);
bool n_vsmall = nfa_impl->nPositions <= 32;
bool n_br = has_bounded_repeats(*nfa_impl);
DEBUG_PRINTF("da %d na %d db %d nvs %d nbr %d\n", (int)d_accel,
(int)n_accel, (int)d_big, (int)n_vsmall, (int)n_br);
if (d_big) {
if (!n_vsmall) {
if (d_accel || !n_accel) {
return dfa_impl;
} else {
return nfa_impl;
}
} else {
if (n_accel && fast_nfa) {
return nfa_impl;
} else {
return dfa_impl;
}
}
} else {
/* favour a McClellan 8, unless the nfa looks really good and the dfa
* looks like trouble */
if (!d_accel && n_vsmall && n_accel && !n_br) {
return nfa_impl;
} else {
return dfa_impl;
}
}
}
/**
* \brief Builds an LBR if there's one repeat in the given CastleProto,
* otherwise a Castle.
*/
static
bytecode_ptr<NFA>
buildRepeatEngine(const CastleProto &proto,
const map<u32, vector<vector<CharReach>>> &triggers,
const CompileContext &cc, const ReportManager &rm) {
// If we only have one repeat, the LBR should always be the best possible
// implementation.
if (proto.repeats.size() == 1 && cc.grey.allowLbr) {
return constructLBR(proto, triggers.at(0), cc, rm);
}
auto castle_nfa = buildCastle(proto, triggers, cc, rm);
assert(castle_nfa); // Should always be constructible.
return castle_nfa;
}
static
bytecode_ptr<NFA> getDfa(raw_dfa &rdfa, bool is_transient,
const CompileContext &cc, const ReportManager &rm) {
// Unleash the Sheng!!
auto dfa = shengCompile(rdfa, cc, rm, false);
if (!dfa && !is_transient) {
// Sheng wasn't successful, so unleash McClellan!
/* We don't try the hybrid for transient prefixes due to the extra
* bytecode and that they are usually run on small blocks */
dfa = mcshengCompile(rdfa, cc, rm);
}
if (!dfa) {
dfa = sheng32Compile(rdfa, cc, rm, false);
}
if (!dfa) {
dfa = sheng64Compile(rdfa, cc, rm, false);
}
if (!dfa && !is_transient) {
dfa = mcshengCompile64(rdfa, cc, rm);
}
if (!dfa) {
// Sheng wasn't successful, so unleash McClellan!
dfa = mcclellanCompile(rdfa, cc, rm, false);
}
return dfa;
}
/* builds suffix nfas */
static
bytecode_ptr<NFA>
buildSuffix(const ReportManager &rm, const SomSlotManager &ssm,
const map<u32, u32> &fixed_depth_tops,
const map<u32, vector<vector<CharReach>>> &triggers,
suffix_id suff, const CompileContext &cc) {
if (suff.castle()) {
auto n = buildRepeatEngine(*suff.castle(), triggers, cc, rm);
assert(n);
return n;
}
if (suff.haig()) {
auto n = goughCompile(*suff.haig(), ssm.somPrecision(), cc, rm);
assert(n);
return n;
}
if (suff.dfa()) {
auto d = getDfa(*suff.dfa(), false, cc, rm);
assert(d);
return d;
}
assert(suff.graph());
NGHolder &holder = *suff.graph();
assert(holder.kind == NFA_SUFFIX);
const bool oneTop = onlyOneTop(holder);
bool compress_state = cc.streaming;
// Take a shot at the LBR engine.
if (oneTop) {
auto lbr = constructLBR(holder, triggers.at(0), cc, rm);
if (lbr) {
return lbr;
}
}
bool fast_nfa = false;
auto n = constructNFA(holder, &rm, fixed_depth_tops, triggers,
compress_state, fast_nfa, cc);
assert(n);
if (oneTop && cc.grey.roseMcClellanSuffix) {
if (cc.grey.roseMcClellanSuffix == 2 || n->nPositions > 128 ||
!has_bounded_repeats_other_than_firsts(*n) || !fast_nfa) {
auto rdfa = buildMcClellan(holder, &rm, false, triggers.at(0),
cc.grey);
if (rdfa) {
auto d = getDfa(*rdfa, false, cc, rm);
assert(d);
if (cc.grey.roseMcClellanSuffix != 2) {
n = pickImpl(std::move(d), std::move(n), fast_nfa);
} else {
n = std::move(d);
}
assert(n);
if (isMcClellanType(n->type)) {
// DFA chosen. We may be able to set some more properties
// in the NFA structure here.
u64a maxOffset = findMaxOffset(holder, rm);
if (maxOffset != MAX_OFFSET && maxOffset < 0xffffffffull) {
n->maxOffset = (u32)maxOffset;
DEBUG_PRINTF("dfa max offset %llu\n", maxOffset);
} else {
n->maxOffset = 0; // inf
}
}
}
}
}
return n;
}
static
void findInfixTriggers(const RoseBuildImpl &build,
map<left_id, set<PredTopPair> > *infixTriggers) {
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (!g[v].left) {
continue;
}
set<PredTopPair> &triggers = (*infixTriggers)[left_id(g[v].left)];
for (const auto &e : in_edges_range(v, g)) {
RoseVertex u = source(e, g);
if (build.isAnyStart(u)) {
continue;
}
triggers.insert(PredTopPair(u, g[e].rose_top));
}
}
}
static
vector<CharReach> as_cr_seq(const rose_literal_id &lit) {
vector<CharReach> rv = as_cr_seq(lit.s);
for (u32 i = 0; i < lit.delay; i++) {
rv.emplace_back(CharReach::dot());
}
/* TODO: take into account cmp/msk */
return rv;
}
/**
* \brief Returns a map of trigger literals as sequences of CharReach, grouped
* by top index.
*/
static
void findTriggerSequences(const RoseBuildImpl &tbi,
const set<PredTopPair> &triggers,
map<u32, vector<vector<CharReach> > > *trigger_lits) {
map<u32, set<u32> > lit_ids_by_top;
for (const PredTopPair &t : triggers) {
insert(&lit_ids_by_top[t.top], tbi.g[t.pred].literals);
}
for (const auto &e : lit_ids_by_top) {
const u32 top = e.first;
const set<u32> &lit_ids = e.second;
for (u32 id : lit_ids) {
const rose_literal_id &lit = tbi.literals.at(id);
(*trigger_lits)[top].emplace_back(as_cr_seq(lit));
}
}
}
static
bytecode_ptr<NFA> makeLeftNfa(const RoseBuildImpl &tbi, left_id &left,
const bool is_prefix, const bool is_transient,
const map<left_id, set<PredTopPair>> &infixTriggers,
const CompileContext &cc) {
const ReportManager &rm = tbi.rm;
bytecode_ptr<NFA> n;
// Should compress state if this rose is non-transient and we're in
// streaming mode.
const bool compress_state = !is_transient;
assert(is_prefix || !left.graph() || left.graph()->kind == NFA_INFIX);
assert(!is_prefix || !left.graph() || left.graph()->kind == NFA_PREFIX
|| left.graph()->kind == NFA_EAGER_PREFIX);
// Holder should be implementable as an NFA at the very least.
if (!left.dfa() && left.graph()) {
assert(isImplementableNFA(*left.graph(), nullptr, cc));
}
map<u32, u32> fixed_depth_tops;
if (!is_prefix /* infix */) {
const set<PredTopPair> &triggers = infixTriggers.at(left);
findFixedDepthTops(tbi.g, triggers, &fixed_depth_tops);
}
if (left.castle()) {
assert(!is_prefix);
map<u32, vector<vector<CharReach> > > triggers;
findTriggerSequences(tbi, infixTriggers.at(left), &triggers);
n = buildRepeatEngine(*left.castle(), triggers, cc, rm);
assert(n);
return n; // Castles/LBRs are always best!
}
if (left.dfa()) {
n = getDfa(*left.dfa(), is_transient, cc, rm);
} else if (left.graph() && cc.grey.roseMcClellanPrefix == 2 && is_prefix &&
!is_transient) {
auto rdfa = buildMcClellan(*left.graph(), nullptr, cc.grey);
if (rdfa) {
n = getDfa(*rdfa, is_transient, cc, rm);
assert(n);
}
}
// We can attempt to build LBRs for infixes.
if (!n && !is_prefix && left.graph() && onlyOneTop(*left.graph())) {
map<u32, vector<vector<CharReach> > > triggers;
findTriggerSequences(tbi, infixTriggers.at(left), &triggers);
assert(triggers.size() == 1); // single top
n = constructLBR(*left.graph(), triggers.begin()->second, cc, rm);
}
bool fast_nfa = false;
if (!n && left.graph()) {
map<u32, vector<vector<CharReach>>> triggers;
if (left.graph()->kind == NFA_INFIX) {
findTriggerSequences(tbi, infixTriggers.at(left), &triggers);
}
n = constructNFA(*left.graph(), nullptr, fixed_depth_tops, triggers,
compress_state, fast_nfa, cc);
}
if (cc.grey.roseMcClellanPrefix == 1 && is_prefix && !left.dfa()
&& left.graph()
&& (!n || !has_bounded_repeats_other_than_firsts(*n) || !fast_nfa)) {
auto rdfa = buildMcClellan(*left.graph(), nullptr, cc.grey);
if (rdfa) {
auto d = getDfa(*rdfa, is_transient, cc, rm);
assert(d);
n = pickImpl(std::move(d), std::move(n), fast_nfa);
}
}
return n;
}
static
void setLeftNfaProperties(NFA &n, const left_id &left) {
depth min_width = findMinWidth(left);
DEBUG_PRINTF("min_width=%s\n", min_width.str().c_str());
u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0;
n.minWidth = min_width_value;
depth max_width = findMaxWidth(left);
DEBUG_PRINTF("max_width=%s\n", max_width.str().c_str());
u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0;
n.maxWidth = max_width_value;
// FIXME: NFA::maxOffset in Rose can't be found from reports as they don't
// map to internal_report structures; it would have to come from the Rose
// graph.
}
static
void appendTailToHolder(NGHolder &h, const flat_set<ReportID> &reports,
const vector<NFAVertex> &starts,
const vector<CharReach> &tail) {
assert(!tail.empty());
NFAVertex curr = add_vertex(h);
for (NFAVertex v : starts) {
assert(!edge(v, h.acceptEod, h).second);
assert(h[v].reports == reports);
h[v].reports.clear();
remove_edge(v, h.accept, h);
add_edge(v, curr, h);
}
auto it = tail.begin();
h[curr].char_reach = *it;
++it;
while (it != tail.end()) {
NFAVertex old = curr;
curr = add_vertex(h);
add_edge(old, curr, h);
assert(!it->none());
h[curr].char_reach = *it;
++it;
}
h[curr].reports = reports;
add_edge(curr, h.accept, h);
}
static
void appendTailToHolder(NGHolder &h, const vector<CharReach> &tail) {
assert(in_degree(h.acceptEod, h) == 1);
assert(!tail.empty());
map<flat_set<ReportID>, vector<NFAVertex> > reporters;
for (auto v : inv_adjacent_vertices_range(h.accept, h)) {
reporters[h[v].reports].emplace_back(v);
}
for (const auto &e : reporters) {
appendTailToHolder(h, e.first, e.second, tail);
}
renumber_edges(h);
}
static
u32 decreaseLag(const RoseBuildImpl &build, NGHolder &h,
const vector<RoseVertex> &succs) {
const RoseGraph &rg = build.g;
static const size_t MAX_RESTORE_LEN = 5;
vector<CharReach> restored(MAX_RESTORE_LEN);
for (RoseVertex v : succs) {
u32 lag = rg[v].left.lag;
for (u32 lit_id : rg[v].literals) {
u32 delay = build.literals.at(lit_id).delay;
const ue2_literal &literal = build.literals.at(lit_id).s;
assert(lag <= literal.length() + delay);
size_t base = literal.length() + delay - lag;
if (base >= literal.length()) {
return 0;
}
size_t len = literal.length() - base;
len = MIN(len, restored.size());
restored.resize(len);
auto lit_it = literal.begin() + base;
for (u32 i = 0; i < len; i++) {
assert(lit_it != literal.end());
restored[i] |= *lit_it;
++lit_it;
}
}
}
assert(!restored.empty());
appendTailToHolder(h, restored);
return restored.size();
}
#define EAGER_DIE_BEFORE_LIMIT 10
struct eager_info {
shared_ptr<NGHolder> new_graph;
u32 lag_adjust = 0;
};
static
bool checkSuitableForEager(bool is_prefix, const left_id &left,
const RoseBuildImpl &build,
const vector<RoseVertex> &succs,
rose_group squash_mask, rose_group initial_groups,
eager_info &ei, const CompileContext &cc) {
DEBUG_PRINTF("checking prefix --> %016llx...\n", squash_mask);
const RoseGraph &rg = build.g;
if (!is_prefix) {
DEBUG_PRINTF("not prefix\n");
return false; /* only prefixes (for now...) */
}
if ((initial_groups & squash_mask) == initial_groups) {
DEBUG_PRINTF("no squash -- useless\n");
return false;
}
for (RoseVertex s : succs) {
if (build.isInETable(s)
|| contains(rg[s].literals, build.eod_event_literal_id)) {
return false; /* Ignore EOD related prefixes */
}
}
if (left.dfa()) {
const raw_dfa &dfa = *left.dfa();
if (dfa.start_floating != DEAD_STATE) {
return false; /* not purely anchored */
}
if (!dfa.states[dfa.start_anchored].reports.empty()) {
return false; /* vacuous (todo: handle?) */
}
if (!can_die_early(dfa, EAGER_DIE_BEFORE_LIMIT)) {
return false;
}
ei.new_graph = rg[succs[0]].left.graph;
} else if (left.graph()) {
const NGHolder &g = *left.graph();
if (proper_out_degree(g.startDs, g)) {
return false; /* not purely anchored */
}
ei.new_graph = cloneHolder(*left.graph());
auto gg = ei.new_graph;
gg->kind = NFA_EAGER_PREFIX;
ei.lag_adjust = decreaseLag(build, *gg, succs);
if (is_match_vertex(gg->start, *gg)) {
return false; /* should not still be vacuous as lag decreased */
}
if (!can_die_early(*gg, EAGER_DIE_BEFORE_LIMIT)) {
DEBUG_PRINTF("not eager as stuck alive\n");
return false;
}
/* We need to ensure that adding in the literals does not cause us to no
* longer be able to build an nfa. */
bool ok = isImplementableNFA(*gg, nullptr, cc);
if (!ok) {
return false;
}
} else {
DEBUG_PRINTF("unable to determine if good for eager running\n");
return false;
}
DEBUG_PRINTF("eager prefix\n");
return true;
}
static
left_id updateLeftfixWithEager(RoseGraph &g, const eager_info &ei,
const vector<RoseVertex> &succs) {
u32 lag_adjust = ei.lag_adjust;
auto gg = ei.new_graph;
for (RoseVertex v : succs) {
g[v].left.graph = gg;
assert(g[v].left.lag >= lag_adjust);
g[v].left.lag -= lag_adjust;
DEBUG_PRINTF("added %u literal chars back, new lag %u\n", lag_adjust,
g[v].left.lag);
}
left_id leftfix = g[succs[0]].left;
if (leftfix.graph()) {
assert(leftfix.graph()->kind == NFA_PREFIX
|| leftfix.graph()->kind == NFA_EAGER_PREFIX);
leftfix.graph()->kind = NFA_EAGER_PREFIX;
}
if (leftfix.dfa()) {
assert(leftfix.dfa()->kind == NFA_PREFIX);
leftfix.dfa()->kind = NFA_EAGER_PREFIX;
}
return leftfix;
}
static
void enforceEngineSizeLimit(const NFA *n, const Grey &grey) {
const size_t nfa_size = n->length;
// Global limit.
if (nfa_size > grey.limitEngineSize) {
throw ResourceLimitError();
}
// Type-specific limit checks follow.
if (isDfaType(n->type)) {
if (nfa_size > grey.limitDFASize) {
throw ResourceLimitError();
}
} else if (isNfaType(n->type)) {
if (nfa_size > grey.limitNFASize) {
throw ResourceLimitError();
}
} else if (isLbrType(n->type)) {
if (nfa_size > grey.limitLBRSize) {
throw ResourceLimitError();
}
}
}
static
bool buildLeftfix(RoseBuildImpl &build, build_context &bc, bool prefix, u32 qi,
const map<left_id, set<PredTopPair> > &infixTriggers,
set<u32> *no_retrigger_queues, set<u32> *eager_queues,
const map<left_id, eager_info> &eager,
const vector<RoseVertex> &succs, left_id leftfix) {
RoseGraph &g = build.g;
const CompileContext &cc = build.cc;
const ReportManager &rm = build.rm;
bool is_transient = contains(build.transient, leftfix);
rose_group squash_mask = build.rose_squash_masks.at(leftfix);
DEBUG_PRINTF("making %sleftfix\n", is_transient ? "transient " : "");
if (contains(eager, leftfix)) {
eager_queues->insert(qi);
leftfix = updateLeftfixWithEager(g, eager.at(leftfix), succs);
}
bytecode_ptr<NFA> nfa;
// Need to build NFA, which is either predestined to be a Haig (in SOM mode)
// or could be all manner of things.
if (leftfix.haig()) {
nfa = goughCompile(*leftfix.haig(), build.ssm.somPrecision(), cc, rm);
} else {
nfa = makeLeftNfa(build, leftfix, prefix, is_transient, infixTriggers,
cc);
}
if (!nfa) {
assert(!"failed to build leftfix");
return false;
}
setLeftNfaProperties(*nfa, leftfix);
nfa->queueIndex = qi;
enforceEngineSizeLimit(nfa.get(), cc.grey);
bc.engine_info_by_queue.emplace(nfa->queueIndex,
engine_info(nfa.get(), is_transient));
if (!prefix && !leftfix.haig() && leftfix.graph()
&& nfaStuckOn(*leftfix.graph())) {
DEBUG_PRINTF("%u sticks on\n", qi);
no_retrigger_queues->insert(qi);
}
DEBUG_PRINTF("built leftfix, qi=%u\n", qi);
add_nfa_to_blob(bc, *nfa);
// Leftfixes can have stop alphabets.
vector<u8> stop(N_CHARS, 0);
/* haigs track som information - need more care */
som_type som = leftfix.haig() ? SOM_LEFT : SOM_NONE;
if (leftfix.graph()) {
stop = findLeftOffsetStopAlphabet(*leftfix.graph(), som);
} else if (leftfix.castle()) {
stop = findLeftOffsetStopAlphabet(*leftfix.castle(), som);
}
// Infix NFAs can have bounds on their queue lengths.
u32 max_queuelen = UINT32_MAX;
if (!prefix) {
set<ue2_literal> lits;
for (RoseVertex v : succs) {
for (auto u : inv_adjacent_vertices_range(v, g)) {
for (u32 lit_id : g[u].literals) {
lits.insert(build.literals.at(lit_id).s);
}
}
}
DEBUG_PRINTF("%zu literals\n", lits.size());
max_queuelen = findMaxInfixMatches(leftfix, lits);
if (max_queuelen < UINT32_MAX) {
max_queuelen++;
}
}
u32 max_width;
if (is_transient) {
depth d = findMaxWidth(leftfix);
assert(d.is_finite());
max_width = d;
} else {
max_width = 0;
}
u8 cm_count = 0;
CharReach cm_cr;
if (cc.grey.allowCountingMiracles) {
findCountingMiracleInfo(leftfix, stop, &cm_count, &cm_cr);
}
for (RoseVertex v : succs) {
bc.leftfix_info.emplace(v, left_build_info(qi, g[v].left.lag, max_width,
squash_mask, stop,
max_queuelen, cm_count,
cm_cr));
}
return true;
}
static
unique_ptr<TamaInfo> constructTamaInfo(const RoseGraph &g,
const vector<ExclusiveSubengine> &subengines,
const bool is_suffix) {
unique_ptr<TamaInfo> tamaInfo = std::make_unique<TamaInfo>();
for (const auto &sub : subengines) {
const auto &rose_vertices = sub.vertices;
NFA *nfa = sub.nfa.get();
set<u32> tops;
for (const auto &v : rose_vertices) {
if (is_suffix) {
tops.insert(g[v].suffix.top);
} else {
for (const auto &e : in_edges_range(v, g)) {
tops.insert(g[e].rose_top);
}
}
}
tamaInfo->add(nfa, tops);
}
return tamaInfo;
}
static
void updateTops(const RoseGraph &g, const TamaInfo &tamaInfo,
TamaProto &tamaProto,
const vector<ExclusiveSubengine> &subengines,
const map<pair<const NFA *, u32>, u32> &out_top_remap,
const bool is_suffix) {
u32 i = 0;
for (const auto &n : tamaInfo.subengines) {
for (const auto &v : subengines[i].vertices) {
if (is_suffix) {
tamaProto.add(n, g[v].index, g[v].suffix.top, out_top_remap);
} else {
for (const auto &e : in_edges_range(v, g)) {
tamaProto.add(n, g[v].index, g[e].rose_top, out_top_remap);
}
}
}
i++;
}
}
static
shared_ptr<TamaProto> constructContainerEngine(const RoseGraph &g,
build_context &bc,
const ExclusiveInfo &info,
const u32 queue,
const bool is_suffix,
const Grey &grey) {
const auto &subengines = info.subengines;
auto tamaInfo = constructTamaInfo(g, subengines, is_suffix);
map<pair<const NFA *, u32>, u32> out_top_remap;
auto n = buildTamarama(*tamaInfo, queue, out_top_remap);
enforceEngineSizeLimit(n.get(), grey);
bc.engine_info_by_queue.emplace(n->queueIndex, engine_info(n.get(), false));
add_nfa_to_blob(bc, *n);
DEBUG_PRINTF("queue id:%u\n", queue);
shared_ptr<TamaProto> tamaProto = make_shared<TamaProto>();
tamaProto->reports = info.reports;
updateTops(g, *tamaInfo, *tamaProto, subengines, out_top_remap, is_suffix);
return tamaProto;
}
static
void buildInfixContainer(RoseGraph &g, build_context &bc,
const vector<ExclusiveInfo> &exclusive_info,
const Grey &grey) {
// Build tamarama engine
for (const auto &info : exclusive_info) {
const u32 queue = info.queue;
const auto &subengines = info.subengines;
auto tamaProto =
constructContainerEngine(g, bc, info, queue, false, grey);
for (const auto &sub : subengines) {
const auto &verts = sub.vertices;
for (const auto &v : verts) {
DEBUG_PRINTF("vert id:%zu\n", g[v].index);
g[v].left.tamarama = tamaProto;
}
}
}
}
static
void buildSuffixContainer(RoseGraph &g, build_context &bc,
const vector<ExclusiveInfo> &exclusive_info,
const Grey &grey) {
// Build tamarama engine
for (const auto &info : exclusive_info) {
const u32 queue = info.queue;
const auto &subengines = info.subengines;
auto tamaProto = constructContainerEngine(g, bc, info, queue, true,
grey);
for (const auto &sub : subengines) {
const auto &verts = sub.vertices;
for (const auto &v : verts) {
DEBUG_PRINTF("vert id:%zu\n", g[v].index);
g[v].suffix.tamarama = tamaProto;
}
const auto &v = verts[0];
suffix_id newSuffix(g[v].suffix);
bc.suffixes.emplace(newSuffix, queue);
}
}
}
static
void updateExclusiveInfixProperties(const RoseBuildImpl &build,
const vector<ExclusiveInfo> &exclusive_info,
map<RoseVertex, left_build_info> &leftfix_info,
set<u32> *no_retrigger_queues) {
const RoseGraph &g = build.g;
for (const auto &info : exclusive_info) {
// Set leftfix optimisations, disabled for tamarama subengines
rose_group squash_mask = ~rose_group{0};
// Leftfixes can have stop alphabets.
vector<u8> stop(N_CHARS, 0);
// Infix NFAs can have bounds on their queue lengths.
u32 max_queuelen = 0;
u32 max_width = 0;
u8 cm_count = 0;
CharReach cm_cr;
const auto &qi = info.queue;
const auto &subengines = info.subengines;
bool no_retrigger = true;
for (const auto &sub : subengines) {
const auto &verts = sub.vertices;
const auto &v_first = verts[0];
left_id leftfix(g[v_first].left);
if (leftfix.haig() || !leftfix.graph() ||
!nfaStuckOn(*leftfix.graph())) {
no_retrigger = false;
}
for (const auto &v : verts) {
set<ue2_literal> lits;
for (auto u : inv_adjacent_vertices_range(v, build.g)) {
for (u32 lit_id : build.g[u].literals) {
lits.insert(build.literals.at(lit_id).s);
}
}
DEBUG_PRINTF("%zu literals\n", lits.size());
u32 queuelen = findMaxInfixMatches(leftfix, lits);
if (queuelen < UINT32_MAX) {
queuelen++;
}
max_queuelen = max(max_queuelen, queuelen);
}
}
if (no_retrigger) {
no_retrigger_queues->insert(qi);
}
for (const auto &sub : subengines) {
const auto &verts = sub.vertices;
for (const auto &v : verts) {
u32 lag = g[v].left.lag;
leftfix_info.emplace(v, left_build_info(qi, lag, max_width,
squash_mask, stop,
max_queuelen, cm_count,
cm_cr));
}
}
}
}
static
void updateExclusiveSuffixProperties(const RoseBuildImpl &build,
const vector<ExclusiveInfo> &exclusive_info,
set<u32> *no_retrigger_queues) {
const RoseGraph &g = build.g;
for (auto &info : exclusive_info) {
const auto &qi = info.queue;
const auto &subengines = info.subengines;
bool no_retrigger = true;
for (const auto &sub : subengines) {
const auto &v_first = sub.vertices[0];
suffix_id suffix(g[v_first].suffix);
if (!suffix.graph() || !nfaStuckOn(*suffix.graph())) {
no_retrigger = false;
break;
}
}
if (no_retrigger) {
no_retrigger_queues->insert(qi);
}
}
}
static
void buildExclusiveInfixes(RoseBuildImpl &build, build_context &bc,
QueueIndexFactory &qif,
const map<left_id, set<PredTopPair>> &infixTriggers,
const map<u32, vector<RoseVertex>> &vertex_map,
const vector<vector<u32>> &groups,
set<u32> *no_retrigger_queues) {
RoseGraph &g = build.g;
const CompileContext &cc = build.cc;
vector<ExclusiveInfo> exclusive_info;
for (const auto &gp : groups) {
ExclusiveInfo info;
for (const auto &id : gp) {
const auto &verts = vertex_map.at(id);
left_id leftfix(g[verts[0]].left);
bool is_transient = false;
auto n = makeLeftNfa(build, leftfix, false, is_transient,
infixTriggers, cc);
assert(n);
setLeftNfaProperties(*n, leftfix);
ExclusiveSubengine engine;
engine.nfa = std::move(n);
engine.vertices = verts;
info.subengines.emplace_back(std::move(engine));
}
info.queue = qif.get_queue();
exclusive_info.emplace_back(std::move(info));
}
updateExclusiveInfixProperties(build, exclusive_info, bc.leftfix_info,
no_retrigger_queues);
buildInfixContainer(g, bc, exclusive_info, build.cc.grey);
}
static
void findExclusiveInfixes(RoseBuildImpl &build, build_context &bc,
QueueIndexFactory &qif,
const map<left_id, set<PredTopPair>> &infixTriggers,
set<u32> *no_retrigger_queues) {
const RoseGraph &g = build.g;
set<RoleInfo<left_id>> roleInfoSet;
map<u32, vector<RoseVertex>> vertex_map;
u32 role_id = 0;
map<left_id, u32> leftfixes;
for (auto v : vertices_range(g)) {
if (!g[v].left || build.isRootSuccessor(v)) {
continue;
}
left_id leftfix(g[v].left);
// Sanity check: our NFA should contain each of the tops mentioned on
// our in-edges.
assert(roseHasTops(build, v));
if (contains(leftfixes, leftfix)) {
// NFA already built.
u32 id = leftfixes[leftfix];
if (contains(vertex_map, id)) {
vertex_map[id].emplace_back(v);
}
DEBUG_PRINTF("sharing leftfix, id=%u\n", id);
continue;
}
if (leftfix.haig()) {
continue;
}
if (leftfix.graph() || leftfix.castle()) {
leftfixes.emplace(leftfix, role_id);
vertex_map[role_id].emplace_back(v);
map<u32, vector<vector<CharReach>>> triggers;
findTriggerSequences(build, infixTriggers.at(leftfix), &triggers);
RoleInfo<left_id> info(leftfix, role_id);
if (setTriggerLiteralsInfix(info, triggers)) {
roleInfoSet.insert(info);
}
role_id++;
}
}
if (leftfixes.size() > 1) {
DEBUG_PRINTF("leftfix size:%zu\n", leftfixes.size());
vector<vector<u32>> groups;
exclusiveAnalysisInfix(build, vertex_map, roleInfoSet, groups);
buildExclusiveInfixes(build, bc, qif, infixTriggers, vertex_map,
groups, no_retrigger_queues);
}
}
static
bool buildLeftfixes(RoseBuildImpl &tbi, build_context &bc,
QueueIndexFactory &qif, set<u32> *no_retrigger_queues,
set<u32> *eager_queues, bool do_prefix) {
RoseGraph &g = tbi.g;
const CompileContext &cc = tbi.cc;
map<left_id, set<PredTopPair>> infixTriggers;
findInfixTriggers(tbi, &infixTriggers);
insertion_ordered_map<left_id, vector<RoseVertex>> succs;
if (cc.grey.allowTamarama && cc.streaming && !do_prefix) {
findExclusiveInfixes(tbi, bc, qif, infixTriggers, no_retrigger_queues);
}
for (auto v : vertices_range(g)) {
if (!g[v].left || g[v].left.tamarama) {
continue;
}
assert(tbi.isNonRootSuccessor(v) != tbi.isRootSuccessor(v));
bool is_prefix = tbi.isRootSuccessor(v);
if (do_prefix != is_prefix) {
/* we require prefixes and then infixes */
continue;
}
left_id leftfix(g[v].left);
// Sanity check: our NFA should contain each of the tops mentioned on
// our in-edges.
assert(roseHasTops(tbi, v));
bool is_transient = contains(tbi.transient, leftfix);
// Transient leftfixes can sometimes be implemented solely with
// lookarounds, in which case we don't need to build an engine.
// TODO: Handle SOM-tracking cases as well.
if (cc.grey.roseLookaroundMasks && is_transient &&
!g[v].left.tracksSom()) {
vector<vector<LookEntry>> lookaround;
if (makeLeftfixLookaround(tbi, v, lookaround)) {
DEBUG_PRINTF("implementing as lookaround!\n");
bc.leftfix_info.emplace(v, left_build_info(lookaround));
continue;
}
}
succs[leftfix].emplace_back(v);
}
rose_group initial_groups = tbi.getInitialGroups();
rose_group combined_eager_squashed_mask = ~0ULL;
map<left_id, eager_info> eager;
for (const auto &m : succs) {
const left_id &leftfix = m.first;
const auto &left_succs = m.second;
rose_group squash_mask = tbi.rose_squash_masks.at(leftfix);
eager_info ei;
if (checkSuitableForEager(do_prefix, leftfix, tbi, left_succs,
squash_mask, initial_groups, ei, cc)) {
eager[leftfix] = ei;
combined_eager_squashed_mask &= squash_mask;
DEBUG_PRINTF("combo %016llx...\n", combined_eager_squashed_mask);
}
}
if (do_prefix && combined_eager_squashed_mask & initial_groups) {
DEBUG_PRINTF("eager groups won't squash everyone - be lazy\n");
eager_queues->clear();
eager.clear();
}
for (const auto &m : succs) {
const left_id &leftfix = m.first;
const auto &left_succs = m.second;
buildLeftfix(tbi, bc, do_prefix, qif.get_queue(), infixTriggers,
no_retrigger_queues, eager_queues, eager, left_succs,
leftfix);
}
return true;
}
static
void findSuffixTriggers(const RoseBuildImpl &tbi,
map<suffix_id, set<PredTopPair> > *suffixTriggers) {
const RoseGraph &g = tbi.g;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
PredTopPair ptp(v, g[v].suffix.top);
(*suffixTriggers)[g[v].suffix].insert(ptp);
}
}
static
bool hasNonSmallBlockOutfix(const vector<OutfixInfo> &outfixes) {
for (const auto &out : outfixes) {
if (!out.in_sbmatcher) {
return true;
}
}
return false;
}
namespace {
class OutfixBuilder : public boost::static_visitor<bytecode_ptr<NFA>> {
public:
explicit OutfixBuilder(const RoseBuildImpl &build_in) : build(build_in) {}
bytecode_ptr<NFA> operator()(boost::blank&) const {
return nullptr;
};
bytecode_ptr<NFA> operator()(unique_ptr<raw_dfa> &rdfa) const {
// Unleash the mighty DFA!
return getDfa(*rdfa, false, build.cc, build.rm);
}
bytecode_ptr<NFA> operator()(unique_ptr<raw_som_dfa> &haig) const {
// Unleash the Goughfish!
return goughCompile(*haig, build.ssm.somPrecision(), build.cc,
build.rm);
}
bytecode_ptr<NFA> operator()(unique_ptr<NGHolder> &holder) const {
const CompileContext &cc = build.cc;
const ReportManager &rm = build.rm;
NGHolder &h = *holder;
assert(h.kind == NFA_OUTFIX);
// Build NFA.
const map<u32, u32> fixed_depth_tops; /* no tops */
const map<u32, vector<vector<CharReach>>> triggers; /* no tops */
bool compress_state = cc.streaming;
bool fast_nfa = false;
auto n = constructNFA(h, &rm, fixed_depth_tops, triggers,
compress_state, fast_nfa, cc);
// Try for a DFA upgrade.
if (n && cc.grey.roseMcClellanOutfix &&
(!has_bounded_repeats_other_than_firsts(*n) || !fast_nfa)) {
auto rdfa = buildMcClellan(h, &rm, cc.grey);
if (rdfa) {
auto d = getDfa(*rdfa, false, cc, rm);
if (d) {
n = pickImpl(std::move(d), std::move(n), fast_nfa);
}
}
}
return n;
}
bytecode_ptr<NFA> operator()(UNUSED MpvProto &mpv) const {
// MPV construction handled separately.
assert(mpv.puffettes.empty());
return nullptr;
}
private:
const RoseBuildImpl &build;
};
}
static
bytecode_ptr<NFA> buildOutfix(const RoseBuildImpl &build, OutfixInfo &outfix) {
assert(!outfix.is_dead()); // should not be marked dead.
auto n = boost::apply_visitor(OutfixBuilder(build), outfix.proto);
if (n && build.cc.grey.reverseAccelerate) {
buildReverseAcceleration(n.get(), outfix.rev_info, outfix.minWidth);
}
return n;
}
static
void prepMpv(RoseBuildImpl &tbi, build_context &bc, size_t *historyRequired,
bool *mpv_as_outfix) {
assert(bc.engineOffsets.empty()); // MPV should be first
*mpv_as_outfix = false;
OutfixInfo *mpv_outfix = nullptr;
/* assume outfixes are just above chain tails in queue indices */
for (auto &out : tbi.outfixes) {
if (out.is_nonempty_mpv()) {
assert(!mpv_outfix);
mpv_outfix = &out;
} else {
assert(!out.mpv());
}
}
if (!mpv_outfix) {
return;
}
auto *mpv = mpv_outfix->mpv();
auto nfa = mpvCompile(mpv->puffettes, mpv->triggered_puffettes, tbi.rm);
assert(nfa);
if (!nfa) {
throw CompileError("Unable to generate bytecode.");
}
if (tbi.cc.grey.reverseAccelerate) {
buildReverseAcceleration(nfa.get(), mpv_outfix->rev_info,
mpv_outfix->minWidth);
}
u32 qi = mpv_outfix->get_queue(tbi.qif);
nfa->queueIndex = qi;
enforceEngineSizeLimit(nfa.get(), tbi.cc.grey);
bc.engine_info_by_queue.emplace(nfa->queueIndex,
engine_info(nfa.get(), false));
DEBUG_PRINTF("built mpv\n");
if (!*historyRequired && requires_decompress_key(*nfa)) {
*historyRequired = 1;
}
add_nfa_to_blob(bc, *nfa);
*mpv_as_outfix = !mpv->puffettes.empty();
}
static
void setOutfixProperties(NFA &n, const OutfixInfo &outfix) {
depth min_width = outfix.minWidth;
DEBUG_PRINTF("min_width=%s\n", min_width.str().c_str());
u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0;
n.minWidth = min_width_value;
depth max_width = outfix.maxWidth;
DEBUG_PRINTF("max_width=%s\n", max_width.str().c_str());
u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0;
n.maxWidth = max_width_value;
DEBUG_PRINTF("max_offset=%llu\n", outfix.maxOffset);
u32 max_offset_value = outfix.maxOffset < ~0U ? (u32)outfix.maxOffset : 0;
n.maxOffset = max_offset_value;
DEBUG_PRINTF("maxBAWidth=%u\n", outfix.maxBAWidth);
if (outfix.maxBAWidth != ROSE_BOUND_INF && outfix.maxBAWidth < 256) {
n.maxBiAnchoredWidth = verify_u8(outfix.maxBAWidth);
}
}
static
bool prepOutfixes(RoseBuildImpl &tbi, build_context &bc,
size_t *historyRequired) {
if (tbi.cc.grey.onlyOneOutfix && tbi.outfixes.size() > 1) {
DEBUG_PRINTF("we have %zu outfixes, but Grey::onlyOneOutfix is set\n",
tbi.outfixes.size());
throw ResourceLimitError();
}
assert(tbi.qif.allocated_count() == bc.engineOffsets.size());
for (auto &out : tbi.outfixes) {
if (out.mpv()) {
continue; /* already done */
}
DEBUG_PRINTF("building outfix %zd\n", &out - &tbi.outfixes[0]);
auto n = buildOutfix(tbi, out);
if (!n) {
assert(0);
return false;
}
setOutfixProperties(*n, out);
n->queueIndex = out.get_queue(tbi.qif);
enforceEngineSizeLimit(n.get(), tbi.cc.grey);
bc.engine_info_by_queue.emplace(n->queueIndex,
engine_info(n.get(), false));
if (!*historyRequired && requires_decompress_key(*n)) {
*historyRequired = 1;
}
add_nfa_to_blob(bc, *n);
}
return true;
}
static
void assignSuffixQueues(RoseBuildImpl &build, map<suffix_id, u32> &suffixes) {
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
const suffix_id s(g[v].suffix);
DEBUG_PRINTF("vertex %zu triggers suffix %p\n", g[v].index, s.graph());
// We may have already built this NFA.
if (contains(suffixes, s)) {
continue;
}
u32 queue = build.qif.get_queue();
DEBUG_PRINTF("assigning %p to queue %u\n", s.graph(), queue);
suffixes.emplace(s, queue);
}
}
static
void setSuffixProperties(NFA &n, const suffix_id &suff,
const ReportManager &rm) {
depth min_width = findMinWidth(suff);
DEBUG_PRINTF("min_width=%s\n", min_width.str().c_str());
u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0;
n.minWidth = min_width_value;
depth max_width = findMaxWidth(suff);
DEBUG_PRINTF("max_width=%s\n", max_width.str().c_str());
u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0;
n.maxWidth = max_width_value;
u64a max_offset = findMaxOffset(all_reports(suff), rm);
DEBUG_PRINTF("max_offset=%llu\n", max_offset);
u32 max_offset_value = max_offset < ~0U ? (u32)max_offset : 0;
n.maxOffset = max_offset_value;
}
static
void buildExclusiveSuffixes(RoseBuildImpl &build, build_context &bc,
QueueIndexFactory &qif,
map<suffix_id, set<PredTopPair>> &suffixTriggers,
const map<u32, vector<RoseVertex>> &vertex_map,
const vector<vector<u32>> &groups,
set<u32> *no_retrigger_queues) {
RoseGraph &g = build.g;
vector<ExclusiveInfo> exclusive_info;
for (const auto &gp : groups) {
ExclusiveInfo info;
for (const auto &id : gp) {
const auto &verts = vertex_map.at(id);
suffix_id s(g[verts[0]].suffix);
const set<PredTopPair> &s_triggers = suffixTriggers.at(s);
map<u32, u32> fixed_depth_tops;
findFixedDepthTops(g, s_triggers, &fixed_depth_tops);
map<u32, vector<vector<CharReach>>> triggers;
findTriggerSequences(build, s_triggers, &triggers);
auto n = buildSuffix(build.rm, build.ssm, fixed_depth_tops,
triggers, s, build.cc);
assert(n);
setSuffixProperties(*n, s, build.rm);
ExclusiveSubengine engine;
engine.nfa = std::move(n);
engine.vertices = verts;
info.subengines.emplace_back(std::move(engine));
const auto &reports = all_reports(s);
info.reports.insert(reports.begin(), reports.end());
}
info.queue = qif.get_queue();
exclusive_info.emplace_back(std::move(info));
}
updateExclusiveSuffixProperties(build, exclusive_info,
no_retrigger_queues);
buildSuffixContainer(g, bc, exclusive_info, build.cc.grey);
}
static
void findExclusiveSuffixes(RoseBuildImpl &tbi, build_context &bc,
QueueIndexFactory &qif,
map<suffix_id, set<PredTopPair>> &suffixTriggers,
set<u32> *no_retrigger_queues) {
const RoseGraph &g = tbi.g;
map<suffix_id, u32> suffixes;
set<RoleInfo<suffix_id>> roleInfoSet;
map<u32, vector<RoseVertex>> vertex_map;
u32 role_id = 0;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
const suffix_id s(g[v].suffix);
DEBUG_PRINTF("vertex %zu triggers suffix %p\n", g[v].index, s.graph());
// We may have already built this NFA.
if (contains(suffixes, s)) {
u32 id = suffixes[s];
if (!tbi.isInETable(v)) {
vertex_map[id].emplace_back(v);
}
continue;
}
if (s.haig()) {
continue;
}
// Currently disable eod suffixes for exclusive analysis
if (!tbi.isInETable(v) && (s.graph() || s.castle())) {
DEBUG_PRINTF("assigning %p to id %u\n", s.graph(), role_id);
suffixes.emplace(s, role_id);
vertex_map[role_id].emplace_back(v);
const set<PredTopPair> &s_triggers = suffixTriggers.at(s);
map<u32, vector<vector<CharReach>>> triggers;
findTriggerSequences(tbi, s_triggers, &triggers);
RoleInfo<suffix_id> info(s, role_id);
if (setTriggerLiteralsSuffix(info, triggers)) {
roleInfoSet.insert(info);
}
role_id++;
}
}
if (suffixes.size() > 1) {
DEBUG_PRINTF("suffix size:%zu\n", suffixes.size());
vector<vector<u32>> groups;
exclusiveAnalysisSuffix(tbi, vertex_map, roleInfoSet, groups);
buildExclusiveSuffixes(tbi, bc, qif, suffixTriggers, vertex_map,
groups, no_retrigger_queues);
}
}
static
bool buildSuffixes(const RoseBuildImpl &tbi, build_context &bc,
set<u32> *no_retrigger_queues,
const map<suffix_id, set<PredTopPair>> &suffixTriggers) {
// To ensure compile determinism, build suffix engines in order of their
// (unique) queue indices, so that we call add_nfa_to_blob in the same
// order.
vector<pair<u32, suffix_id>> ordered;
for (const auto &e : bc.suffixes) {
ordered.emplace_back(e.second, e.first);
}
sort(begin(ordered), end(ordered));
for (const auto &e : ordered) {
const u32 queue = e.first;
const suffix_id &s = e.second;
if (s.tamarama()) {
continue;
}
const set<PredTopPair> &s_triggers = suffixTriggers.at(s);
map<u32, u32> fixed_depth_tops;
findFixedDepthTops(tbi.g, s_triggers, &fixed_depth_tops);
map<u32, vector<vector<CharReach>>> triggers;
findTriggerSequences(tbi, s_triggers, &triggers);
auto n = buildSuffix(tbi.rm, tbi.ssm, fixed_depth_tops, triggers,
s, tbi.cc);
if (!n) {
return false;
}
setSuffixProperties(*n, s, tbi.rm);
n->queueIndex = queue;
enforceEngineSizeLimit(n.get(), tbi.cc.grey);
bc.engine_info_by_queue.emplace(n->queueIndex,
engine_info(n.get(), false));
if (s.graph() && nfaStuckOn(*s.graph())) { /* todo: have corresponding
* haig analysis */
assert(!s.haig());
DEBUG_PRINTF("%u sticks on\n", queue);
no_retrigger_queues->insert(queue);
}
add_nfa_to_blob(bc, *n);
}
return true;
}
static
void buildCountingMiracles(build_context &bc) {
map<pair<CharReach, u8>, u32> pre_built;
for (left_build_info &lbi : bc.leftfix_info | map_values) {
if (!lbi.countingMiracleCount) {
continue;
}
const CharReach &cr = lbi.countingMiracleReach;
assert(!cr.all() && !cr.none());
auto key = make_pair(cr, lbi.countingMiracleCount);
if (contains(pre_built, key)) {
lbi.countingMiracleOffset = pre_built[key];
continue;
}
RoseCountingMiracle rcm;
memset(&rcm, 0, sizeof(rcm));
if (cr.count() == 1) {
rcm.c = cr.find_first();
} else {
rcm.shufti = 1;
int rv = shuftiBuildMasks(cr, (u8 *)&rcm.lo, (u8 *)&rcm.hi);
if (rv == -1) {
DEBUG_PRINTF("failed to build shufti\n");
lbi.countingMiracleCount = 0; /* remove counting miracle */
continue;
}
rcm.poison = (~cr).find_first();
}
rcm.count = lbi.countingMiracleCount;
lbi.countingMiracleOffset = bc.engine_blob.add(rcm);
pre_built[key] = lbi.countingMiracleOffset;
DEBUG_PRINTF("built cm for count of %u @ %u\n", rcm.count,
lbi.countingMiracleOffset);
}
}
/* Note: buildNfas may reduce the lag for vertices that have prefixes */
static
bool buildNfas(RoseBuildImpl &tbi, build_context &bc, QueueIndexFactory &qif,
set<u32> *no_retrigger_queues, set<u32> *eager_queues,
u32 *leftfixBeginQueue) {
map<suffix_id, set<PredTopPair>> suffixTriggers;
findSuffixTriggers(tbi, &suffixTriggers);
if (tbi.cc.grey.allowTamarama && tbi.cc.streaming) {
findExclusiveSuffixes(tbi, bc, qif, suffixTriggers,
no_retrigger_queues);
}
assignSuffixQueues(tbi, bc.suffixes);
if (!buildSuffixes(tbi, bc, no_retrigger_queues, suffixTriggers)) {
return false;
}
suffixTriggers.clear();
*leftfixBeginQueue = qif.allocated_count();
if (!buildLeftfixes(tbi, bc, qif, no_retrigger_queues, eager_queues,
true)) {
return false;
}
if (!buildLeftfixes(tbi, bc, qif, no_retrigger_queues, eager_queues,
false)) {
return false;
}
return true;
}
static
void allocateStateSpace(const engine_info &eng_info, NfaInfo &nfa_info,
RoseStateOffsets *so, u32 *scratchStateSize,
u32 *transientStateSize) {
u32 state_offset;
if (eng_info.transient) {
// Transient engines do not use stream state, but must have room in
// transient state (stored in scratch).
state_offset = *transientStateSize;
*transientStateSize += eng_info.stream_size;
} else {
// Pack NFA stream state on to the end of the Rose stream state.
state_offset = so->end;
so->end += eng_info.stream_size;
}
nfa_info.stateOffset = state_offset;
// Uncompressed state in scratch must be aligned.
*scratchStateSize = ROUNDUP_N(*scratchStateSize, eng_info.scratch_align);
nfa_info.fullStateOffset = *scratchStateSize;
*scratchStateSize += eng_info.scratch_size;
}
static
void updateNfaState(const build_context &bc, vector<NfaInfo> &nfa_infos,
RoseStateOffsets *so, u32 *scratchStateSize,
u32 *transientStateSize) {
if (nfa_infos.empty()) {
return;
}
*transientStateSize = 0;
*scratchStateSize = 0;
for (u32 qi = 0; qi < nfa_infos.size(); qi++) {
NfaInfo &nfa_info = nfa_infos[qi];
const auto &eng_info = bc.engine_info_by_queue.at(qi);
allocateStateSpace(eng_info, nfa_info, so, scratchStateSize,
transientStateSize);
}
}
/* does not include history requirements for outfixes or literal matchers */
u32 RoseBuildImpl::calcHistoryRequired() const {
u32 m = cc.grey.minHistoryAvailable;
for (auto v : vertices_range(g)) {
if (g[v].suffix) {
m = MAX(m, 2); // so that history req is at least 1, for state
// compression.
/* TODO: check if suffix uses state compression */
}
if (g[v].left) {
const u32 lag = g[v].left.lag;
const left_id leftfix(g[v].left);
if (contains(transient, leftfix)) {
u32 mv = lag + findMaxWidth(leftfix);
// If this vertex has an event literal, we need to add one to
// cope with it.
if (hasLiteralInTable(v, ROSE_EVENT)) {
mv++;
}
m = MAX(m, mv);
} else {
/* rose will be caught up from (lag - 1), also need an extra
* byte behind that to find the decompression key */
m = MAX(m, lag + 1);
m = MAX(m, 2); // so that history req is at least 1, for state
// compression.
}
}
}
// Delayed literals contribute to history requirement as well.
for (u32 id = 0; id < literals.size(); id++) {
const auto &lit = literals.at(id);
if (lit.delay) {
// If the literal is delayed _and_ has a mask that is longer than
// the literal, we need enough history to match the whole mask as
// well when rebuilding delayed matches.
size_t len = std::max(lit.elength(), lit.msk.size() + lit.delay);
ENSURE_AT_LEAST(&m, verify_u32(len));
}
/* Benefit checks require data is available. */
if (literal_info.at(id).requires_benefits) {
ENSURE_AT_LEAST(&m,
MIN(verify_u32(lit.elength()), MAX_MASK2_WIDTH));
}
}
m = MAX(m, max_rose_anchored_floating_overlap);
DEBUG_PRINTF("m=%u, ematcher_region_size=%u\n", m, ematcher_region_size);
if (ematcher_region_size >= m) {
return ematcher_region_size;
}
return m ? m - 1 : 0;
}
static
u32 buildLastByteIter(const RoseGraph &g, build_context &bc) {
vector<u32> lb_roles;
for (auto v : vertices_range(g)) {
if (!hasLastByteHistorySucc(g, v)) {
continue;
}
// Eager EOD reporters won't have state indices.
auto it = bc.roleStateIndices.find(v);
if (it != end(bc.roleStateIndices)) {
lb_roles.emplace_back(it->second);
DEBUG_PRINTF("last byte %u\n", it->second);
}
}
if (lb_roles.empty()) {
return 0; /* invalid offset */
}
auto iter = mmbBuildSparseIterator(lb_roles, bc.roleStateIndices.size());
return bc.engine_blob.add_iterator(iter);
}
static
u32 findMinFloatingLiteralMatch(const RoseBuildImpl &build,
const vector<raw_dfa> &anchored_dfas) {
if (anchored_dfas.size() > 1) {
DEBUG_PRINTF("multiple anchored dfas\n");
/* We must regard matches from other anchored tables as unordered, as
* we do for floating matches. */
return 1;
}
const RoseGraph &g = build.g;
u32 minWidth = ROSE_BOUND_INF;
for (auto v : vertices_range(g)) {
if (build.isAnchored(v) || build.isVirtualVertex(v)) {
DEBUG_PRINTF("skipping %zu anchored or root\n", g[v].index);
continue;
}
u32 w = g[v].min_offset;
DEBUG_PRINTF("%zu m_o = %u\n", g[v].index, w);
if (w < minWidth) {
minWidth = w;
}
}
return minWidth;
}
static
vector<u32> buildSuffixEkeyLists(const RoseBuildImpl &build, build_context &bc,
const QueueIndexFactory &qif) {
vector<u32> out(qif.allocated_count());
map<u32, vector<u32>> qi_to_ekeys; /* for determinism */
for (const auto &e : bc.suffixes) {
const suffix_id &s = e.first;
u32 qi = e.second;
set<u32> ekeys = reportsToEkeys(all_reports(s), build.rm);
if (!ekeys.empty()) {
qi_to_ekeys[qi] = {ekeys.begin(), ekeys.end()};
}
}
/* for each outfix also build elists */
for (const auto &outfix : build.outfixes) {
u32 qi = outfix.get_queue();
set<u32> ekeys = reportsToEkeys(all_reports(outfix), build.rm);
if (!ekeys.empty()) {
qi_to_ekeys[qi] = {ekeys.begin(), ekeys.end()};
}
}
for (auto &e : qi_to_ekeys) {
u32 qi = e.first;
auto &ekeys = e.second;
assert(!ekeys.empty());
ekeys.emplace_back(INVALID_EKEY); /* terminator */
out[qi] = bc.engine_blob.add_range(ekeys);
}
return out;
}
/** Returns sparse iter offset in engine blob. */
static
u32 buildEodNfaIterator(build_context &bc, const u32 activeQueueCount) {
vector<u32> keys;
for (u32 qi = 0; qi < activeQueueCount; ++qi) {
const auto &eng_info = bc.engine_info_by_queue.at(qi);
if (eng_info.accepts_eod) {
DEBUG_PRINTF("nfa qi=%u accepts eod\n", qi);
keys.emplace_back(qi);
}
}
if (keys.empty()) {
return 0;
}
DEBUG_PRINTF("building iter for %zu nfas\n", keys.size());
auto iter = mmbBuildSparseIterator(keys, activeQueueCount);
return bc.engine_blob.add_iterator(iter);
}
static
bool hasMpvTrigger(const set<u32> &reports, const ReportManager &rm) {
for (u32 r : reports) {
if (rm.getReport(r).type == INTERNAL_ROSE_CHAIN) {
return true;
}
}
return false;
}
static
bool anyEndfixMpvTriggers(const RoseBuildImpl &build) {
const RoseGraph &g = build.g;
unordered_set<suffix_id> done;
/* suffixes */
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
if (contains(done, g[v].suffix)) {
continue; /* already done */
}
done.insert(g[v].suffix);
if (hasMpvTrigger(all_reports(g[v].suffix), build.rm)) {
return true;
}
}
/* outfixes */
for (const auto &out : build.outfixes) {
if (hasMpvTrigger(all_reports(out), build.rm)) {
return true;
}
}
return false;
}
struct DerivedBoundaryReports {
explicit DerivedBoundaryReports(const BoundaryReports &boundary) {
insert(&report_at_0_eod_full, boundary.report_at_0_eod);
insert(&report_at_0_eod_full, boundary.report_at_eod);
insert(&report_at_0_eod_full, boundary.report_at_0);
}
set<ReportID> report_at_0_eod_full;
};
static
void addSomRevNfas(build_context &bc, RoseEngine &proto,
const SomSlotManager &ssm) {
const auto &nfas = ssm.getRevNfas();
vector<u32> nfa_offsets;
nfa_offsets.reserve(nfas.size());
for (const auto &nfa : nfas) {
assert(nfa);
u32 offset = bc.engine_blob.add(*nfa, nfa->length);
DEBUG_PRINTF("wrote SOM rev NFA %zu (len %u) to offset %u\n",
nfa_offsets.size(), nfa->length, offset);
nfa_offsets.emplace_back(offset);
/* note: som rev nfas don't need a queue assigned as only run in block
* mode reverse */
}
proto.somRevCount = verify_u32(nfas.size());
proto.somRevOffsetOffset = bc.engine_blob.add_range(nfa_offsets);
}
static
void recordResources(RoseResources &resources, const RoseBuildImpl &build,
const vector<raw_dfa> &anchored_dfas,
const vector<LitFragment> &fragments) {
if (!build.outfixes.empty()) {
resources.has_outfixes = true;
}
resources.has_literals = !fragments.empty();
const auto &g = build.g;
for (const auto &v : vertices_range(g)) {
if (g[v].eod_accept) {
resources.has_eod = true;
break;
}
if (g[v].suffix && has_eod_accepts(g[v].suffix)) {
resources.has_eod = true;
break;
}
}
resources.has_anchored = !anchored_dfas.empty();
resources.has_anchored_multiple = anchored_dfas.size() > 1;
for (const auto &rdfa : anchored_dfas) {
if (rdfa.states.size() > 256) {
resources.has_anchored_large = true;
}
}
}
static
u32 writeProgram(build_context &bc, RoseProgram &&program) {
if (program.empty()) {
DEBUG_PRINTF("no program\n");
return 0;
}
applyFinalSpecialisation(program);
auto it = bc.program_cache.find(program);
if (it != end(bc.program_cache)) {
DEBUG_PRINTF("reusing cached program at %u\n", it->second);
return it->second;
}
recordResources(bc.resources, program);
recordLongLiterals(bc.longLiterals, program);
auto prog_bytecode = writeProgram(bc.engine_blob, program);
u32 offset = bc.engine_blob.add(prog_bytecode);
DEBUG_PRINTF("prog len %zu written at offset %u\n", prog_bytecode.size(),
offset);
bc.program_cache.emplace(std::move(program), offset);
return offset;
}
static
u32 writeActiveLeftIter(RoseEngineBlob &engine_blob,
const vector<LeftNfaInfo> &leftInfoTable) {
vector<u32> keys;
for (size_t i = 0; i < leftInfoTable.size(); i++) {
if (!leftInfoTable[i].transient) {
DEBUG_PRINTF("leftfix %zu is active\n", i);
keys.emplace_back(verify_u32(i));
}
}
DEBUG_PRINTF("%zu active leftfixes\n", keys.size());
if (keys.empty()) {
return 0;
}
auto iter = mmbBuildSparseIterator(keys, verify_u32(leftInfoTable.size()));
return engine_blob.add_iterator(iter);
}
static
bool hasEodAnchors(const RoseBuildImpl &build, const build_context &bc,
u32 outfixEndQueue) {
for (u32 i = 0; i < outfixEndQueue; i++) {
const auto &eng_info = bc.engine_info_by_queue.at(i);
if (eng_info.accepts_eod) {
DEBUG_PRINTF("outfix has eod\n");
return true;
}
}
if (build.eod_event_literal_id != MO_INVALID_IDX) {
DEBUG_PRINTF("eod is an event to be celebrated\n");
return true;
}
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (g[v].eod_accept) {
DEBUG_PRINTF("literally report eod\n");
return true;
}
if (g[v].suffix && has_eod_accepts(g[v].suffix)) {
DEBUG_PRINTF("eod suffix\n");
return true;
}
}
DEBUG_PRINTF("yawn\n");
return false;
}
static
void writeDkeyInfo(const ReportManager &rm, RoseEngineBlob &engine_blob,
RoseEngine &proto) {
const auto inv_dkeys = rm.getDkeyToReportTable();
proto.invDkeyOffset = engine_blob.add_range(inv_dkeys);
proto.dkeyCount = rm.numDkeys();
proto.dkeyLogSize = fatbit_size(proto.dkeyCount);
}
static
void writeLeftInfo(RoseEngineBlob &engine_blob, RoseEngine &proto,
const vector<LeftNfaInfo> &leftInfoTable) {
proto.leftOffset = engine_blob.add_range(leftInfoTable);
proto.activeLeftIterOffset
= writeActiveLeftIter(engine_blob, leftInfoTable);
proto.roseCount = verify_u32(leftInfoTable.size());
proto.activeLeftCount = verify_u32(leftInfoTable.size());
proto.rosePrefixCount = countRosePrefixes(leftInfoTable);
}
static
void writeLogicalInfo(const ReportManager &rm, RoseEngineBlob &engine_blob,
RoseEngine &proto) {
const auto &tree = rm.getLogicalTree();
proto.logicalTreeOffset = engine_blob.add_range(tree);
const auto &combMap = rm.getCombInfoMap();
proto.combInfoMapOffset = engine_blob.add_range(combMap);
proto.lkeyCount = rm.numLogicalKeys();
proto.lopCount = rm.numLogicalOps();
proto.ckeyCount = rm.numCkeys();
}
static
void writeNfaInfo(const RoseBuildImpl &build, build_context &bc,
RoseEngine &proto, const set<u32> &no_retrigger_queues) {
const u32 queue_count = build.qif.allocated_count();
if (!queue_count) {
return;
}
auto ekey_lists = buildSuffixEkeyLists(build, bc, build.qif);
vector<NfaInfo> infos(queue_count);
memset(infos.data(), 0, sizeof(NfaInfo) * queue_count);
for (u32 qi = 0; qi < queue_count; qi++) {
NfaInfo &info = infos[qi];
info.nfaOffset = bc.engineOffsets.at(qi);
assert(qi < ekey_lists.size());
info.ekeyListOffset = ekey_lists.at(qi);
info.no_retrigger = contains(no_retrigger_queues, qi) ? 1 : 0;
}
// Mark outfixes that are in the small block matcher.
for (const auto &out : build.outfixes) {
const u32 qi = out.get_queue();
assert(qi < infos.size());
infos.at(qi).in_sbmatcher = out.in_sbmatcher;
}
// Mark suffixes triggered by EOD table literals.
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
u32 qi = bc.suffixes.at(g[v].suffix);
assert(qi < infos.size());
if (build.isInETable(v)) {
infos.at(qi).eod = 1;
}
}
// Update state offsets to do with NFAs in proto and in the NfaInfo
// structures.
updateNfaState(bc, infos, &proto.stateOffsets, &proto.scratchStateSize,
&proto.tStateSize);
proto.nfaInfoOffset = bc.engine_blob.add_range(infos);
}
static
bool hasBoundaryReports(const BoundaryReports &boundary) {
if (!boundary.report_at_0.empty()) {
DEBUG_PRINTF("has boundary reports at 0\n");
return true;
}
if (!boundary.report_at_0_eod.empty()) {
DEBUG_PRINTF("has boundary reports at 0 eod\n");
return true;
}
if (!boundary.report_at_eod.empty()) {
DEBUG_PRINTF("has boundary reports at eod\n");
return true;
}
DEBUG_PRINTF("no boundary reports\n");
return false;
}
static
void makeBoundaryPrograms(const RoseBuildImpl &build, build_context &bc,
const BoundaryReports &boundary,
const DerivedBoundaryReports &dboundary,
RoseBoundaryReports &out) {
DEBUG_PRINTF("report ^: %zu\n", boundary.report_at_0.size());
DEBUG_PRINTF("report $: %zu\n", boundary.report_at_eod.size());
DEBUG_PRINTF("report ^$: %zu\n", dboundary.report_at_0_eod_full.size());
auto eod_prog = makeBoundaryProgram(build, boundary.report_at_eod);
out.reportEodOffset = writeProgram(bc, std::move(eod_prog));
auto zero_prog = makeBoundaryProgram(build, boundary.report_at_0);
out.reportZeroOffset = writeProgram(bc, std::move(zero_prog));
auto zeod_prog = makeBoundaryProgram(build, dboundary.report_at_0_eod_full);
out.reportZeroEodOffset = writeProgram(bc, std::move(zeod_prog));
}
static
unordered_map<RoseVertex, u32> assignStateIndices(const RoseBuildImpl &build) {
const auto &g = build.g;
u32 state = 0;
unordered_map<RoseVertex, u32> roleStateIndices;
for (auto v : vertices_range(g)) {
// Virtual vertices (starts, EOD accept vertices) never need state
// indices.
if (build.isVirtualVertex(v)) {
continue;
}
// We only need a state index if we have successors that are not
// eagerly-reported EOD vertices.
bool needs_state_index = false;
for (const auto &e : out_edges_range(v, g)) {
if (!canEagerlyReportAtEod(build, e)) {
needs_state_index = true;
break;
}
}
if (!needs_state_index) {
continue;
}
/* TODO: also don't need a state index if all edges are nfa based */
roleStateIndices.emplace(v, state++);
}
DEBUG_PRINTF("assigned %u states (from %zu vertices)\n", state,
num_vertices(g));
return roleStateIndices;
}
static
bool hasUsefulStops(const left_build_info &build) {
for (u32 i = 0; i < N_CHARS; i++) {
if (build.stopAlphabet[i]) {
return true;
}
}
return false;
}
static
void buildLeftInfoTable(const RoseBuildImpl &tbi, build_context &bc,
const set<u32> &eager_queues, u32 leftfixBeginQueue,
u32 leftfixCount, vector<LeftNfaInfo> &leftTable,
u32 *laggedRoseCount, size_t *history) {
const RoseGraph &g = tbi.g;
const CompileContext &cc = tbi.cc;
unordered_set<u32> done_core;
leftTable.resize(leftfixCount);
u32 lagIndex = 0;
for (RoseVertex v : vertices_range(g)) {
if (!g[v].left) {
continue;
}
assert(contains(bc.leftfix_info, v));
const left_build_info &lbi = bc.leftfix_info.at(v);
if (lbi.has_lookaround) {
continue;
}
assert(lbi.queue >= leftfixBeginQueue);
u32 left_index = lbi.queue - leftfixBeginQueue;
assert(left_index < leftfixCount);
/* seedy hack to make miracles more effective.
*
* TODO: make miracle seeking not depend on history length and have
* runt scans */
if (hasUsefulStops(lbi)) {
ENSURE_AT_LEAST(history,
(size_t)MIN(cc.grey.maxHistoryAvailable,
g[v].left.lag + 1
+ cc.grey.miracleHistoryBonus));
}
LeftNfaInfo &left = leftTable[left_index];
if (!contains(done_core, left_index)) {
done_core.insert(left_index);
memset(&left, 0, sizeof(left));
left.squash_mask = ~0ULL;
DEBUG_PRINTF("populating info for %u\n", left_index);
left.maxQueueLen = lbi.max_queuelen;
if (hasUsefulStops(lbi)) {
assert(lbi.stopAlphabet.size() == N_CHARS);
left.stopTable = bc.engine_blob.add_range(lbi.stopAlphabet);
}
assert(lbi.countingMiracleOffset || !lbi.countingMiracleCount);
left.countingMiracleOffset = lbi.countingMiracleOffset;
DEBUG_PRINTF("mw = %u\n", lbi.transient);
left.transient = verify_u8(lbi.transient);
left.infix = tbi.isNonRootSuccessor(v);
left.eager = contains(eager_queues, lbi.queue);
// A rose has a lagIndex if it's non-transient and we are
// streaming.
if (!lbi.transient && cc.streaming) {
assert(lagIndex < ROSE_OFFSET_INVALID);
left.lagIndex = lagIndex++;
} else {
left.lagIndex = ROSE_OFFSET_INVALID;
}
}
DEBUG_PRINTF("rose %u is %s\n", left_index,
left.infix ? "infix" : "prefix");
// Update squash mask.
left.squash_mask &= lbi.squash_mask;
// Update the max delay.
ENSURE_AT_LEAST(&left.maxLag, lbi.lag);
if (contains(g[v].literals, tbi.eod_event_literal_id)) {
left.eod_check = 1;
}
}
DEBUG_PRINTF("built %u roses with lag indices\n", lagIndex);
*laggedRoseCount = lagIndex;
}
static
RoseProgram makeLiteralProgram(const RoseBuildImpl &build, build_context &bc,
ProgramBuild &prog_build, u32 lit_id,
const vector<vector<RoseEdge>> &lit_edge_map,
bool is_anchored_replay_program) {
DEBUG_PRINTF("lit_id=%u\n", lit_id);
assert(lit_id < lit_edge_map.size());
return makeLiteralProgram(build, bc.leftfix_info, bc.suffixes,
bc.engine_info_by_queue, bc.roleStateIndices,
prog_build, lit_id, lit_edge_map.at(lit_id),
is_anchored_replay_program);
}
static
RoseProgram makeFragmentProgram(const RoseBuildImpl &build, build_context &bc,
ProgramBuild &prog_build,
const vector<u32> &lit_ids,
const vector<vector<RoseEdge>> &lit_edge_map) {
assert(!lit_ids.empty());
vector<RoseProgram> blocks;
for (const auto &lit_id : lit_ids) {
auto prog = makeLiteralProgram(build, bc, prog_build, lit_id,
lit_edge_map, false);
blocks.emplace_back(std::move(prog));
}
return assembleProgramBlocks(std::move(blocks));
}
/**
* \brief Returns a map from literal ID to a list of edges leading into
* vertices with that literal ID.
*/
static
vector<vector<RoseEdge>> findEdgesByLiteral(const RoseBuildImpl &build) {
vector<vector<RoseEdge>> lit_edge_map(build.literals.size());
const auto &g = build.g;
for (const auto &v : vertices_range(g)) {
for (const auto &lit_id : g[v].literals) {
assert(lit_id < lit_edge_map.size());
auto &edge_list = lit_edge_map.at(lit_id);
insert(&edge_list, edge_list.end(), in_edges(v, g));
}
}
// Sort edges in each edge list by (source, target) indices. This gives us
// less surprising ordering in program generation for a literal with many
// edges.
for (auto &edge_list : lit_edge_map) {
sort(begin(edge_list), end(edge_list), [&g](const RoseEdge &a,
const RoseEdge &b) {
return tie(g[source(a, g)].index, g[target(a, g)].index) <
tie(g[source(b, g)].index, g[target(b, g)].index);
});
}
return lit_edge_map;
}
static
bool isUsedLiteral(const RoseBuildImpl &build, u32 lit_id) {
assert(lit_id < build.literal_info.size());
const auto &info = build.literal_info[lit_id];
if (!info.vertices.empty()) {
return true;
}
for (const u32 &delayed_id : info.delayed_ids) {
assert(delayed_id < build.literal_info.size());
const rose_literal_info &delayed_info = build.literal_info[delayed_id];
if (!delayed_info.vertices.empty()) {
return true;
}
}
DEBUG_PRINTF("literal %u has no refs\n", lit_id);
return false;
}
static
rose_literal_id getFragment(rose_literal_id lit) {
if (lit.s.length() > ROSE_SHORT_LITERAL_LEN_MAX) {
// Trim to last ROSE_SHORT_LITERAL_LEN_MAX bytes.
lit.s.erase(0, lit.s.length() - ROSE_SHORT_LITERAL_LEN_MAX);
}
DEBUG_PRINTF("fragment: %s\n", dumpString(lit.s).c_str());
return lit;
}
static
vector<LitFragment> groupByFragment(const RoseBuildImpl &build) {
vector<LitFragment> fragments;
u32 frag_id = 0;
struct FragmentInfo {
vector<u32> lit_ids;
rose_group groups = 0;
};
map<rose_literal_id, FragmentInfo> frag_info;
for (u32 lit_id = 0; lit_id < build.literals.size(); lit_id++) {
const auto &lit = build.literals.at(lit_id);
const auto &info = build.literal_info.at(lit_id);
if (!isUsedLiteral(build, lit_id)) {
DEBUG_PRINTF("lit %u is unused\n", lit_id);
continue;
}
if (lit.table == ROSE_EVENT) {
DEBUG_PRINTF("lit %u is an event\n", lit_id);
continue;
}
auto groups = info.group_mask;
if (lit.s.length() < ROSE_SHORT_LITERAL_LEN_MAX) {
fragments.emplace_back(frag_id, lit.s, groups, lit_id);
frag_id++;
continue;
}
DEBUG_PRINTF("fragment candidate: lit_id=%u %s\n", lit_id,
dumpString(lit.s).c_str());
auto &fi = frag_info[getFragment(lit)];
fi.lit_ids.emplace_back(lit_id);
fi.groups |= groups;
}
for (auto &m : frag_info) {
auto &lit = m.first;
auto &fi = m.second;
DEBUG_PRINTF("frag %s -> ids: %s\n", dumpString(m.first.s).c_str(),
as_string_list(fi.lit_ids).c_str());
fragments.emplace_back(frag_id, lit.s, fi.groups, std::move(fi.lit_ids));
frag_id++;
assert(frag_id == fragments.size());
}
return fragments;
}
static
void buildIncludedIdMap(unordered_map<u32, pair<u32, u8>> &includedIdMap,
const LitProto *litProto) {
if (!litProto) {
return;
}
const auto &proto = *litProto->hwlmProto;
for (const auto &lit : proto.lits) {
if (contains(includedIdMap, lit.id)) {
const auto &included_id = includedIdMap[lit.id].first;
const auto &squash = includedIdMap[lit.id].second;
// The squash behavior should be the same for the same literal
// in different literal matchers.
if (lit.included_id != included_id ||
lit.squash != squash) {
includedIdMap[lit.id] = make_pair(INVALID_LIT_ID, 0);
DEBUG_PRINTF("find different included info for the"
" same literal\n");
}
} else if (lit.included_id != INVALID_LIT_ID) {
includedIdMap[lit.id] = make_pair(lit.included_id, lit.squash);
} else {
includedIdMap[lit.id] = make_pair(INVALID_LIT_ID, 0);
}
}
}
static
void findInclusionGroups(vector<LitFragment> &fragments,
LitProto *fproto, LitProto *drproto,
LitProto *eproto, LitProto *sbproto) {
unordered_map<u32, pair<u32, u8>> includedIdMap;
unordered_map<u32, pair<u32, u8>> includedDelayIdMap;
buildIncludedIdMap(includedIdMap, fproto);
buildIncludedIdMap(includedDelayIdMap, drproto);
buildIncludedIdMap(includedIdMap, eproto);
buildIncludedIdMap(includedIdMap, sbproto);
size_t fragNum = fragments.size();
vector<u32> candidates;
for (size_t j = 0; j < fragNum; j++) {
DEBUG_PRINTF("frag id %lu\n", j);
u32 id = j;
if (contains(includedIdMap, id) ||
contains(includedDelayIdMap, id)) {
candidates.emplace_back(j);
DEBUG_PRINTF("find candidate\n");
}
}
for (const auto &c : candidates) {
auto &frag = fragments[c];
u32 id = c;
if (contains(includedIdMap, id) &&
includedIdMap[id].first != INVALID_LIT_ID) {
const auto &childId = includedIdMap[id];
frag.included_frag_id = childId.first;
frag.squash = childId.second;
DEBUG_PRINTF("frag id %u child frag id %u\n", c,
frag.included_frag_id);
}
if (contains(includedDelayIdMap, id) &&
includedDelayIdMap[id].first != INVALID_LIT_ID) {
const auto &childId = includedDelayIdMap[id];
frag.included_delay_frag_id = childId.first;
frag.delay_squash = childId.second;
DEBUG_PRINTF("delay frag id %u child frag id %u\n", c,
frag.included_delay_frag_id);
}
}
}
static
void buildFragmentPrograms(const RoseBuildImpl &build,
vector<LitFragment> &fragments,
build_context &bc, ProgramBuild &prog_build,
const vector<vector<RoseEdge>> &lit_edge_map) {
// Sort fragments based on literal length and case info to build
// included literal programs before their parent programs.
vector<LitFragment> ordered_fragments(fragments);
stable_sort(begin(ordered_fragments), end(ordered_fragments),
[](const LitFragment &a, const LitFragment &b) {
auto len1 = a.s.length();
auto caseful1 = !a.s.any_nocase();
auto len2 = b.s.length();
auto caseful2 = !b.s.any_nocase();
return tie(len1, caseful1) < tie(len2, caseful2);
});
for (auto &frag : ordered_fragments) {
auto &pfrag = fragments[frag.fragment_id];
DEBUG_PRINTF("frag_id=%u, lit_ids=[%s]\n", pfrag.fragment_id,
as_string_list(pfrag.lit_ids).c_str());
auto lit_prog = makeFragmentProgram(build, bc, prog_build,
pfrag.lit_ids, lit_edge_map);
if (pfrag.included_frag_id != INVALID_FRAG_ID &&
!lit_prog.empty()) {
auto &cfrag = fragments[pfrag.included_frag_id];
assert(pfrag.s.length() >= cfrag.s.length() &&
!pfrag.s.any_nocase() >= !cfrag.s.any_nocase());
u32 child_offset = cfrag.lit_program_offset;
DEBUG_PRINTF("child %u offset %u\n", cfrag.fragment_id,
child_offset);
addIncludedJumpProgram(lit_prog, child_offset, pfrag.squash);
}
pfrag.lit_program_offset = writeProgram(bc, std::move(lit_prog));
// We only do delayed rebuild in streaming mode.
if (!build.cc.streaming) {
continue;
}
auto rebuild_prog = makeDelayRebuildProgram(build, prog_build,
pfrag.lit_ids);
if (pfrag.included_delay_frag_id != INVALID_FRAG_ID &&
!rebuild_prog.empty()) {
auto &cfrag = fragments[pfrag.included_delay_frag_id];
assert(pfrag.s.length() >= cfrag.s.length() &&
!pfrag.s.any_nocase() >= !cfrag.s.any_nocase());
u32 child_offset = cfrag.delay_program_offset;
DEBUG_PRINTF("child %u offset %u\n", cfrag.fragment_id,
child_offset);
addIncludedJumpProgram(rebuild_prog, child_offset,
pfrag.delay_squash);
}
pfrag.delay_program_offset = writeProgram(bc, std::move(rebuild_prog));
}
}
static
void updateLitProtoProgramOffset(vector<LitFragment> &fragments,
LitProto &litProto, bool delay) {
auto &proto = *litProto.hwlmProto;
for (auto &lit : proto.lits) {
auto fragId = lit.id;
auto &frag = fragments[fragId];
if (delay) {
DEBUG_PRINTF("delay_program_offset:%u\n",
frag.delay_program_offset);
lit.id = frag.delay_program_offset;
} else {
DEBUG_PRINTF("lit_program_offset:%u\n",
frag.lit_program_offset);
lit.id = frag.lit_program_offset;
}
}
}
static
void updateLitProgramOffset(vector<LitFragment> &fragments,
LitProto *fproto, LitProto *drproto,
LitProto *eproto, LitProto *sbproto) {
if (fproto) {
updateLitProtoProgramOffset(fragments, *fproto, false);
}
if (drproto) {
updateLitProtoProgramOffset(fragments, *drproto, true);
}
if (eproto) {
updateLitProtoProgramOffset(fragments, *eproto, false);
}
if (sbproto) {
updateLitProtoProgramOffset(fragments, *sbproto, false);
}
}
/**
* \brief Build the interpreter programs for each literal.
*/
static
void buildLiteralPrograms(const RoseBuildImpl &build,
vector<LitFragment> &fragments, build_context &bc,
ProgramBuild &prog_build, LitProto *fproto,
LitProto *drproto, LitProto *eproto,
LitProto *sbproto) {
DEBUG_PRINTF("%zu fragments\n", fragments.size());
auto lit_edge_map = findEdgesByLiteral(build);
findInclusionGroups(fragments, fproto, drproto, eproto, sbproto);
buildFragmentPrograms(build, fragments, bc, prog_build, lit_edge_map);
// update literal program offsets for literal matcher prototypes
updateLitProgramOffset(fragments, fproto, drproto, eproto, sbproto);
}
/**
* \brief Write delay replay programs to the bytecode.
*
* Returns the offset of the beginning of the program array, and the number of
* programs.
*/
static
pair<u32, u32> writeDelayPrograms(const RoseBuildImpl &build,
const vector<LitFragment> &fragments,
build_context &bc,
ProgramBuild &prog_build) {
auto lit_edge_map = findEdgesByLiteral(build);
vector<u32> programs; // program offsets indexed by (delayed) lit id
unordered_map<u32, u32> cache; // program offsets we have already seen
for (const auto &frag : fragments) {
for (const u32 lit_id : frag.lit_ids) {
const auto &info = build.literal_info.at(lit_id);
for (const auto &delayed_lit_id : info.delayed_ids) {
DEBUG_PRINTF("lit id %u delay id %u\n", lit_id, delayed_lit_id);
auto prog = makeLiteralProgram(build, bc, prog_build,
delayed_lit_id, lit_edge_map,
false);
u32 offset = writeProgram(bc, std::move(prog));
u32 delay_id;
auto it = cache.find(offset);
if (it != end(cache)) {
delay_id = it->second;
DEBUG_PRINTF("reusing delay_id %u for offset %u\n",
delay_id, offset);
} else {
delay_id = verify_u32(programs.size());
programs.emplace_back(offset);
cache.emplace(offset, delay_id);
DEBUG_PRINTF("assigned new delay_id %u for offset %u\n",
delay_id, offset);
}
prog_build.delay_programs.emplace(delayed_lit_id, delay_id);
}
}
}
DEBUG_PRINTF("%zu delay programs\n", programs.size());
return {bc.engine_blob.add_range(programs), verify_u32(programs.size())};
}
/**
* \brief Write anchored replay programs to the bytecode.
*
* Returns the offset of the beginning of the program array, and the number of
* programs.
*/
static
pair<u32, u32> writeAnchoredPrograms(const RoseBuildImpl &build,
const vector<LitFragment> &fragments,
build_context &bc,
ProgramBuild &prog_build) {
auto lit_edge_map = findEdgesByLiteral(build);
vector<u32> programs; // program offsets indexed by anchored id
unordered_map<u32, u32> cache; // program offsets we have already seen
for (const auto &frag : fragments) {
for (const u32 lit_id : frag.lit_ids) {
const auto &lit = build.literals.at(lit_id);
if (lit.table != ROSE_ANCHORED) {
continue;
}
// If this anchored literal can never match past
// floatingMinLiteralMatchOffset, we will never have to record it.
if (findMaxOffset(build, lit_id)
<= prog_build.floatingMinLiteralMatchOffset) {
DEBUG_PRINTF("can never match after "
"floatingMinLiteralMatchOffset=%u\n",
prog_build.floatingMinLiteralMatchOffset);
continue;
}
auto prog = makeLiteralProgram(build, bc, prog_build, lit_id,
lit_edge_map, true);
u32 offset = writeProgram(bc, std::move(prog));
DEBUG_PRINTF("lit_id=%u -> anch prog at %u\n", lit_id, offset);
u32 anch_id;
auto it = cache.find(offset);
if (it != end(cache)) {
anch_id = it->second;
DEBUG_PRINTF("reusing anch_id %u for offset %u\n", anch_id,
offset);
} else {
anch_id = verify_u32(programs.size());
programs.emplace_back(offset);
cache.emplace(offset, anch_id);
DEBUG_PRINTF("assigned new anch_id %u for offset %u\n", anch_id,
offset);
}
prog_build.anchored_programs.emplace(lit_id, anch_id);
}
}
DEBUG_PRINTF("%zu anchored programs\n", programs.size());
return {bc.engine_blob.add_range(programs), verify_u32(programs.size())};
}
/**
* \brief Returns all reports used by output-exposed engines, for which we need
* to generate programs.
*/
static
set<ReportID> findEngineReports(const RoseBuildImpl &build) {
set<ReportID> reports;
// The small write engine uses these engine report programs.
insert(&reports, build.smwr.all_reports());
for (const auto &outfix : build.outfixes) {
insert(&reports, all_reports(outfix));
}
const auto &g = build.g;
for (auto v : vertices_range(g)) {
if (g[v].suffix) {
insert(&reports, all_reports(g[v].suffix));
}
}
DEBUG_PRINTF("%zu engine reports (of %zu)\n", reports.size(),
build.rm.numReports());
return reports;
}
static
pair<u32, u32> buildReportPrograms(const RoseBuildImpl &build,
build_context &bc) {
const auto reports = findEngineReports(build);
vector<u32> programs;
programs.reserve(reports.size());
for (ReportID id : reports) {
auto program = makeReportProgram(build, bc.needs_mpv_catchup, id);
u32 offset = writeProgram(bc, std::move(program));
programs.emplace_back(offset);
build.rm.setProgramOffset(id, offset);
DEBUG_PRINTF("program for report %u @ %u (%zu instructions)\n", id,
programs.back(), program.size());
}
u32 offset = bc.engine_blob.add_range(programs);
u32 count = verify_u32(programs.size());
return {offset, count};
}
static
bool hasEodAnchoredSuffix(const RoseBuildImpl &build) {
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (g[v].suffix && build.isInETable(v)) {
DEBUG_PRINTF("vertex %zu is in eod table and has a suffix\n",
g[v].index);
return true;
}
}
return false;
}
static
bool hasEodMatcher(const RoseBuildImpl &build) {
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (build.isInETable(v)) {
DEBUG_PRINTF("vertex %zu is in eod table\n", g[v].index);
return true;
}
}
return false;
}
static
void addEodAnchorProgram(const RoseBuildImpl &build, const build_context &bc,
ProgramBuild &prog_build, bool in_etable,
RoseProgram &program) {
const RoseGraph &g = build.g;
// Predecessor state id -> program block.
map<u32, RoseProgram> pred_blocks;
for (auto v : vertices_range(g)) {
if (!g[v].eod_accept) {
continue;
}
DEBUG_PRINTF("vertex %zu (with %zu preds) fires on EOD\n", g[v].index,
in_degree(v, g));
vector<RoseEdge> edge_list;
for (const auto &e : in_edges_range(v, g)) {
RoseVertex u = source(e, g);
if (build.isInETable(u) != in_etable) {
DEBUG_PRINTF("pred %zu %s in etable\n", g[u].index,
in_etable ? "is not" : "is");
continue;
}
if (canEagerlyReportAtEod(build, e)) {
DEBUG_PRINTF("already done report for vertex %zu\n",
g[u].index);
continue;
}
edge_list.emplace_back(e);
}
const bool multiple_preds = edge_list.size() > 1;
for (const auto &e : edge_list) {
RoseVertex u = source(e, g);
assert(contains(bc.roleStateIndices, u));
u32 pred_state = bc.roleStateIndices.at(u);
pred_blocks[pred_state].add_block(
makeEodAnchorProgram(build, prog_build, e, multiple_preds));
}
}
addPredBlocks(pred_blocks, bc.roleStateIndices.size(), program);
}
static
void addEodEventProgram(const RoseBuildImpl &build, build_context &bc,
ProgramBuild &prog_build, RoseProgram &program) {
if (build.eod_event_literal_id == MO_INVALID_IDX) {
return;
}
const RoseGraph &g = build.g;
const auto &lit_info = build.literal_info.at(build.eod_event_literal_id);
assert(lit_info.delayed_ids.empty());
assert(!lit_info.squash_group);
assert(!lit_info.requires_benefits);
// Collect all edges leading into EOD event literal vertices.
vector<RoseEdge> edge_list;
for (const auto &v : lit_info.vertices) {
for (const auto &e : in_edges_range(v, g)) {
edge_list.emplace_back(e);
}
}
// Sort edge list for determinism, prettiness.
sort(begin(edge_list), end(edge_list),
[&g](const RoseEdge &a, const RoseEdge &b) {
return tie(g[source(a, g)].index, g[target(a, g)].index) <
tie(g[source(b, g)].index, g[target(b, g)].index);
});
auto block = makeLiteralProgram(build, bc.leftfix_info, bc.suffixes,
bc.engine_info_by_queue,
bc.roleStateIndices, prog_build,
build.eod_event_literal_id, edge_list,
false);
program.add_block(std::move(block));
}
static
RoseProgram makeEodProgram(const RoseBuildImpl &build, build_context &bc,
ProgramBuild &prog_build, u32 eodNfaIterOffset) {
RoseProgram program;
addEodEventProgram(build, bc, prog_build, program);
addEnginesEodProgram(eodNfaIterOffset, program);
addEodAnchorProgram(build, bc, prog_build, false, program);
if (hasEodMatcher(build)) {
addMatcherEodProgram(program);
}
addEodAnchorProgram(build, bc, prog_build, true, program);
if (hasEodAnchoredSuffix(build)) {
addSuffixesEodProgram(program);
}
return program;
}
static
RoseProgram makeFlushCombProgram(const RoseEngine &t) {
RoseProgram program;
if (t.ckeyCount) {
addFlushCombinationProgram(program);
}
return program;
}
static
RoseProgram makeLastFlushCombProgram(const RoseEngine &t) {
RoseProgram program;
if (t.ckeyCount) {
addLastFlushCombinationProgram(program);
}
return program;
}
static
u32 history_required(const rose_literal_id &key) {
if (key.msk.size() < key.s.length()) {
return key.elength() - 1;
} else {
return key.msk.size() + key.delay - 1;
}
}
static
void fillMatcherDistances(const RoseBuildImpl &build, RoseEngine *engine) {
const RoseGraph &g = build.g;
engine->floatingDistance = 0;
engine->floatingMinDistance = ROSE_BOUND_INF;
engine->anchoredDistance = 0;
engine->maxFloatingDelayedMatch = 0;
u32 delayRebuildLength = 0;
engine->smallBlockDistance = 0;
for (auto v : vertices_range(g)) {
if (g[v].literals.empty()) {
continue;
}
assert(g[v].min_offset < ROSE_BOUND_INF); // cannot == ROSE_BOUND_INF
assert(g[v].min_offset <= g[v].max_offset);
for (u32 lit_id : g[v].literals) {
const rose_literal_id &key = build.literals.at(lit_id);
u32 max_d = g[v].max_offset;
u32 min_d = g[v].min_offset;
DEBUG_PRINTF("checking %u: elen %zu min/max %u/%u\n", lit_id,
key.elength_including_mask(), min_d, max_d);
if (build.literal_info[lit_id].undelayed_id != lit_id) {
/* this is a delayed match; need to update delay properties */
/* TODO: can delayed literals ever be in another table ? */
if (key.table == ROSE_FLOATING) {
ENSURE_AT_LEAST(&engine->maxFloatingDelayedMatch, max_d);
ENSURE_AT_LEAST(&delayRebuildLength, history_required(key));
}
}
/* for the FloatingDistances we need the true max depth of the
string */
if (max_d != ROSE_BOUND_INF && key.table != ROSE_ANCHORED) {
assert(max_d >= key.delay);
max_d -= key.delay;
}
switch (key.table) {
case ROSE_FLOATING:
ENSURE_AT_LEAST(&engine->floatingDistance, max_d);
if (min_d >= key.elength_including_mask()) {
LIMIT_TO_AT_MOST(&engine->floatingMinDistance,
min_d - (u32)key.elength_including_mask());
} else {
/* overlapped literals from rose + anchored table can
* cause us to underflow due to sloppiness in
* estimates */
engine->floatingMinDistance = 0;
}
break;
case ROSE_ANCHORED_SMALL_BLOCK:
ENSURE_AT_LEAST(&engine->smallBlockDistance, max_d);
break;
case ROSE_ANCHORED:
ENSURE_AT_LEAST(&engine->anchoredDistance, max_d);
break;
case ROSE_EOD_ANCHORED:
// EOD anchored literals are in another table, so they
// don't contribute to these calculations.
break;
case ROSE_EVENT:
break; // Not a real literal.
}
}
}
// Floating literals go in the small block table too.
ENSURE_AT_LEAST(&engine->smallBlockDistance, engine->floatingDistance);
// Clipped by its very nature.
LIMIT_TO_AT_MOST(&engine->smallBlockDistance, 32U);
engine->delayRebuildLength = delayRebuildLength;
DEBUG_PRINTF("anchoredDistance = %u\n", engine->anchoredDistance);
DEBUG_PRINTF("floatingDistance = %u\n", engine->floatingDistance);
DEBUG_PRINTF("smallBlockDistance = %u\n", engine->smallBlockDistance);
assert(engine->anchoredDistance <= build.cc.grey.maxAnchoredRegion);
/* anchored->floating squash literals may lower floating min distance */
/* TODO: find actual value */
if (!engine->anchoredDistance) {
return;
}
}
static
u32 writeEagerQueueIter(const set<u32> &eager, u32 leftfixBeginQueue,
u32 queue_count, RoseEngineBlob &engine_blob) {
if (eager.empty()) {
return 0;
}
vector<u32> vec;
for (u32 q : eager) {
assert(q >= leftfixBeginQueue);
vec.emplace_back(q - leftfixBeginQueue);
}
auto iter = mmbBuildSparseIterator(vec, queue_count - leftfixBeginQueue);
return engine_blob.add_iterator(iter);
}
static
bytecode_ptr<RoseEngine> addSmallWriteEngine(const RoseBuildImpl &build,
const RoseResources &res,
bytecode_ptr<RoseEngine> rose) {
assert(rose);
if (roseIsPureLiteral(rose.get())) {
DEBUG_PRINTF("pure literal case, not adding smwr\n");
return rose;
}
u32 qual = roseQuality(res, rose.get());
auto smwr_engine = build.smwr.build(qual);
if (!smwr_engine) {
DEBUG_PRINTF("no smwr built\n");
return rose;
}
const size_t mainSize = rose.size();
const size_t smallWriteSize = smwr_engine.size();
DEBUG_PRINTF("adding smwr engine, size=%zu\n", smallWriteSize);
const size_t smwrOffset = ROUNDUP_CL(mainSize);
const size_t newSize = smwrOffset + smallWriteSize;
auto rose2 = make_zeroed_bytecode_ptr<RoseEngine>(newSize, 64);
char *ptr = (char *)rose2.get();
memcpy(ptr, rose.get(), mainSize);
memcpy(ptr + smwrOffset, smwr_engine.get(), smallWriteSize);
rose2->smallWriteOffset = verify_u32(smwrOffset);
rose2->size = verify_u32(newSize);
return rose2;
}
/**
* \brief Returns the pair (number of literals, max length) for all real
* literals in the floating table that are in-use.
*/
static
pair<size_t, size_t> floatingCountAndMaxLen(const RoseBuildImpl &build) {
size_t num = 0;
size_t max_len = 0;
for (u32 id = 0; id < build.literals.size(); id++) {
const rose_literal_id &lit = build.literals.at(id);
if (lit.table != ROSE_FLOATING) {
continue;
}
if (lit.delay) {
// Skip delayed literals, so that we only count the undelayed
// version that ends up in the HWLM table.
continue;
}
if (!isUsedLiteral(build, id)) {
continue;
}
num++;
max_len = max(max_len, lit.s.length());
}
DEBUG_PRINTF("%zu floating literals with max_len=%zu\n", num, max_len);
return {num, max_len};
}
size_t calcLongLitThreshold(const RoseBuildImpl &build,
const size_t historyRequired) {
const auto &cc = build.cc;
// In block mode, we don't have history, so we don't need long literal
// support and can just use "medium-length" literal confirm. TODO: we could
// specialize further and have a block mode literal confirm instruction.
if (!cc.streaming) {
return SIZE_MAX;
}
size_t longLitLengthThreshold = ROSE_LONG_LITERAL_THRESHOLD_MIN;
// Expand to size of history we've already allocated. Note that we need N-1
// bytes of history to match a literal of length N.
longLitLengthThreshold = max(longLitLengthThreshold, historyRequired + 1);
// If we only have one literal, allow for a larger value in order to avoid
// building a long literal table for a trivial Noodle case that we could
// fit in history.
const auto num_len = floatingCountAndMaxLen(build);
if (num_len.first == 1) {
if (num_len.second > longLitLengthThreshold) {
DEBUG_PRINTF("expanding for single literal of length %zu\n",
num_len.second);
longLitLengthThreshold = num_len.second;
}
}
// Clamp to max history available.
longLitLengthThreshold =
min(longLitLengthThreshold, size_t{cc.grey.maxHistoryAvailable} + 1);
return longLitLengthThreshold;
}
static
map<left_id, u32> makeLeftQueueMap(const RoseGraph &g,
const map<RoseVertex, left_build_info> &leftfix_info) {
map<left_id, u32> lqm;
for (const auto &e : leftfix_info) {
if (e.second.has_lookaround) {
continue;
}
DEBUG_PRINTF("%zu: using queue %u\n", g[e.first].index, e.second.queue);
assert(e.second.queue != INVALID_QUEUE);
left_id left(g[e.first].left);
assert(!contains(lqm, left) || lqm[left] == e.second.queue);
lqm[left] = e.second.queue;
}
return lqm;
}
bytecode_ptr<RoseEngine> RoseBuildImpl::buildFinalEngine(u32 minWidth) {
// We keep all our offsets, counts etc. in a prototype RoseEngine which we
// will copy into the real one once it is allocated: we can't do this
// until we know how big it will be.
RoseEngine proto;
memset(&proto, 0, sizeof(proto));
// Set scanning mode.
if (!cc.streaming) {
proto.mode = HS_MODE_BLOCK;
} else if (cc.vectored) {
proto.mode = HS_MODE_VECTORED;
} else {
proto.mode = HS_MODE_STREAM;
}
DerivedBoundaryReports dboundary(boundary);
size_t historyRequired = calcHistoryRequired(); // Updated by HWLM.
size_t longLitLengthThreshold = calcLongLitThreshold(*this,
historyRequired);
DEBUG_PRINTF("longLitLengthThreshold=%zu\n", longLitLengthThreshold);
vector<LitFragment> fragments = groupByFragment(*this);
auto anchored_dfas = buildAnchoredDfas(*this, fragments);
build_context bc;
u32 floatingMinLiteralMatchOffset
= findMinFloatingLiteralMatch(*this, anchored_dfas);
recordResources(bc.resources, *this, anchored_dfas, fragments);
bc.needs_mpv_catchup = needsMpvCatchup(*this);
makeBoundaryPrograms(*this, bc, boundary, dboundary, proto.boundary);
tie(proto.reportProgramOffset, proto.reportProgramCount) =
buildReportPrograms(*this, bc);
// Build NFAs
bool mpv_as_outfix;
prepMpv(*this, bc, &historyRequired, &mpv_as_outfix);
proto.outfixBeginQueue = qif.allocated_count();
if (!prepOutfixes(*this, bc, &historyRequired)) {
return nullptr;
}
proto.outfixEndQueue = qif.allocated_count();
proto.leftfixBeginQueue = proto.outfixEndQueue;
set<u32> no_retrigger_queues;
set<u32> eager_queues;
/* Note: buildNfas may reduce the lag for vertices that have prefixes */
if (!buildNfas(*this, bc, qif, &no_retrigger_queues, &eager_queues,
&proto.leftfixBeginQueue)) {
return nullptr;
}
u32 eodNfaIterOffset = buildEodNfaIterator(bc, proto.leftfixBeginQueue);
buildCountingMiracles(bc);
u32 queue_count = qif.allocated_count(); /* excludes anchored matcher q;
* som rev nfas */
if (queue_count > cc.grey.limitRoseEngineCount) {
throw ResourceLimitError();
}
// Enforce role table resource limit.
if (num_vertices(g) > cc.grey.limitRoseRoleCount) {
throw ResourceLimitError();
}
bc.roleStateIndices = assignStateIndices(*this);
u32 laggedRoseCount = 0;
vector<LeftNfaInfo> leftInfoTable;
buildLeftInfoTable(*this, bc, eager_queues, proto.leftfixBeginQueue,
queue_count - proto.leftfixBeginQueue, leftInfoTable,
&laggedRoseCount, &historyRequired);
// Information only needed for program construction.
ProgramBuild prog_build(floatingMinLiteralMatchOffset,
longLitLengthThreshold, needsCatchup(*this));
prog_build.vertex_group_map = getVertexGroupMap(*this);
prog_build.squashable_groups = getSquashableGroups(*this);
tie(proto.anchoredProgramOffset, proto.anchored_count) =
writeAnchoredPrograms(*this, fragments, bc, prog_build);
tie(proto.delayProgramOffset, proto.delay_count) =
writeDelayPrograms(*this, fragments, bc, prog_build);
// Build floating HWLM matcher prototype.
rose_group fgroups = 0;
auto fproto = buildFloatingMatcherProto(*this, fragments,
longLitLengthThreshold,
&fgroups, &historyRequired);
// Build delay rebuild HWLM matcher prototype.
auto drproto = buildDelayRebuildMatcherProto(*this, fragments,
longLitLengthThreshold);
// Build EOD-anchored HWLM matcher prototype.
auto eproto = buildEodAnchoredMatcherProto(*this, fragments);
// Build small-block HWLM matcher prototype.
auto sbproto = buildSmallBlockMatcherProto(*this, fragments);
buildLiteralPrograms(*this, fragments, bc, prog_build, fproto.get(),
drproto.get(), eproto.get(), sbproto.get());
auto eod_prog = makeEodProgram(*this, bc, prog_build, eodNfaIterOffset);
proto.eodProgramOffset = writeProgram(bc, std::move(eod_prog));
size_t longLitStreamStateRequired = 0;
proto.longLitTableOffset
= buildLongLiteralTable(*this, bc.engine_blob, bc.longLiterals,
longLitLengthThreshold, &historyRequired,
&longLitStreamStateRequired);
proto.lastByteHistoryIterOffset = buildLastByteIter(g, bc);
proto.eagerIterOffset = writeEagerQueueIter(
eager_queues, proto.leftfixBeginQueue, queue_count, bc.engine_blob);
addSomRevNfas(bc, proto, ssm);
writeDkeyInfo(rm, bc.engine_blob, proto);
writeLeftInfo(bc.engine_blob, proto, leftInfoTable);
writeLogicalInfo(rm, bc.engine_blob, proto);
auto flushComb_prog = makeFlushCombProgram(proto);
proto.flushCombProgramOffset = writeProgram(bc, std::move(flushComb_prog));
auto lastFlushComb_prog = makeLastFlushCombProgram(proto);
proto.lastFlushCombProgramOffset =
writeProgram(bc, std::move(lastFlushComb_prog));
// Build anchored matcher.
auto atable = buildAnchoredMatcher(*this, fragments, anchored_dfas);
if (atable) {
proto.amatcherOffset = bc.engine_blob.add(atable);
}
// Build floating HWLM matcher.
auto ftable = buildHWLMMatcher(*this, fproto.get());
if (ftable) {
proto.fmatcherOffset = bc.engine_blob.add(ftable);
bc.resources.has_floating = true;
}
// Build delay rebuild HWLM matcher.
auto drtable = buildHWLMMatcher(*this, drproto.get());
if (drtable) {
proto.drmatcherOffset = bc.engine_blob.add(drtable);
}
// Build EOD-anchored HWLM matcher.
auto etable = buildHWLMMatcher(*this, eproto.get());
if (etable) {
proto.ematcherOffset = bc.engine_blob.add(etable);
}
// Build small-block HWLM matcher.
auto sbtable = buildHWLMMatcher(*this, sbproto.get());
if (sbtable) {
proto.sbmatcherOffset = bc.engine_blob.add(sbtable);
}
proto.activeArrayCount = proto.leftfixBeginQueue;
proto.anchorStateSize = atable ? anchoredStateSize(*atable) : 0;
DEBUG_PRINTF("rose history required %zu\n", historyRequired);
assert(!cc.streaming || historyRequired <= cc.grey.maxHistoryAvailable);
// Some SOM schemes (reverse NFAs, for example) may require more history.
historyRequired = max(historyRequired, (size_t)ssm.somHistoryRequired());
assert(!cc.streaming || historyRequired <=
max(cc.grey.maxHistoryAvailable, cc.grey.somMaxRevNfaLength));
fillStateOffsets(*this, bc.roleStateIndices.size(), proto.anchorStateSize,
proto.activeArrayCount, proto.activeLeftCount,
laggedRoseCount, longLitStreamStateRequired,
historyRequired, &proto.stateOffsets);
// Write in NfaInfo structures. This will also update state size
// information in proto.
writeNfaInfo(*this, bc, proto, no_retrigger_queues);
scatter_plan_raw state_scatter = buildStateScatterPlan(
sizeof(u8), bc.roleStateIndices.size(), proto.activeLeftCount,
proto.rosePrefixCount, proto.stateOffsets, cc.streaming,
proto.activeArrayCount, proto.outfixBeginQueue, proto.outfixEndQueue);
u32 currOffset; /* relative to base of RoseEngine */
if (!bc.engine_blob.empty()) {
currOffset = bc.engine_blob.base_offset + bc.engine_blob.size();
} else {
currOffset = sizeof(RoseEngine);
}
currOffset = ROUNDUP_CL(currOffset);
DEBUG_PRINTF("currOffset %u\n", currOffset);
currOffset = ROUNDUP_N(currOffset, alignof(scatter_unit_u64a));
u32 state_scatter_aux_offset = currOffset;
currOffset += aux_size(state_scatter);
proto.historyRequired = verify_u32(historyRequired);
proto.ekeyCount = rm.numEkeys();
proto.somHorizon = ssm.somPrecision();
proto.somLocationCount = ssm.numSomSlots();
proto.somLocationFatbitSize = fatbit_size(proto.somLocationCount);
proto.runtimeImpl = pickRuntimeImpl(*this, bc.resources,
proto.outfixEndQueue);
proto.mpvTriggeredByLeaf = anyEndfixMpvTriggers(*this);
proto.queueCount = queue_count;
proto.activeQueueArraySize = fatbit_size(queue_count);
proto.handledKeyCount = prog_build.handledKeys.size();
proto.handledKeyFatbitSize = fatbit_size(proto.handledKeyCount);
proto.rolesWithStateCount = bc.roleStateIndices.size();
proto.initMpvNfa = mpv_as_outfix ? 0 : MO_INVALID_IDX;
proto.stateSize = mmbit_size(bc.roleStateIndices.size());
proto.delay_fatbit_size = fatbit_size(proto.delay_count);
proto.anchored_fatbit_size = fatbit_size(proto.anchored_count);
// The Small Write matcher is (conditionally) added to the RoseEngine in
// another pass by the caller. Set to zero (meaning no SMWR engine) for
// now.
proto.smallWriteOffset = 0;
proto.amatcherMinWidth = findMinWidth(*this, ROSE_ANCHORED);
proto.fmatcherMinWidth = findMinWidth(*this, ROSE_FLOATING);
proto.eodmatcherMinWidth = findMinWidth(*this, ROSE_EOD_ANCHORED);
proto.amatcherMaxBiAnchoredWidth = findMaxBAWidth(*this, ROSE_ANCHORED);
proto.fmatcherMaxBiAnchoredWidth = findMaxBAWidth(*this, ROSE_FLOATING);
proto.minWidth = hasBoundaryReports(boundary) ? 0 : minWidth;
proto.minWidthExcludingBoundaries = minWidth;
proto.floatingMinLiteralMatchOffset = floatingMinLiteralMatchOffset;
proto.maxBiAnchoredWidth = findMaxBAWidth(*this);
proto.noFloatingRoots = hasNoFloatingRoots();
proto.requiresEodCheck = hasEodAnchors(*this, bc, proto.outfixEndQueue);
proto.hasOutfixesInSmallBlock = hasNonSmallBlockOutfix(outfixes);
proto.canExhaust = rm.patternSetCanExhaust();
proto.hasSom = hasSom;
/* populate anchoredDistance, floatingDistance, floatingMinDistance, etc */
fillMatcherDistances(*this, &proto);
proto.initialGroups = getInitialGroups();
proto.floating_group_mask = fgroups;
proto.totalNumLiterals = verify_u32(literal_info.size());
proto.asize = verify_u32(atable.size());
proto.ematcherRegionSize = ematcher_region_size;
proto.size = currOffset;
// Time to allocate the real RoseEngine structure, at cacheline alignment.
auto engine = make_zeroed_bytecode_ptr<RoseEngine>(currOffset, 64);
assert(engine); // will have thrown bad_alloc otherwise.
// Copy in our prototype engine data.
memcpy(engine.get(), &proto, sizeof(proto));
write_out(&engine->state_init, (char *)engine.get(), state_scatter,
state_scatter_aux_offset);
// Copy in the engine blob.
bc.engine_blob.write_bytes(engine.get());
// Add a small write engine if appropriate.
engine = addSmallWriteEngine(*this, bc.resources, std::move(engine));
DEBUG_PRINTF("rose done %p\n", engine.get());
dumpRose(*this, fragments, makeLeftQueueMap(g, bc.leftfix_info),
bc.suffixes, engine.get());
return engine;
}
} // namespace ue2