vectorscan/src/rose/rose_build_bytecode.cpp
Justin Viiret 07a6b6510c rose/hwlm: limit literals to eight bytes
Rework HWLM to work over literals of eight bytes ("medium length"),
doing confirm in the Rose interpreter.
2017-04-26 14:41:29 +10:00

5627 lines
183 KiB
C++

/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "rose_build_impl.h"
#include "ue2common.h"
#include "grey.h"
#include "hs_compile.h" // for HS_MODE_*
#include "rose_build_add_internal.h"
#include "rose_build_anchored.h"
#include "rose_build_engine_blob.h"
#include "rose_build_exclusive.h"
#include "rose_build_groups.h"
#include "rose_build_infix.h"
#include "rose_build_long_lit.h"
#include "rose_build_lookaround.h"
#include "rose_build_matchers.h"
#include "rose_build_program.h"
#include "rose_build_scatter.h"
#include "rose_build_util.h"
#include "rose_build_width.h"
#include "rose_internal.h"
#include "rose_program.h"
#include "hwlm/hwlm.h" /* engine types */
#include "hwlm/hwlm_literal.h"
#include "nfa/castlecompile.h"
#include "nfa/goughcompile.h"
#include "nfa/mcclellancompile.h"
#include "nfa/mcclellancompile_util.h"
#include "nfa/mcsheng_compile.h"
#include "nfa/nfa_api_queue.h"
#include "nfa/nfa_build_util.h"
#include "nfa/nfa_internal.h"
#include "nfa/shengcompile.h"
#include "nfa/shufticompile.h"
#include "nfa/tamaramacompile.h"
#include "nfa/tamarama_internal.h"
#include "nfagraph/ng_execute.h"
#include "nfagraph/ng_holder.h"
#include "nfagraph/ng_lbr.h"
#include "nfagraph/ng_limex.h"
#include "nfagraph/ng_mcclellan.h"
#include "nfagraph/ng_repeat.h"
#include "nfagraph/ng_reports.h"
#include "nfagraph/ng_revacc.h"
#include "nfagraph/ng_stop.h"
#include "nfagraph/ng_util.h"
#include "nfagraph/ng_width.h"
#include "smallwrite/smallwrite_build.h"
#include "som/slot_manager.h"
#include "util/alloc.h"
#include "util/bitutils.h"
#include "util/boundary_reports.h"
#include "util/charreach.h"
#include "util/charreach_util.h"
#include "util/compile_context.h"
#include "util/compile_error.h"
#include "util/container.h"
#include "util/fatbit_build.h"
#include "util/graph_range.h"
#include "util/make_unique.h"
#include "util/multibit_build.h"
#include "util/order_check.h"
#include "util/popcount.h"
#include "util/queue_index_factory.h"
#include "util/report_manager.h"
#include "util/ue2string.h"
#include "util/verify_types.h"
#include <algorithm>
#include <array>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <vector>
#include <utility>
#include <boost/range/adaptor/map.hpp>
using namespace std;
using boost::adaptors::map_values;
using boost::adaptors::map_keys;
namespace ue2 {
/* The rose bytecode construction is a giant cesspit.
*
* One issue is that bits and pieces are constructed piecemeal and these
* sections are used by later in the construction process. Until the very end of
* the construction there is no useful invariant holding for the bytecode. This
* makes reordering / understanding the construction process awkward as there
* are hidden dependencies everywhere. We should start by shifting towards
* a model where the bytecode is only written to during the construction so that
* the dependencies can be understood by us mere mortals.
*
* I am sure the construction process is also bad from a number of other
* standpoints as well but the can come later.
*
* Actually, one other annoying issues the plague of member functions on the
* impl which tightly couples the internals of this file to all the other rose
* build files. Need more egregiously awesome free functions.
*/
namespace /* anon */ {
struct left_build_info {
// Constructor for an engine implementation.
left_build_info(u32 q, u32 l, u32 t, rose_group sm,
const std::vector<u8> &stops, u32 max_ql, u8 cm_count,
const CharReach &cm_cr)
: queue(q), lag(l), transient(t), squash_mask(sm), stopAlphabet(stops),
max_queuelen(max_ql), countingMiracleCount(cm_count),
countingMiracleReach(cm_cr) {}
// Constructor for a lookaround implementation.
explicit left_build_info(const vector<LookEntry> &look)
: has_lookaround(true), lookaround(look) {}
u32 queue = 0; /* uniquely idents the left_build_info */
u32 lag = 0;
u32 transient = 0;
rose_group squash_mask = ~rose_group{0};
vector<u8> stopAlphabet;
u32 max_queuelen = 0;
u8 countingMiracleCount = 0;
CharReach countingMiracleReach;
u32 countingMiracleOffset = 0; /* populated later when laying out bytecode */
bool has_lookaround = false;
vector<LookEntry> lookaround; // alternative implementation to the NFA
};
/**
* \brief Structure tracking which resources are used by this Rose instance at
* runtime.
*
* We use this to control how much initialisation we need to do at the
* beginning of a stream/block at runtime.
*/
struct RoseResources {
bool has_outfixes = false;
bool has_suffixes = false;
bool has_leftfixes = false;
bool has_literals = false;
bool has_states = false;
bool checks_groups = false;
bool has_lit_delay = false;
bool has_lit_check = false; // long literal support
bool has_anchored = false;
bool has_eod = false;
};
struct build_context : boost::noncopyable {
/** \brief information about engines to the left of a vertex */
map<RoseVertex, left_build_info> leftfix_info;
/** \brief mapping from suffix to queue index. */
map<suffix_id, u32> suffixes;
/** \brief Mapping from vertex to key, for vertices with a
* CHECK_NOT_HANDLED instruction. */
ue2::unordered_map<RoseVertex, u32> handledKeys;
/** \brief Number of roles with a state bit.
*
* This is set by assignStateIndices() and should be constant throughout
* the rest of the compile.
*/
size_t numStates = 0;
/** \brief Simple cache of programs written to engine blob, used for
* deduplication. */
ue2::unordered_map<RoseProgram, u32, RoseProgramHash,
RoseProgramEquivalence> program_cache;
/** \brief LookEntry list cache, so that we don't have to go scanning
* through the full list to find cases we've used already. */
ue2::unordered_map<vector<LookEntry>, size_t> lookaround_cache;
/** \brief Lookaround table for Rose roles. */
vector<LookEntry> lookaround;
/** \brief State indices, for those roles that have them. */
ue2::unordered_map<RoseVertex, u32> roleStateIndices;
/** \brief Mapping from queue index to bytecode offset for built engines
* that have already been pushed into the engine_blob. */
ue2::unordered_map<u32, u32> engineOffsets;
/** \brief Literal programs, indexed by final_id, after they have been
* written to the engine_blob. */
vector<u32> litPrograms;
/** \brief List of long literals (ones with CHECK_LONG_LIT instructions)
* that need hash table support. */
vector<ue2_case_string> longLiterals;
/** \brief Minimum offset of a match from the floating table. */
u32 floatingMinLiteralMatchOffset = 0;
/** \brief Long literal length threshold, used in streaming mode. */
size_t longLitLengthThreshold = 0;
/** \brief Contents of the Rose bytecode immediately following the
* RoseEngine. */
RoseEngineBlob engine_blob;
/** \brief True if reports need CATCH_UP instructions, to catch up anchored
* matches, suffixes, outfixes etc. */
bool needs_catchup = false;
/** \brief True if this Rose engine has an MPV engine. */
bool needs_mpv_catchup = false;
/** \brief Resources in use (tracked as programs are added). */
RoseResources resources;
/** \brief Mapping from every vertex to the groups that must be on for that
* vertex to be reached. */
ue2::unordered_map<RoseVertex, rose_group> vertex_group_map;
/** \brief Global bitmap of groups that can be squashed. */
rose_group squashable_groups = 0;
};
/** \brief subengine info including built engine and
* corresponding triggering rose vertices */
struct ExclusiveSubengine {
aligned_unique_ptr<NFA> nfa;
vector<RoseVertex> vertices;
};
/** \brief exclusive info to build tamarama */
struct ExclusiveInfo {
// subengine info
vector<ExclusiveSubengine> subengines;
// all the report in tamarama
set<ReportID> reports;
// assigned queue id
u32 queue;
// workaround a deficiency in the standard (as explained by STL @ MS) we
// need to tell the compiler that ExclusiveInfo is moveable-only by
// deleting the copy cons so that vector doesn't get confused
ExclusiveInfo() = default;
ExclusiveInfo(const ExclusiveInfo &) = delete;
ExclusiveInfo(ExclusiveInfo &&) = default;
};
}
static
const NFA *get_nfa_from_blob(const build_context &bc, u32 qi) {
assert(contains(bc.engineOffsets, qi));
u32 nfa_offset = bc.engineOffsets.at(qi);
assert(nfa_offset >= bc.engine_blob.base_offset);
const NFA *n = (const NFA *)(bc.engine_blob.data() + nfa_offset -
bc.engine_blob.base_offset);
assert(n->queueIndex == qi);
return n;
}
static
const NFA *add_nfa_to_blob(build_context &bc, NFA &nfa) {
u32 qi = nfa.queueIndex;
u32 nfa_offset = bc.engine_blob.add(nfa, nfa.length);
DEBUG_PRINTF("added nfa qi=%u, type=%u, length=%u at offset=%u\n", qi,
nfa.type, nfa.length, nfa_offset);
assert(!contains(bc.engineOffsets, qi));
bc.engineOffsets.emplace(qi, nfa_offset);
const NFA *n = get_nfa_from_blob(bc, qi);
assert(memcmp(&nfa, n, nfa.length) == 0);
return n;
}
static
u32 countRosePrefixes(const vector<LeftNfaInfo> &roses) {
u32 num = 0;
for (const auto &r : roses) {
if (!r.infix) {
num++;
}
}
return num;
}
/**
* \brief True if this Rose engine needs to run a catch up whenever a report is
* generated.
*
* Catch up is necessary if there are output-exposed engines (suffixes,
* outfixes) or an anchored table (anchored literals, acyclic DFAs).
*/
static
bool needsCatchup(const RoseBuildImpl &build,
const vector<raw_dfa> &anchored_dfas) {
if (!build.outfixes.empty()) {
DEBUG_PRINTF("has outfixes\n");
return true;
}
if (!anchored_dfas.empty()) {
DEBUG_PRINTF("has anchored dfas\n");
return true;
}
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (build.root == v) {
continue;
}
if (build.anchored_root == v) {
continue;
}
if (g[v].suffix) {
DEBUG_PRINTF("vertex %zu has suffix\n", g[v].index);
return true;
}
}
DEBUG_PRINTF("no need for catch-up on report\n");
return false;
}
static
bool isPureFloating(const RoseResources &resources, const CompileContext &cc) {
if (resources.has_outfixes || resources.has_suffixes ||
resources.has_leftfixes) {
DEBUG_PRINTF("has engines\n");
return false;
}
if (resources.has_anchored) {
DEBUG_PRINTF("has anchored matcher\n");
return false;
}
if (resources.has_eod) {
DEBUG_PRINTF("has eod work to do\n");
return false;
}
if (resources.has_states) {
DEBUG_PRINTF("has states\n");
return false;
}
if (resources.has_lit_delay) {
DEBUG_PRINTF("has delayed literals\n");
return false;
}
if (cc.streaming && resources.has_lit_check) {
DEBUG_PRINTF("has long literals in streaming mode, which needs "
"long literal table support\n");
return false;
}
if (resources.checks_groups) {
DEBUG_PRINTF("has group checks\n");
return false;
}
DEBUG_PRINTF("pure floating literals\n");
return true;
}
static
bool isSingleOutfix(const RoseBuildImpl &tbi) {
for (auto v : vertices_range(tbi.g)) {
if (tbi.isAnyStart(v)) {
continue;
}
if (tbi.hasLiteralInTable(v, ROSE_ANCHORED_SMALL_BLOCK)) {
continue;
}
DEBUG_PRINTF("has role\n");
return false;
}
if (tbi.ssm.numSomSlots()) {
return false;
}
if (!tbi.boundary.report_at_eod.empty()) {
return false; /* streaming runtime makes liberal use of broken flag */
}
return tbi.outfixes.size() == 1;
}
static
u8 pickRuntimeImpl(const RoseBuildImpl &build, const build_context &bc,
UNUSED u32 outfixEndQueue) {
DEBUG_PRINTF("has_outfixes=%d\n", bc.resources.has_outfixes);
DEBUG_PRINTF("has_suffixes=%d\n", bc.resources.has_suffixes);
DEBUG_PRINTF("has_leftfixes=%d\n", bc.resources.has_leftfixes);
DEBUG_PRINTF("has_literals=%d\n", bc.resources.has_literals);
DEBUG_PRINTF("has_states=%d\n", bc.resources.has_states);
DEBUG_PRINTF("checks_groups=%d\n", bc.resources.checks_groups);
DEBUG_PRINTF("has_lit_delay=%d\n", bc.resources.has_lit_delay);
DEBUG_PRINTF("has_lit_check=%d\n", bc.resources.has_lit_check);
DEBUG_PRINTF("has_anchored=%d\n", bc.resources.has_anchored);
DEBUG_PRINTF("has_eod=%d\n", bc.resources.has_eod);
if (isPureFloating(bc.resources, build.cc)) {
return ROSE_RUNTIME_PURE_LITERAL;
}
if (isSingleOutfix(build)) {
return ROSE_RUNTIME_SINGLE_OUTFIX;
}
return ROSE_RUNTIME_FULL_ROSE;
}
/**
* \brief True if this Rose engine needs to run MPV catch up in front of
* non-MPV reports.
*/
static
bool needsMpvCatchup(const RoseBuildImpl &build) {
const auto &outfixes = build.outfixes;
bool has_mpv =
any_of(begin(outfixes), end(outfixes), [](const OutfixInfo &outfix) {
return outfix.is_nonempty_mpv();
});
if (!has_mpv) {
DEBUG_PRINTF("no mpv\n");
return false;
}
if (isSingleOutfix(build)) {
DEBUG_PRINTF("single outfix\n");
return false;
}
return true;
}
static
void fillStateOffsets(const RoseBuildImpl &tbi, u32 rolesWithStateCount,
u32 anchorStateSize, u32 activeArrayCount,
u32 activeLeftCount, u32 laggedRoseCount,
u32 longLitStreamStateRequired, u32 historyRequired,
RoseStateOffsets *so) {
u32 curr_offset = 0;
// First, runtime status (stores per-stream state, like whether we need a
// delay rebuild or have been told to halt matching.)
curr_offset += sizeof(u8);
// Role state storage.
curr_offset += mmbit_size(rolesWithStateCount);
so->activeLeafArray = curr_offset; /* TODO: limit size of array */
curr_offset += mmbit_size(activeArrayCount);
so->activeLeftArray = curr_offset; /* TODO: limit size of array */
so->activeLeftArray_size = mmbit_size(activeLeftCount);
curr_offset += so->activeLeftArray_size;
so->longLitState = curr_offset;
curr_offset += longLitStreamStateRequired;
// ONE WHOLE BYTE for each active leftfix with lag.
so->leftfixLagTable = curr_offset;
curr_offset += laggedRoseCount;
so->anchorState = curr_offset;
curr_offset += anchorStateSize;
so->groups = curr_offset;
so->groups_size = (tbi.group_end + 7) / 8;
assert(so->groups_size <= sizeof(u64a));
curr_offset += so->groups_size;
// The history consists of the bytes in the history only. YAY
so->history = curr_offset;
curr_offset += historyRequired;
// Exhaustion multibit.
so->exhausted = curr_offset;
curr_offset += mmbit_size(tbi.rm.numEkeys());
// SOM locations and valid/writeable multibit structures.
if (tbi.ssm.numSomSlots()) {
const u32 somWidth = tbi.ssm.somPrecision();
if (somWidth) { // somWidth is zero in block mode.
curr_offset = ROUNDUP_N(curr_offset, somWidth);
so->somLocation = curr_offset;
curr_offset += tbi.ssm.numSomSlots() * somWidth;
} else {
so->somLocation = 0;
}
so->somValid = curr_offset;
curr_offset += mmbit_size(tbi.ssm.numSomSlots());
so->somWritable = curr_offset;
curr_offset += mmbit_size(tbi.ssm.numSomSlots());
} else {
// No SOM handling, avoid growing the stream state any further.
so->somLocation = 0;
so->somValid = 0;
so->somWritable = 0;
}
// note: state space for mask nfas is allocated later
so->end = curr_offset;
}
// Get the mask of initial vertices due to root and anchored_root.
rose_group RoseBuildImpl::getInitialGroups() const {
rose_group groups = getSuccGroups(root) | getSuccGroups(anchored_root);
DEBUG_PRINTF("initial groups = %016llx\n", groups);
return groups;
}
static
bool nfaStuckOn(const NGHolder &g) {
assert(!proper_out_degree(g.startDs, g));
set<NFAVertex> succ;
insert(&succ, adjacent_vertices(g.start, g));
succ.erase(g.startDs);
set<NFAVertex> asucc;
set<u32> tops;
set<u32> done_tops;
for (const auto &e : out_edges_range(g.start, g)) {
insert(&tops, g[e].tops);
if (!g[target(e, g)].char_reach.all()) {
continue;
}
asucc.clear();
insert(&asucc, adjacent_vertices(target(e, g), g));
if (asucc == succ) {
insert(&done_tops, g[e].tops);
}
}
return tops == done_tops;
}
namespace {
struct PredTopPair {
PredTopPair(RoseVertex v, u32 t) : pred(v), top(t) {}
bool operator<(const PredTopPair &b) const {
const PredTopPair &a = *this;
ORDER_CHECK(pred);
ORDER_CHECK(top);
return false;
}
RoseVertex pred;
u32 top;
};
}
static
void findFixedDepthTops(const RoseGraph &g, const set<PredTopPair> &triggers,
map<u32, u32> *fixed_depth_tops) {
DEBUG_PRINTF("|trig| %zu\n", triggers.size());
/* find all pred roles for this holder, group by top */
/* if all pred roles for a given top have the same min and max offset, we
* add the top to the fixed_depth_top map */
map<u32, set<RoseVertex> > pred_by_top;
for (const auto &ptp : triggers) {
u32 top = ptp.top;
RoseVertex u = ptp.pred;
pred_by_top[top].insert(u);
}
for (const auto &e : pred_by_top) {
u32 top = e.first;
const set<RoseVertex> &preds = e.second;
if (!g[*preds.begin()].fixedOffset()) {
continue;
}
u32 depth = g[*preds.begin()].min_offset;
for (RoseVertex u : preds) {
if (g[u].min_offset != depth || g[u].max_offset != depth) {
goto next_top;
}
}
DEBUG_PRINTF("%u at depth %u\n", top, depth);
(*fixed_depth_tops)[top] = depth;
next_top:;
}
}
/**
* \brief Heuristic for picking between a DFA or NFA implementation of an
* engine.
*/
static
aligned_unique_ptr<NFA> pickImpl(aligned_unique_ptr<NFA> dfa_impl,
aligned_unique_ptr<NFA> nfa_impl) {
assert(nfa_impl);
assert(dfa_impl);
assert(isDfaType(dfa_impl->type));
// If our NFA is an LBR, it always wins.
if (isLbrType(nfa_impl->type)) {
return nfa_impl;
}
// if our DFA is an accelerated Sheng, it always wins.
if (isShengType(dfa_impl->type) && has_accel(*dfa_impl)) {
return dfa_impl;
}
bool d_accel = has_accel(*dfa_impl);
bool n_accel = has_accel(*nfa_impl);
bool d_big = isBigDfaType(dfa_impl->type);
bool n_vsmall = nfa_impl->nPositions <= 32;
bool n_br = has_bounded_repeats(*nfa_impl);
DEBUG_PRINTF("da %d na %d db %d nvs %d nbr %d\n", (int)d_accel,
(int)n_accel, (int)d_big, (int)n_vsmall, (int)n_br);
if (d_big) {
if (!n_vsmall) {
if (d_accel || !n_accel) {
return dfa_impl;
} else {
return nfa_impl;
}
} else {
if (n_accel) {
return nfa_impl;
} else {
return dfa_impl;
}
}
} else {
/* favour a McClellan 8, unless the nfa looks really good and the dfa
* looks like trouble */
if (!d_accel && n_vsmall && n_accel && !n_br) {
return nfa_impl;
} else {
return dfa_impl;
}
}
}
/**
* \brief Builds an LBR if there's one repeat in the given CastleProto,
* otherwise a Castle.
*/
static
aligned_unique_ptr<NFA>
buildRepeatEngine(const CastleProto &proto,
const map<u32, vector<vector<CharReach>>> &triggers,
const CompileContext &cc, const ReportManager &rm) {
// If we only have one repeat, the LBR should always be the best possible
// implementation.
if (proto.repeats.size() == 1 && cc.grey.allowLbr) {
return constructLBR(proto, triggers.at(0), cc, rm);
}
auto castle_nfa = buildCastle(proto, triggers, cc, rm);
assert(castle_nfa); // Should always be constructible.
return castle_nfa;
}
static
aligned_unique_ptr<NFA> getDfa(raw_dfa &rdfa, bool is_transient,
const CompileContext &cc,
const ReportManager &rm) {
// Unleash the Sheng!!
auto dfa = shengCompile(rdfa, cc, rm);
if (!dfa && !is_transient) {
// Sheng wasn't successful, so unleash McClellan!
/* We don't try the hybrid for transient prefixes due to the extra
* bytecode and that they are usually run on small blocks */
dfa = mcshengCompile(rdfa, cc, rm);
}
if (!dfa) {
// Sheng wasn't successful, so unleash McClellan!
dfa = mcclellanCompile(rdfa, cc, rm);
}
return dfa;
}
/* builds suffix nfas */
static
aligned_unique_ptr<NFA>
buildSuffix(const ReportManager &rm, const SomSlotManager &ssm,
const map<u32, u32> &fixed_depth_tops,
const map<u32, vector<vector<CharReach>>> &triggers,
suffix_id suff, const CompileContext &cc) {
if (suff.castle()) {
auto n = buildRepeatEngine(*suff.castle(), triggers, cc, rm);
assert(n);
return n;
}
if (suff.haig()) {
auto n = goughCompile(*suff.haig(), ssm.somPrecision(), cc, rm);
assert(n);
return n;
}
if (suff.dfa()) {
auto d = getDfa(*suff.dfa(), false, cc, rm);
assert(d);
return d;
}
assert(suff.graph());
NGHolder &holder = *suff.graph();
assert(holder.kind == NFA_SUFFIX);
const bool oneTop = onlyOneTop(holder);
bool compress_state = cc.streaming;
// Take a shot at the LBR engine.
if (oneTop) {
auto lbr = constructLBR(holder, triggers.at(0), cc, rm);
if (lbr) {
return lbr;
}
}
auto n = constructNFA(holder, &rm, fixed_depth_tops, triggers,
compress_state, cc);
assert(n);
if (oneTop && cc.grey.roseMcClellanSuffix) {
if (cc.grey.roseMcClellanSuffix == 2 || n->nPositions > 128 ||
!has_bounded_repeats_other_than_firsts(*n)) {
auto rdfa = buildMcClellan(holder, &rm, false, triggers.at(0),
cc.grey);
if (rdfa) {
auto d = getDfa(*rdfa, false, cc, rm);
assert(d);
if (cc.grey.roseMcClellanSuffix != 2) {
n = pickImpl(move(d), move(n));
} else {
n = move(d);
}
assert(n);
if (isMcClellanType(n->type)) {
// DFA chosen. We may be able to set some more properties
// in the NFA structure here.
u64a maxOffset = findMaxOffset(holder, rm);
if (maxOffset != MAX_OFFSET && maxOffset < 0xffffffffull) {
n->maxOffset = (u32)maxOffset;
DEBUG_PRINTF("dfa max offset %llu\n", maxOffset);
} else {
n->maxOffset = 0; // inf
}
}
}
}
}
return n;
}
static
void findInfixTriggers(const RoseBuildImpl &build,
map<left_id, set<PredTopPair> > *infixTriggers) {
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (!g[v].left) {
continue;
}
set<PredTopPair> &triggers = (*infixTriggers)[left_id(g[v].left)];
for (const auto &e : in_edges_range(v, g)) {
RoseVertex u = source(e, g);
if (build.isAnyStart(u)) {
continue;
}
triggers.insert(PredTopPair(u, g[e].rose_top));
}
}
}
static
vector<CharReach> as_cr_seq(const rose_literal_id &lit) {
vector<CharReach> rv = as_cr_seq(lit.s);
for (u32 i = 0; i < lit.delay; i++) {
rv.push_back(CharReach::dot());
}
/* TODO: take into account cmp/msk */
return rv;
}
/**
* \brief Returns a map of trigger literals as sequences of CharReach, grouped
* by top index.
*/
static
void findTriggerSequences(const RoseBuildImpl &tbi,
const set<PredTopPair> &triggers,
map<u32, vector<vector<CharReach> > > *trigger_lits) {
map<u32, set<u32> > lit_ids_by_top;
for (const PredTopPair &t : triggers) {
insert(&lit_ids_by_top[t.top], tbi.g[t.pred].literals);
}
for (const auto &e : lit_ids_by_top) {
const u32 top = e.first;
const set<u32> &lit_ids = e.second;
for (u32 id : lit_ids) {
const rose_literal_id &lit = tbi.literals.right.at(id);
(*trigger_lits)[top].push_back(as_cr_seq(lit));
}
}
}
static aligned_unique_ptr<NFA>
makeLeftNfa(const RoseBuildImpl &tbi, left_id &left,
const bool is_prefix, const bool is_transient,
const map<left_id, set<PredTopPair> > &infixTriggers,
const CompileContext &cc) {
const ReportManager &rm = tbi.rm;
aligned_unique_ptr<NFA> n;
// Should compress state if this rose is non-transient and we're in
// streaming mode.
const bool compress_state = !is_transient;
assert(is_prefix || !left.graph() || left.graph()->kind == NFA_INFIX);
assert(!is_prefix || !left.graph() || left.graph()->kind == NFA_PREFIX
|| left.graph()->kind == NFA_EAGER_PREFIX);
// Holder should be implementable as an NFA at the very least.
if (!left.dfa() && left.graph()) {
assert(isImplementableNFA(*left.graph(), nullptr, cc));
}
map<u32, u32> fixed_depth_tops;
if (!is_prefix /* infix */) {
const set<PredTopPair> &triggers = infixTriggers.at(left);
findFixedDepthTops(tbi.g, triggers, &fixed_depth_tops);
}
if (left.castle()) {
assert(!is_prefix);
map<u32, vector<vector<CharReach> > > triggers;
findTriggerSequences(tbi, infixTriggers.at(left), &triggers);
n = buildRepeatEngine(*left.castle(), triggers, cc, rm);
assert(n);
return n; // Castles/LBRs are always best!
}
if (left.dfa()) {
n = getDfa(*left.dfa(), is_transient, cc, rm);
} else if (left.graph() && cc.grey.roseMcClellanPrefix == 2 && is_prefix &&
!is_transient) {
auto rdfa = buildMcClellan(*left.graph(), nullptr, cc.grey);
if (rdfa) {
n = getDfa(*rdfa, is_transient, cc, rm);
assert(n);
}
}
// We can attempt to build LBRs for infixes.
if (!n && !is_prefix && left.graph() && onlyOneTop(*left.graph())) {
map<u32, vector<vector<CharReach> > > triggers;
findTriggerSequences(tbi, infixTriggers.at(left), &triggers);
assert(triggers.size() == 1); // single top
n = constructLBR(*left.graph(), triggers.begin()->second, cc, rm);
}
if (!n && left.graph()) {
map<u32, vector<vector<CharReach>>> triggers;
if (left.graph()->kind == NFA_INFIX) {
findTriggerSequences(tbi, infixTriggers.at(left), &triggers);
}
n = constructNFA(*left.graph(), nullptr, fixed_depth_tops, triggers,
compress_state, cc);
}
if (cc.grey.roseMcClellanPrefix == 1 && is_prefix && !left.dfa()
&& left.graph()
&& (!n || !has_bounded_repeats_other_than_firsts(*n) || !is_fast(*n))) {
auto rdfa = buildMcClellan(*left.graph(), nullptr, cc.grey);
if (rdfa) {
auto d = getDfa(*rdfa, is_transient, cc, rm);
assert(d);
n = pickImpl(move(d), move(n));
}
}
return n;
}
static
void setLeftNfaProperties(NFA &n, const left_id &left) {
depth min_width = findMinWidth(left);
DEBUG_PRINTF("min_width=%s\n", min_width.str().c_str());
u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0;
n.minWidth = min_width_value;
depth max_width = findMaxWidth(left);
DEBUG_PRINTF("max_width=%s\n", max_width.str().c_str());
u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0;
n.maxWidth = max_width_value;
// FIXME: NFA::maxOffset in Rose can't be found from reports as they don't
// map to internal_report structures; it would have to come from the Rose
// graph.
}
static
void appendTailToHolder(NGHolder &h, const flat_set<ReportID> &reports,
const vector<NFAVertex> &starts,
const vector<CharReach> &tail) {
assert(!tail.empty());
NFAVertex curr = add_vertex(h);
for (NFAVertex v : starts) {
assert(!edge(v, h.acceptEod, h).second);
assert(h[v].reports == reports);
h[v].reports.clear();
remove_edge(v, h.accept, h);
add_edge(v, curr, h);
}
auto it = tail.begin();
h[curr].char_reach = *it;
++it;
while (it != tail.end()) {
NFAVertex old = curr;
curr = add_vertex(h);
add_edge(old, curr, h);
assert(!it->none());
h[curr].char_reach = *it;
++it;
}
h[curr].reports = reports;
add_edge(curr, h.accept, h);
}
static
void appendTailToHolder(NGHolder &h, const vector<CharReach> &tail) {
assert(in_degree(h.acceptEod, h) == 1);
assert(!tail.empty());
map<flat_set<ReportID>, vector<NFAVertex> > reporters;
for (auto v : inv_adjacent_vertices_range(h.accept, h)) {
reporters[h[v].reports].push_back(v);
}
for (const auto &e : reporters) {
appendTailToHolder(h, e.first, e.second, tail);
}
renumber_edges(h);
}
static
u32 decreaseLag(const RoseBuildImpl &build, NGHolder &h,
const vector<RoseVertex> &succs) {
const RoseGraph &rg = build.g;
static const size_t MAX_RESTORE_LEN = 5;
vector<CharReach> restored(MAX_RESTORE_LEN);
for (RoseVertex v : succs) {
u32 lag = rg[v].left.lag;
for (u32 lit_id : rg[v].literals) {
u32 delay = build.literals.right.at(lit_id).delay;
const ue2_literal &literal = build.literals.right.at(lit_id).s;
assert(lag <= literal.length() + delay);
size_t base = literal.length() + delay - lag;
if (base >= literal.length()) {
return 0;
}
size_t len = literal.length() - base;
len = MIN(len, restored.size());
restored.resize(len);
auto lit_it = literal.begin() + base;
for (u32 i = 0; i < len; i++) {
assert(lit_it != literal.end());
restored[i] |= *lit_it;
++lit_it;
}
}
}
assert(!restored.empty());
appendTailToHolder(h, restored);
return restored.size();
}
#define EAGER_DIE_BEFORE_LIMIT 10
struct eager_info {
shared_ptr<NGHolder> new_graph;
u32 lag_adjust = 0;
};
static
bool checkSuitableForEager(bool is_prefix, const left_id &left,
const RoseBuildImpl &build,
const vector<RoseVertex> &succs,
rose_group squash_mask, rose_group initial_groups,
eager_info &ei, const CompileContext &cc) {
DEBUG_PRINTF("checking prefix --> %016llx...\n", squash_mask);
const RoseGraph &rg = build.g;
if (!is_prefix) {
DEBUG_PRINTF("not prefix\n");
return false; /* only prefixes (for now...) */
}
if ((initial_groups & squash_mask) == initial_groups) {
DEBUG_PRINTF("no squash -- useless\n");
return false;
}
for (RoseVertex s : succs) {
if (build.isInETable(s)
|| contains(rg[s].literals, build.eod_event_literal_id)) {
return false; /* Ignore EOD related prefixes */
}
}
if (left.dfa()) {
const raw_dfa &dfa = *left.dfa();
if (dfa.start_floating != DEAD_STATE) {
return false; /* not purely anchored */
}
if (!dfa.states[dfa.start_anchored].reports.empty()) {
return false; /* vacuous (todo: handle?) */
}
if (!can_die_early(dfa, EAGER_DIE_BEFORE_LIMIT)) {
return false;
}
ei.new_graph = rg[succs[0]].left.graph;
} else if (left.graph()) {
const NGHolder &g = *left.graph();
if (proper_out_degree(g.startDs, g)) {
return false; /* not purely anchored */
}
ei.new_graph = cloneHolder(*left.graph());
auto gg = ei.new_graph;
gg->kind = NFA_EAGER_PREFIX;
ei.lag_adjust = decreaseLag(build, *gg, succs);
if (is_match_vertex(gg->start, *gg)) {
return false; /* should not still be vacuous as lag decreased */
}
if (!can_die_early(*gg, EAGER_DIE_BEFORE_LIMIT)) {
DEBUG_PRINTF("not eager as stuck alive\n");
return false;
}
/* We need to ensure that adding in the literals does not cause us to no
* longer be able to build an nfa. */
bool ok = isImplementableNFA(*gg, nullptr, cc);
if (!ok) {
return false;
}
} else {
DEBUG_PRINTF("unable to determine if good for eager running\n");
return false;
}
DEBUG_PRINTF("eager prefix\n");
return true;
}
static
left_id updateLeftfixWithEager(RoseGraph &g, const eager_info &ei,
const vector<RoseVertex> &succs) {
u32 lag_adjust = ei.lag_adjust;
auto gg = ei.new_graph;
for (RoseVertex v : succs) {
g[v].left.graph = gg;
assert(g[v].left.lag >= lag_adjust);
g[v].left.lag -= lag_adjust;
DEBUG_PRINTF("added %u literal chars back, new lag %u\n", lag_adjust,
g[v].left.lag);
}
left_id leftfix = g[succs[0]].left;
if (leftfix.graph()) {
assert(leftfix.graph()->kind == NFA_PREFIX
|| leftfix.graph()->kind == NFA_EAGER_PREFIX);
leftfix.graph()->kind = NFA_EAGER_PREFIX;
}
if (leftfix.dfa()) {
assert(leftfix.dfa()->kind == NFA_PREFIX);
leftfix.dfa()->kind = NFA_EAGER_PREFIX;
}
return leftfix;
}
static
bool buildLeftfix(RoseBuildImpl &build, build_context &bc, bool prefix, u32 qi,
const map<left_id, set<PredTopPair> > &infixTriggers,
set<u32> *no_retrigger_queues, set<u32> *eager_queues,
const map<left_id, eager_info> &eager,
const vector<RoseVertex> &succs, left_id leftfix) {
RoseGraph &g = build.g;
const CompileContext &cc = build.cc;
const ReportManager &rm = build.rm;
bool is_transient = contains(build.transient, leftfix);
rose_group squash_mask = build.rose_squash_masks.at(leftfix);
DEBUG_PRINTF("making %sleftfix\n", is_transient ? "transient " : "");
if (contains(eager, leftfix)) {
eager_queues->insert(qi);
leftfix = updateLeftfixWithEager(g, eager.at(leftfix), succs);
}
aligned_unique_ptr<NFA> nfa;
// Need to build NFA, which is either predestined to be a Haig (in SOM mode)
// or could be all manner of things.
if (leftfix.haig()) {
nfa = goughCompile(*leftfix.haig(), build.ssm.somPrecision(), cc, rm);
} else {
nfa = makeLeftNfa(build, leftfix, prefix, is_transient, infixTriggers,
cc);
}
if (!nfa) {
assert(!"failed to build leftfix");
return false;
}
setLeftNfaProperties(*nfa, leftfix);
build.leftfix_queue_map.emplace(leftfix, qi);
nfa->queueIndex = qi;
if (!prefix && !leftfix.haig() && leftfix.graph()
&& nfaStuckOn(*leftfix.graph())) {
DEBUG_PRINTF("%u sticks on\n", qi);
no_retrigger_queues->insert(qi);
}
DEBUG_PRINTF("built leftfix, qi=%u\n", qi);
add_nfa_to_blob(bc, *nfa);
// Leftfixes can have stop alphabets.
vector<u8> stop(N_CHARS, 0);
/* haigs track som information - need more care */
som_type som = leftfix.haig() ? SOM_LEFT : SOM_NONE;
if (leftfix.graph()) {
stop = findLeftOffsetStopAlphabet(*leftfix.graph(), som);
} else if (leftfix.castle()) {
stop = findLeftOffsetStopAlphabet(*leftfix.castle(), som);
}
// Infix NFAs can have bounds on their queue lengths.
u32 max_queuelen = UINT32_MAX;
if (!prefix) {
set<ue2_literal> lits;
for (RoseVertex v : succs) {
for (auto u : inv_adjacent_vertices_range(v, g)) {
for (u32 lit_id : g[u].literals) {
lits.insert(build.literals.right.at(lit_id).s);
}
}
}
DEBUG_PRINTF("%zu literals\n", lits.size());
max_queuelen = findMaxInfixMatches(leftfix, lits);
if (max_queuelen < UINT32_MAX) {
max_queuelen++;
}
}
u32 max_width;
if (is_transient) {
depth d = findMaxWidth(leftfix);
assert(d.is_finite());
max_width = d;
} else {
max_width = 0;
}
u8 cm_count = 0;
CharReach cm_cr;
if (cc.grey.allowCountingMiracles) {
findCountingMiracleInfo(leftfix, stop, &cm_count, &cm_cr);
}
for (RoseVertex v : succs) {
bc.leftfix_info.emplace(v, left_build_info(qi, g[v].left.lag, max_width,
squash_mask, stop,
max_queuelen, cm_count,
cm_cr));
}
return true;
}
static
unique_ptr<TamaInfo> constructTamaInfo(const RoseGraph &g,
const vector<ExclusiveSubengine> &subengines,
const bool is_suffix) {
unique_ptr<TamaInfo> tamaInfo = ue2::make_unique<TamaInfo>();
for (const auto &sub : subengines) {
const auto &rose_vertices = sub.vertices;
NFA *nfa = sub.nfa.get();
set<u32> tops;
for (const auto &v : rose_vertices) {
if (is_suffix) {
tops.insert(g[v].suffix.top);
} else {
for (const auto &e : in_edges_range(v, g)) {
tops.insert(g[e].rose_top);
}
}
}
tamaInfo->add(nfa, tops);
}
return tamaInfo;
}
static
void updateTops(const RoseGraph &g, const TamaInfo &tamaInfo,
TamaProto &tamaProto,
const vector<ExclusiveSubengine> &subengines,
const map<pair<const NFA *, u32>, u32> &out_top_remap,
const bool is_suffix) {
u32 i = 0;
for (const auto &n : tamaInfo.subengines) {
for (const auto &v : subengines[i].vertices) {
if (is_suffix) {
tamaProto.add(n, g[v].index, g[v].suffix.top,
out_top_remap);
} else {
for (const auto &e : in_edges_range(v, g)) {
tamaProto.add(n, g[v].index, g[e].rose_top,
out_top_remap);
}
}
}
i++;
}
}
static
shared_ptr<TamaProto> constructContainerEngine(const RoseGraph &g,
build_context &bc,
const ExclusiveInfo &info,
const u32 queue,
const bool is_suffix) {
const auto &subengines = info.subengines;
auto tamaInfo =
constructTamaInfo(g, subengines, is_suffix);
map<pair<const NFA *, u32>, u32> out_top_remap;
auto n = buildTamarama(*tamaInfo, queue, out_top_remap);
add_nfa_to_blob(bc, *n);
DEBUG_PRINTF("queue id:%u\n", queue);
shared_ptr<TamaProto> tamaProto = make_shared<TamaProto>();
tamaProto->reports = info.reports;
updateTops(g, *tamaInfo, *tamaProto, subengines,
out_top_remap, is_suffix);
return tamaProto;
}
static
void buildInfixContainer(RoseGraph &g, build_context &bc,
const vector<ExclusiveInfo> &exclusive_info) {
// Build tamarama engine
for (const auto &info : exclusive_info) {
const u32 queue = info.queue;
const auto &subengines = info.subengines;
auto tamaProto =
constructContainerEngine(g, bc, info, queue, false);
for (const auto &sub : subengines) {
const auto &verts = sub.vertices;
for (const auto &v : verts) {
DEBUG_PRINTF("vert id:%zu\n", g[v].index);
g[v].left.tamarama = tamaProto;
}
}
}
}
static
void buildSuffixContainer(RoseGraph &g, build_context &bc,
const vector<ExclusiveInfo> &exclusive_info) {
// Build tamarama engine
for (const auto &info : exclusive_info) {
const u32 queue = info.queue;
const auto &subengines = info.subengines;
auto tamaProto =
constructContainerEngine(g, bc, info, queue, true);
for (const auto &sub : subengines) {
const auto &verts = sub.vertices;
for (const auto &v : verts) {
DEBUG_PRINTF("vert id:%zu\n", g[v].index);
g[v].suffix.tamarama = tamaProto;
}
const auto &v = verts[0];
suffix_id newSuffix(g[v].suffix);
bc.suffixes.emplace(newSuffix, queue);
}
}
}
static
void updateExclusiveInfixProperties(const RoseBuildImpl &build,
build_context &bc,
const vector<ExclusiveInfo> &exclusive_info,
set<u32> *no_retrigger_queues) {
const RoseGraph &g = build.g;
for (const auto &info : exclusive_info) {
// Set leftfix optimisations, disabled for tamarama subengines
rose_group squash_mask = ~rose_group{0};
// Leftfixes can have stop alphabets.
vector<u8> stop(N_CHARS, 0);
// Infix NFAs can have bounds on their queue lengths.
u32 max_queuelen = 0;
u32 max_width = 0;
u8 cm_count = 0;
CharReach cm_cr;
const auto &qi = info.queue;
const auto &subengines = info.subengines;
bool no_retrigger = true;
for (const auto &sub : subengines) {
const auto &verts = sub.vertices;
const auto &v_first = verts[0];
left_id leftfix(g[v_first].left);
if (leftfix.haig() || !leftfix.graph() ||
!nfaStuckOn(*leftfix.graph())) {
no_retrigger = false;
}
for (const auto &v : verts) {
set<ue2_literal> lits;
for (auto u : inv_adjacent_vertices_range(v, build.g)) {
for (u32 lit_id : build.g[u].literals) {
lits.insert(build.literals.right.at(lit_id).s);
}
}
DEBUG_PRINTF("%zu literals\n", lits.size());
u32 queuelen = findMaxInfixMatches(leftfix, lits);
if (queuelen < UINT32_MAX) {
queuelen++;
}
max_queuelen = max(max_queuelen, queuelen);
}
}
if (no_retrigger) {
no_retrigger_queues->insert(qi);
}
for (const auto &sub : subengines) {
const auto &verts = sub.vertices;
for (const auto &v : verts) {
u32 lag = g[v].left.lag;
bc.leftfix_info.emplace(
v, left_build_info(qi, lag, max_width, squash_mask, stop,
max_queuelen, cm_count, cm_cr));
}
}
}
}
static
void updateExclusiveSuffixProperties(const RoseBuildImpl &build,
const vector<ExclusiveInfo> &exclusive_info,
set<u32> *no_retrigger_queues) {
const RoseGraph &g = build.g;
for (auto &info : exclusive_info) {
const auto &qi = info.queue;
const auto &subengines = info.subengines;
bool no_retrigger = true;
for (const auto &sub : subengines) {
const auto &v_first = sub.vertices[0];
suffix_id suffix(g[v_first].suffix);
if (!suffix.graph() || !nfaStuckOn(*suffix.graph())) {
no_retrigger = false;
break;
}
}
if (no_retrigger) {
no_retrigger_queues->insert(qi);
}
}
}
static
void buildExclusiveInfixes(RoseBuildImpl &build, build_context &bc,
QueueIndexFactory &qif,
const map<left_id, set<PredTopPair>> &infixTriggers,
const map<u32, vector<RoseVertex>> &vertex_map,
const vector<vector<u32>> &groups,
set<u32> *no_retrigger_queues) {
RoseGraph &g = build.g;
const CompileContext &cc = build.cc;
vector<ExclusiveInfo> exclusive_info;
for (const auto &gp : groups) {
ExclusiveInfo info;
for (const auto &id : gp) {
const auto &verts = vertex_map.at(id);
left_id leftfix(g[verts[0]].left);
bool is_transient = false;
auto n = makeLeftNfa(build, leftfix, false, is_transient,
infixTriggers, cc);
assert(n);
setLeftNfaProperties(*n, leftfix);
ExclusiveSubengine engine;
engine.nfa = move(n);
engine.vertices = verts;
info.subengines.push_back(move(engine));
}
info.queue = qif.get_queue();
exclusive_info.push_back(move(info));
}
updateExclusiveInfixProperties(build, bc, exclusive_info,
no_retrigger_queues);
buildInfixContainer(g, bc, exclusive_info);
}
static
void findExclusiveInfixes(RoseBuildImpl &build, build_context &bc,
QueueIndexFactory &qif,
const map<left_id, set<PredTopPair>> &infixTriggers,
set<u32> *no_retrigger_queues) {
const RoseGraph &g = build.g;
set<RoleInfo<left_id>> roleInfoSet;
map<u32, vector<RoseVertex>> vertex_map;
u32 role_id = 0;
map<left_id, u32> leftfixes;
for (auto v : vertices_range(g)) {
if (!g[v].left || build.isRootSuccessor(v)) {
continue;
}
left_id leftfix(g[v].left);
// Sanity check: our NFA should contain each of the tops mentioned on
// our in-edges.
assert(roseHasTops(build, v));
if (contains(leftfixes, leftfix)) {
// NFA already built.
u32 id = leftfixes[leftfix];
if (contains(vertex_map, id)) {
vertex_map[id].push_back(v);
}
DEBUG_PRINTF("sharing leftfix, id=%u\n", id);
continue;
}
if (leftfix.graph() || leftfix.castle()) {
leftfixes.emplace(leftfix, role_id);
vertex_map[role_id].push_back(v);
map<u32, vector<vector<CharReach>>> triggers;
findTriggerSequences(build, infixTriggers.at(leftfix), &triggers);
RoleInfo<left_id> info(leftfix, role_id);
if (setTriggerLiteralsInfix(info, triggers)) {
roleInfoSet.insert(info);
}
role_id++;
}
}
if (leftfixes.size() > 1) {
DEBUG_PRINTF("leftfix size:%zu\n", leftfixes.size());
vector<vector<u32>> groups;
exclusiveAnalysisInfix(build, vertex_map, roleInfoSet, groups);
buildExclusiveInfixes(build, bc, qif, infixTriggers, vertex_map,
groups, no_retrigger_queues);
}
}
static
bool buildLeftfixes(RoseBuildImpl &tbi, build_context &bc,
QueueIndexFactory &qif, set<u32> *no_retrigger_queues,
set<u32> *eager_queues, bool do_prefix) {
RoseGraph &g = tbi.g;
const CompileContext &cc = tbi.cc;
map<left_id, set<PredTopPair> > infixTriggers;
vector<left_id> order;
unordered_map<left_id, vector<RoseVertex> > succs;
findInfixTriggers(tbi, &infixTriggers);
if (cc.grey.allowTamarama && cc.streaming && !do_prefix) {
findExclusiveInfixes(tbi, bc, qif, infixTriggers,
no_retrigger_queues);
}
for (auto v : vertices_range(g)) {
if (!g[v].left || g[v].left.tamarama) {
continue;
}
assert(tbi.isNonRootSuccessor(v) != tbi.isRootSuccessor(v));
bool is_prefix = tbi.isRootSuccessor(v);
if (do_prefix != is_prefix) {
/* we require prefixes and then infixes */
continue;
}
left_id leftfix(g[v].left);
// Sanity check: our NFA should contain each of the tops mentioned on
// our in-edges.
assert(roseHasTops(tbi, v));
bool is_transient = contains(tbi.transient, leftfix);
// Transient leftfixes can sometimes be implemented solely with
// lookarounds, in which case we don't need to build an engine.
// TODO: Handle SOM-tracking cases as well.
if (cc.grey.roseLookaroundMasks && is_transient &&
!g[v].left.tracksSom()) {
vector<LookEntry> lookaround;
if (makeLeftfixLookaround(tbi, v, lookaround)) {
DEBUG_PRINTF("implementing as lookaround!\n");
bc.leftfix_info.emplace(v, left_build_info(lookaround));
continue;
}
}
if (!contains(succs, leftfix)) {
order.push_back(leftfix);
}
succs[leftfix].push_back(v);
}
rose_group initial_groups = tbi.getInitialGroups();
rose_group combined_eager_squashed_mask = ~0ULL;
map<left_id, eager_info> eager;
for (const left_id &leftfix : order) {
const auto &left_succs = succs[leftfix];
rose_group squash_mask = tbi.rose_squash_masks.at(leftfix);
eager_info ei;
if (checkSuitableForEager(do_prefix, leftfix, tbi, left_succs,
squash_mask, initial_groups, ei, cc)) {
eager[leftfix] = ei;
combined_eager_squashed_mask &= squash_mask;
DEBUG_PRINTF("combo %016llx...\n", combined_eager_squashed_mask);
}
}
if (do_prefix && combined_eager_squashed_mask & initial_groups) {
DEBUG_PRINTF("eager groups won't squash everyone - be lazy\n");
eager_queues->clear();
eager.clear();
}
for (const left_id &leftfix : order) {
buildLeftfix(tbi, bc, do_prefix, qif.get_queue(), infixTriggers,
no_retrigger_queues, eager_queues, eager, succs[leftfix],
leftfix);
}
return true;
}
static
void findSuffixTriggers(const RoseBuildImpl &tbi,
map<suffix_id, set<PredTopPair> > *suffixTriggers) {
const RoseGraph &g = tbi.g;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
PredTopPair ptp(v, g[v].suffix.top);
(*suffixTriggers)[g[v].suffix].insert(ptp);
}
}
static
bool hasNonSmallBlockOutfix(const vector<OutfixInfo> &outfixes) {
for (const auto &out : outfixes) {
if (!out.in_sbmatcher) {
return true;
}
}
return false;
}
namespace {
class OutfixBuilder : public boost::static_visitor<aligned_unique_ptr<NFA>> {
public:
explicit OutfixBuilder(const RoseBuildImpl &build_in) : build(build_in) {}
aligned_unique_ptr<NFA> operator()(boost::blank&) const {
return nullptr;
};
aligned_unique_ptr<NFA> operator()(unique_ptr<raw_dfa> &rdfa) const {
// Unleash the mighty DFA!
return getDfa(*rdfa, false, build.cc, build.rm);
}
aligned_unique_ptr<NFA> operator()(unique_ptr<raw_som_dfa> &haig) const {
// Unleash the Goughfish!
return goughCompile(*haig, build.ssm.somPrecision(), build.cc,
build.rm);
}
aligned_unique_ptr<NFA> operator()(unique_ptr<NGHolder> &holder) const {
const CompileContext &cc = build.cc;
const ReportManager &rm = build.rm;
NGHolder &h = *holder;
assert(h.kind == NFA_OUTFIX);
// Build NFA.
const map<u32, u32> fixed_depth_tops; /* no tops */
const map<u32, vector<vector<CharReach>>> triggers; /* no tops */
bool compress_state = cc.streaming;
auto n = constructNFA(h, &rm, fixed_depth_tops, triggers,
compress_state, cc);
// Try for a DFA upgrade.
if (n && cc.grey.roseMcClellanOutfix &&
!has_bounded_repeats_other_than_firsts(*n)) {
auto rdfa = buildMcClellan(h, &rm, cc.grey);
if (rdfa) {
auto d = getDfa(*rdfa, false, cc, rm);
if (d) {
n = pickImpl(move(d), move(n));
}
}
}
return n;
}
aligned_unique_ptr<NFA> operator()(UNUSED MpvProto &mpv) const {
// MPV construction handled separately.
assert(mpv.puffettes.empty());
return nullptr;
}
private:
const RoseBuildImpl &build;
};
}
static
aligned_unique_ptr<NFA> buildOutfix(RoseBuildImpl &build, OutfixInfo &outfix) {
assert(!outfix.is_dead()); // should not be marked dead.
auto n = boost::apply_visitor(OutfixBuilder(build), outfix.proto);
if (n && build.cc.grey.reverseAccelerate) {
buildReverseAcceleration(n.get(), outfix.rev_info, outfix.minWidth);
}
return n;
}
static
void prepMpv(RoseBuildImpl &tbi, build_context &bc, size_t *historyRequired,
bool *mpv_as_outfix) {
assert(bc.engineOffsets.empty()); // MPV should be first
*mpv_as_outfix = false;
OutfixInfo *mpv_outfix = nullptr;
/* assume outfixes are just above chain tails in queue indices */
for (auto &out : tbi.outfixes) {
if (out.is_nonempty_mpv()) {
assert(!mpv_outfix);
mpv_outfix = &out;
} else {
assert(!out.mpv());
}
}
if (!mpv_outfix) {
return;
}
auto *mpv = mpv_outfix->mpv();
auto nfa = mpvCompile(mpv->puffettes, mpv->triggered_puffettes, tbi.rm);
assert(nfa);
if (!nfa) {
throw CompileError("Unable to generate bytecode.");
}
if (tbi.cc.grey.reverseAccelerate) {
buildReverseAcceleration(nfa.get(), mpv_outfix->rev_info,
mpv_outfix->minWidth);
}
u32 qi = mpv_outfix->get_queue(tbi.qif);
nfa->queueIndex = qi;
DEBUG_PRINTF("built mpv\n");
if (!*historyRequired && requires_decompress_key(*nfa)) {
*historyRequired = 1;
}
add_nfa_to_blob(bc, *nfa);
*mpv_as_outfix = !mpv->puffettes.empty();
}
static
void setOutfixProperties(NFA &n, const OutfixInfo &outfix) {
depth min_width = outfix.minWidth;
DEBUG_PRINTF("min_width=%s\n", min_width.str().c_str());
u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0;
n.minWidth = min_width_value;
depth max_width = outfix.maxWidth;
DEBUG_PRINTF("max_width=%s\n", max_width.str().c_str());
u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0;
n.maxWidth = max_width_value;
DEBUG_PRINTF("max_offset=%llu\n", outfix.maxOffset);
u32 max_offset_value = outfix.maxOffset < ~0U ? (u32)outfix.maxOffset : 0;
n.maxOffset = max_offset_value;
DEBUG_PRINTF("maxBAWidth=%u\n", outfix.maxBAWidth);
if (outfix.maxBAWidth != ROSE_BOUND_INF && outfix.maxBAWidth < 256) {
n.maxBiAnchoredWidth = verify_u8(outfix.maxBAWidth);
}
}
static
bool prepOutfixes(RoseBuildImpl &tbi, build_context &bc,
size_t *historyRequired) {
if (tbi.cc.grey.onlyOneOutfix && tbi.outfixes.size() > 1) {
DEBUG_PRINTF("we have %zu outfixes, but Grey::onlyOneOutfix is set\n",
tbi.outfixes.size());
throw ResourceLimitError();
}
assert(tbi.qif.allocated_count() == bc.engineOffsets.size());
for (auto &out : tbi.outfixes) {
if (out.mpv()) {
continue; /* already done */
}
DEBUG_PRINTF("building outfix %zd\n", &out - &tbi.outfixes[0]);
auto n = buildOutfix(tbi, out);
if (!n) {
assert(0);
return false;
}
setOutfixProperties(*n, out);
n->queueIndex = out.get_queue(tbi.qif);
if (!*historyRequired && requires_decompress_key(*n)) {
*historyRequired = 1;
}
add_nfa_to_blob(bc, *n);
}
return true;
}
static
void assignSuffixQueues(RoseBuildImpl &build, build_context &bc) {
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
const suffix_id s(g[v].suffix);
DEBUG_PRINTF("vertex %zu triggers suffix %p\n", g[v].index, s.graph());
// We may have already built this NFA.
if (contains(bc.suffixes, s)) {
continue;
}
u32 queue = build.qif.get_queue();
DEBUG_PRINTF("assigning %p to queue %u\n", s.graph(), queue);
bc.suffixes.emplace(s, queue);
build.suffix_queue_map.emplace(s, queue);
}
}
static
void setSuffixProperties(NFA &n, const suffix_id &suff,
const ReportManager &rm) {
depth min_width = findMinWidth(suff);
DEBUG_PRINTF("min_width=%s\n", min_width.str().c_str());
u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0;
n.minWidth = min_width_value;
depth max_width = findMaxWidth(suff);
DEBUG_PRINTF("max_width=%s\n", max_width.str().c_str());
u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0;
n.maxWidth = max_width_value;
u64a max_offset = findMaxOffset(all_reports(suff), rm);
DEBUG_PRINTF("max_offset=%llu\n", max_offset);
u32 max_offset_value = max_offset < ~0U ? (u32)max_offset : 0;
n.maxOffset = max_offset_value;
}
static
void buildExclusiveSuffixes(RoseBuildImpl &build, build_context &bc,
QueueIndexFactory &qif,
map<suffix_id, set<PredTopPair>> &suffixTriggers,
const map<u32, vector<RoseVertex>> &vertex_map,
const vector<vector<u32>> &groups,
set<u32> *no_retrigger_queues) {
RoseGraph &g = build.g;
vector<ExclusiveInfo> exclusive_info;
for (const auto &gp : groups) {
ExclusiveInfo info;
for (const auto &id : gp) {
const auto &verts = vertex_map.at(id);
suffix_id s(g[verts[0]].suffix);
const set<PredTopPair> &s_triggers = suffixTriggers.at(s);
map<u32, u32> fixed_depth_tops;
findFixedDepthTops(g, s_triggers, &fixed_depth_tops);
map<u32, vector<vector<CharReach>>> triggers;
findTriggerSequences(build, s_triggers, &triggers);
auto n = buildSuffix(build.rm, build.ssm, fixed_depth_tops,
triggers, s, build.cc);
assert(n);
setSuffixProperties(*n, s, build.rm);
ExclusiveSubengine engine;
engine.nfa = move(n);
engine.vertices = verts;
info.subengines.push_back(move(engine));
const auto &reports = all_reports(s);
info.reports.insert(reports.begin(), reports.end());
}
info.queue = qif.get_queue();
exclusive_info.push_back(move(info));
}
updateExclusiveSuffixProperties(build, exclusive_info,
no_retrigger_queues);
buildSuffixContainer(g, bc, exclusive_info);
}
static
void findExclusiveSuffixes(RoseBuildImpl &tbi, build_context &bc,
QueueIndexFactory &qif,
map<suffix_id, set<PredTopPair>> &suffixTriggers,
set<u32> *no_retrigger_queues) {
const RoseGraph &g = tbi.g;
map<suffix_id, u32> suffixes;
set<RoleInfo<suffix_id>> roleInfoSet;
map<u32, vector<RoseVertex>> vertex_map;
u32 role_id = 0;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
const suffix_id s(g[v].suffix);
DEBUG_PRINTF("vertex %zu triggers suffix %p\n", g[v].index, s.graph());
// We may have already built this NFA.
if (contains(suffixes, s)) {
u32 id = suffixes[s];
if (!tbi.isInETable(v)) {
vertex_map[id].push_back(v);
}
continue;
}
// Currently disable eod suffixes for exclusive analysis
if (!tbi.isInETable(v) && (s.graph() || s.castle())) {
DEBUG_PRINTF("assigning %p to id %u\n", s.graph(), role_id);
suffixes.emplace(s, role_id);
vertex_map[role_id].push_back(v);
const set<PredTopPair> &s_triggers = suffixTriggers.at(s);
map<u32, vector<vector<CharReach>>> triggers;
findTriggerSequences(tbi, s_triggers, &triggers);
RoleInfo<suffix_id> info(s, role_id);
if (setTriggerLiteralsSuffix(info, triggers)) {
roleInfoSet.insert(info);
}
role_id++;
}
}
if (suffixes.size() > 1) {
DEBUG_PRINTF("suffix size:%zu\n", suffixes.size());
vector<vector<u32>> groups;
exclusiveAnalysisSuffix(tbi, vertex_map, roleInfoSet, groups);
buildExclusiveSuffixes(tbi, bc, qif, suffixTriggers, vertex_map,
groups, no_retrigger_queues);
}
}
static
bool buildSuffixes(const RoseBuildImpl &tbi, build_context &bc,
set<u32> *no_retrigger_queues,
const map<suffix_id, set<PredTopPair>> &suffixTriggers) {
// To ensure compile determinism, build suffix engines in order of their
// (unique) queue indices, so that we call add_nfa_to_blob in the same
// order.
vector<pair<u32, suffix_id>> ordered;
for (const auto &e : bc.suffixes) {
ordered.emplace_back(e.second, e.first);
}
sort(begin(ordered), end(ordered));
for (const auto &e : ordered) {
const u32 queue = e.first;
const suffix_id &s = e.second;
if (s.tamarama()) {
continue;
}
const set<PredTopPair> &s_triggers = suffixTriggers.at(s);
map<u32, u32> fixed_depth_tops;
findFixedDepthTops(tbi.g, s_triggers, &fixed_depth_tops);
map<u32, vector<vector<CharReach>>> triggers;
findTriggerSequences(tbi, s_triggers, &triggers);
auto n = buildSuffix(tbi.rm, tbi.ssm, fixed_depth_tops, triggers,
s, tbi.cc);
if (!n) {
return false;
}
setSuffixProperties(*n, s, tbi.rm);
n->queueIndex = queue;
if (s.graph() && nfaStuckOn(*s.graph())) { /* todo: have corresponding
* haig analysis */
assert(!s.haig());
DEBUG_PRINTF("%u sticks on\n", queue);
no_retrigger_queues->insert(queue);
}
add_nfa_to_blob(bc, *n);
}
return true;
}
static
void buildCountingMiracles(build_context &bc) {
map<pair<CharReach, u8>, u32> pre_built;
for (left_build_info &lbi : bc.leftfix_info | map_values) {
if (!lbi.countingMiracleCount) {
continue;
}
const CharReach &cr = lbi.countingMiracleReach;
assert(!cr.all() && !cr.none());
auto key = make_pair(cr, lbi.countingMiracleCount);
if (contains(pre_built, key)) {
lbi.countingMiracleOffset = pre_built[key];
continue;
}
RoseCountingMiracle rcm;
memset(&rcm, 0, sizeof(rcm));
if (cr.count() == 1) {
rcm.c = cr.find_first();
} else {
rcm.shufti = 1;
int rv = shuftiBuildMasks(cr, (u8 *)&rcm.lo, (u8 *)&rcm.hi);
if (rv == -1) {
DEBUG_PRINTF("failed to build shufti\n");
lbi.countingMiracleCount = 0; /* remove counting miracle */
continue;
}
rcm.poison = (~cr).find_first();
}
rcm.count = lbi.countingMiracleCount;
lbi.countingMiracleOffset = bc.engine_blob.add(rcm);
pre_built[key] = lbi.countingMiracleOffset;
DEBUG_PRINTF("built cm for count of %u @ %u\n", rcm.count,
lbi.countingMiracleOffset);
}
}
/* Note: buildNfas may reduce the lag for vertices that have prefixes */
static
bool buildNfas(RoseBuildImpl &tbi, build_context &bc, QueueIndexFactory &qif,
set<u32> *no_retrigger_queues, set<u32> *eager_queues,
u32 *leftfixBeginQueue) {
map<suffix_id, set<PredTopPair>> suffixTriggers;
findSuffixTriggers(tbi, &suffixTriggers);
if (tbi.cc.grey.allowTamarama && tbi.cc.streaming) {
findExclusiveSuffixes(tbi, bc, qif, suffixTriggers,
no_retrigger_queues);
}
assignSuffixQueues(tbi, bc);
if (!buildSuffixes(tbi, bc, no_retrigger_queues, suffixTriggers)) {
return false;
}
suffixTriggers.clear();
*leftfixBeginQueue = qif.allocated_count();
if (!buildLeftfixes(tbi, bc, qif, no_retrigger_queues, eager_queues,
true)) {
return false;
}
if (!buildLeftfixes(tbi, bc, qif, no_retrigger_queues, eager_queues,
false)) {
return false;
}
return true;
}
static
void allocateStateSpace(const NFA *nfa, const set<u32> &transient_queues,
RoseStateOffsets *so, NfaInfo *nfa_infos,
u32 *currFullStateSize, u32 *maskStateSize,
u32 *tStateSize) {
u32 qi = nfa->queueIndex;
bool transient = transient_queues.find(qi) != transient_queues.end();
u32 stateSize = verify_u32(nfa->streamStateSize);
u32 state_offset;
if (transient) {
state_offset = *tStateSize;
*tStateSize += stateSize;
} else {
// Pack NFA state on to the end of the Rose state.
state_offset = so->end;
so->end += stateSize;
*maskStateSize += stateSize;
}
nfa_infos[qi].stateOffset = state_offset;
// Uncompressed state must be aligned.
u32 scratchStateSize = verify_u32(nfa->scratchStateSize);
u32 alignReq = state_alignment(*nfa);
assert(alignReq);
while (*currFullStateSize % alignReq) {
(*currFullStateSize)++;
}
nfa_infos[qi].fullStateOffset = *currFullStateSize;
*currFullStateSize += scratchStateSize;
}
static
void findTransientQueues(const map<RoseVertex, left_build_info> &leftfix_info,
set<u32> *out) {
DEBUG_PRINTF("curating transient queues\n");
for (const auto &build : leftfix_info | map_values) {
if (build.transient) {
DEBUG_PRINTF("q %u is transient\n", build.queue);
out->insert(build.queue);
}
}
}
static
void updateNfaState(const build_context &bc, RoseStateOffsets *so,
NfaInfo *nfa_infos, u32 *fullStateSize, u32 *nfaStateSize,
u32 *tStateSize) {
*nfaStateSize = 0;
*tStateSize = 0;
*fullStateSize = 0;
set<u32> transient_queues;
findTransientQueues(bc.leftfix_info, &transient_queues);
for (const auto &m : bc.engineOffsets) {
const NFA *n = get_nfa_from_blob(bc, m.first);
allocateStateSpace(n, transient_queues, so, nfa_infos, fullStateSize,
nfaStateSize, tStateSize);
}
}
/* does not include history requirements for outfixes or literal matchers */
u32 RoseBuildImpl::calcHistoryRequired() const {
u32 m = cc.grey.minHistoryAvailable;
for (auto v : vertices_range(g)) {
if (g[v].suffix) {
m = MAX(m, 2); // so that history req is at least 1, for state
// compression.
/* TODO: check if suffix uses state compression */
}
if (g[v].left) {
const u32 lag = g[v].left.lag;
const left_id leftfix(g[v].left);
if (contains(transient, leftfix)) {
u32 mv = lag + findMaxWidth(leftfix);
// If this vertex has an event literal, we need to add one to
// cope with it.
if (hasLiteralInTable(v, ROSE_EVENT)) {
mv++;
}
m = MAX(m, mv);
} else {
/* rose will be caught up from (lag - 1), also need an extra
* byte behind that to find the decompression key */
m = MAX(m, lag + 1);
m = MAX(m, 2); // so that history req is at least 1, for state
// compression.
}
}
}
// Delayed literals contribute to history requirement as well.
for (const auto &e : literals.right) {
const u32 id = e.first;
const auto &lit = e.second;
if (lit.delay) {
// If the literal is delayed _and_ has a mask that is longer than
// the literal, we need enough history to match the whole mask as
// well when rebuilding delayed matches.
size_t len = std::max(lit.elength(), lit.msk.size() + lit.delay);
ENSURE_AT_LEAST(&m, verify_u32(len));
}
/* Benefit checks require data is available. */
if (literal_info.at(id).requires_benefits) {
ENSURE_AT_LEAST(&m,
MIN(verify_u32(lit.elength()), MAX_MASK2_WIDTH));
}
}
m = MAX(m, max_rose_anchored_floating_overlap);
DEBUG_PRINTF("m=%u, ematcher_region_size=%u\n", m, ematcher_region_size);
if (ematcher_region_size >= m) {
return ematcher_region_size;
}
return m ? m - 1 : 0;
}
static
u32 buildLastByteIter(const RoseGraph &g, build_context &bc) {
vector<u32> lb_roles;
for (auto v : vertices_range(g)) {
if (!hasLastByteHistorySucc(g, v)) {
continue;
}
// Eager EOD reporters won't have state indices.
auto it = bc.roleStateIndices.find(v);
if (it != end(bc.roleStateIndices)) {
lb_roles.push_back(it->second);
}
}
if (lb_roles.empty()) {
return 0; /* invalid offset */
}
vector<mmbit_sparse_iter> iter;
mmbBuildSparseIterator(iter, lb_roles, bc.numStates);
return bc.engine_blob.add_iterator(iter);
}
static
void enforceEngineSizeLimit(const NFA *n, const size_t nfa_size, const Grey &grey) {
// Global limit.
if (nfa_size > grey.limitEngineSize) {
throw ResourceLimitError();
}
// Type-specific limit checks follow.
if (isDfaType(n->type)) {
if (nfa_size > grey.limitDFASize) {
throw ResourceLimitError();
}
} else if (isNfaType(n->type)) {
if (nfa_size > grey.limitNFASize) {
throw ResourceLimitError();
}
} else if (isLbrType(n->type)) {
if (nfa_size > grey.limitLBRSize) {
throw ResourceLimitError();
}
}
}
static
u32 findMinFloatingLiteralMatch(const RoseBuildImpl &build,
const vector<raw_dfa> &anchored_dfas) {
if (anchored_dfas.size() > 1) {
DEBUG_PRINTF("multiple anchored dfas\n");
/* We must regard matches from other anchored tables as unordered, as
* we do for floating matches. */
return 1;
}
const RoseGraph &g = build.g;
u32 minWidth = ROSE_BOUND_INF;
for (auto v : vertices_range(g)) {
if (build.isAnchored(v) || build.isVirtualVertex(v)) {
DEBUG_PRINTF("skipping %zu anchored or root\n", g[v].index);
continue;
}
u32 w = g[v].min_offset;
DEBUG_PRINTF("%zu m_o = %u\n", g[v].index, w);
if (w < minWidth) {
minWidth = w;
}
}
return minWidth;
}
static
void buildSuffixEkeyLists(const RoseBuildImpl &tbi, build_context &bc,
const QueueIndexFactory &qif,
vector<u32> *out) {
out->resize(qif.allocated_count());
map<u32, vector<u32> > qi_to_ekeys; /* for determinism */
for (const auto &e : bc.suffixes) {
const suffix_id &s = e.first;
u32 qi = e.second;
set<u32> ekeys = reportsToEkeys(all_reports(s), tbi.rm);
if (!ekeys.empty()) {
qi_to_ekeys[qi] = {ekeys.begin(), ekeys.end()};
}
}
/* for each outfix also build elists */
for (const auto &outfix : tbi.outfixes) {
u32 qi = outfix.get_queue();
set<u32> ekeys = reportsToEkeys(all_reports(outfix), tbi.rm);
if (!ekeys.empty()) {
qi_to_ekeys[qi] = {ekeys.begin(), ekeys.end()};
}
}
for (auto &e : qi_to_ekeys) {
assert(!e.second.empty());
e.second.push_back(INVALID_EKEY); /* terminator */
(*out)[e.first] = bc.engine_blob.add(e.second.begin(),
e.second.end());
}
}
/** Returns sparse iter offset in engine blob. */
static
u32 buildEodNfaIterator(build_context &bc, const u32 activeQueueCount) {
vector<u32> keys;
for (u32 qi = 0; qi < activeQueueCount; ++qi) {
const NFA *n = get_nfa_from_blob(bc, qi);
if (nfaAcceptsEod(n)) {
DEBUG_PRINTF("nfa qi=%u accepts eod\n", qi);
keys.push_back(qi);
}
}
if (keys.empty()) {
return 0;
}
DEBUG_PRINTF("building iter for %zu nfas\n", keys.size());
vector<mmbit_sparse_iter> iter;
mmbBuildSparseIterator(iter, keys, activeQueueCount);
return bc.engine_blob.add_iterator(iter);
}
static
bool hasMpvTrigger(const set<u32> &reports, const ReportManager &rm) {
for (u32 r : reports) {
if (rm.getReport(r).type == INTERNAL_ROSE_CHAIN) {
return true;
}
}
return false;
}
static
bool anyEndfixMpvTriggers(const RoseBuildImpl &tbi) {
const RoseGraph &g = tbi.g;
ue2::unordered_set<suffix_id> done;
/* suffixes */
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
if (contains(done, g[v].suffix)) {
continue; /* already done */
}
done.insert(g[v].suffix);
if (hasMpvTrigger(all_reports(g[v].suffix), tbi.rm)) {
return true;
}
}
/* outfixes */
for (const auto &out : tbi.outfixes) {
if (hasMpvTrigger(all_reports(out), tbi.rm)) {
return true;
}
}
return false;
}
static
void populateNfaInfoBasics(const RoseBuildImpl &build, const build_context &bc,
const vector<OutfixInfo> &outfixes,
const vector<u32> &ekeyListOffsets,
const set<u32> &no_retrigger_queues,
NfaInfo *infos) {
const u32 num_queues = build.qif.allocated_count();
for (u32 qi = 0; qi < num_queues; qi++) {
const NFA *n = get_nfa_from_blob(bc, qi);
enforceEngineSizeLimit(n, n->length, build.cc.grey);
NfaInfo &info = infos[qi];
info.nfaOffset = bc.engineOffsets.at(qi);
info.ekeyListOffset = ekeyListOffsets[qi];
info.no_retrigger = contains(no_retrigger_queues, qi) ? 1 : 0;
}
// Mark outfixes that are in the small block matcher.
for (const auto &out : outfixes) {
const u32 qi = out.get_queue();
infos[qi].in_sbmatcher = out.in_sbmatcher;
}
// Mark suffixes triggered by EOD table literals.
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
u32 qi = bc.suffixes.at(g[v].suffix);
if (build.isInETable(v)) {
infos[qi].eod = 1;
}
}
}
struct DerivedBoundaryReports {
explicit DerivedBoundaryReports(const BoundaryReports &boundary) {
insert(&report_at_0_eod_full, boundary.report_at_0_eod);
insert(&report_at_0_eod_full, boundary.report_at_eod);
insert(&report_at_0_eod_full, boundary.report_at_0);
}
set<ReportID> report_at_0_eod_full;
};
static
void prepSomRevNfas(const SomSlotManager &ssm, u32 *rev_nfa_table_offset,
vector<u32> *nfa_offsets, u32 *currOffset) {
const deque<aligned_unique_ptr<NFA>> &nfas = ssm.getRevNfas();
*currOffset = ROUNDUP_N(*currOffset, alignof(u32));
*rev_nfa_table_offset = *currOffset;
*currOffset += sizeof(u32) * nfas.size();
*currOffset = ROUNDUP_CL(*currOffset);
for (const auto &n : nfas) {
u32 bs_offset;
bs_offset = *currOffset;
nfa_offsets->push_back(bs_offset);
*currOffset += ROUNDUP_CL(n->length);
/* note: som rev nfas don't need a queue assigned as only run in block
* mode reverse */
}
assert(nfa_offsets->size() == nfas.size());
}
static
void fillInSomRevNfas(RoseEngine *engine, const SomSlotManager &ssm,
u32 rev_nfa_table_offset,
const vector<u32> &nfa_offsets) {
const deque<aligned_unique_ptr<NFA>> &nfas = ssm.getRevNfas();
assert(nfa_offsets.size() == nfas.size());
engine->somRevCount = (u32)nfas.size();
engine->somRevOffsetOffset = rev_nfa_table_offset;
if (nfas.empty()) {
return;
}
char *out = (char *)engine + rev_nfa_table_offset;
size_t table_size = sizeof(u32) * nfa_offsets.size();
memcpy(out, nfa_offsets.data(), table_size);
out = (char *)engine + ROUNDUP_CL(rev_nfa_table_offset + table_size);
// Write the SOM reverse NFAs into place.
UNUSED size_t i = 0;
for (const auto &n : nfas) {
assert(n != nullptr);
assert(out == (char *)engine + nfa_offsets[i]);
memcpy(out, n.get(), n->length);
out += ROUNDUP_CL(n->length);
DEBUG_PRINTF("wrote som rev nfa with len %u\n", n->length);
++i;
}
}
static
vector<const rose_literal_info *>
getLiteralInfoByFinalId(const RoseBuildImpl &build, u32 final_id) {
vector<const rose_literal_info *> out;
const auto &final_id_to_literal = build.final_id_to_literal;
assert(contains(final_id_to_literal, final_id));
const auto &lits = final_id_to_literal.find(final_id)->second;
assert(!lits.empty());
for (const auto &lit_id : lits) {
const rose_literal_info &li = build.literal_info[lit_id];
assert(li.final_id == final_id);
out.push_back(&li);
}
return out;
}
static
void applyFinalSpecialisation(RoseProgram &program) {
assert(!program.empty());
assert(program.back().code() == ROSE_INSTR_END);
if (program.size() < 2) {
return;
}
/* Replace the second-to-last instruction (before END) with a one-shot
* specialisation if available. */
auto it = next(program.rbegin());
if (auto *ri = dynamic_cast<const RoseInstrReport *>(it->get())) {
DEBUG_PRINTF("replacing REPORT with FINAL_REPORT\n");
program.replace(it, make_unique<RoseInstrFinalReport>(
ri->onmatch, ri->offset_adjust));
}
}
static
void recordResources(RoseResources &resources, const RoseProgram &program) {
for (const auto &ri : program) {
switch (ri->code()) {
case ROSE_INSTR_TRIGGER_SUFFIX:
resources.has_suffixes = true;
break;
case ROSE_INSTR_TRIGGER_INFIX:
case ROSE_INSTR_CHECK_INFIX:
case ROSE_INSTR_CHECK_PREFIX:
case ROSE_INSTR_SOM_LEFTFIX:
resources.has_leftfixes = true;
break;
case ROSE_INSTR_SET_STATE:
case ROSE_INSTR_CHECK_STATE:
case ROSE_INSTR_SPARSE_ITER_BEGIN:
case ROSE_INSTR_SPARSE_ITER_NEXT:
resources.has_states = true;
break;
case ROSE_INSTR_CHECK_GROUPS:
resources.checks_groups = true;
break;
case ROSE_INSTR_PUSH_DELAYED:
resources.has_lit_delay = true;
break;
case ROSE_INSTR_CHECK_LONG_LIT:
case ROSE_INSTR_CHECK_LONG_LIT_NOCASE:
resources.has_lit_check = true;
break;
default:
break;
}
}
}
static
void recordResources(RoseResources &resources,
const RoseBuildImpl &build) {
if (!build.outfixes.empty()) {
resources.has_outfixes = true;
}
for (u32 i = 0; i < build.literal_info.size(); i++) {
if (build.hasFinalId(i)) {
resources.has_literals = true;
break;
}
}
const auto &g = build.g;
for (const auto &v : vertices_range(g)) {
if (g[v].eod_accept) {
resources.has_eod = true;
break;
}
if (g[v].suffix && has_eod_accepts(g[v].suffix)) {
resources.has_eod = true;
break;
}
}
}
static
void recordLongLiterals(build_context &bc, const RoseProgram &program) {
for (const auto &ri : program) {
if (const auto *ri_check =
dynamic_cast<const RoseInstrCheckLongLit *>(ri.get())) {
DEBUG_PRINTF("found CHECK_LONG_LIT for string '%s'\n",
escapeString(ri_check->literal).c_str());
bc.longLiterals.emplace_back(ri_check->literal, false);
continue;
}
if (const auto *ri_check =
dynamic_cast<const RoseInstrCheckLongLitNocase *>(ri.get())) {
DEBUG_PRINTF("found CHECK_LONG_LIT_NOCASE for string '%s'\n",
escapeString(ri_check->literal).c_str());
bc.longLiterals.emplace_back(ri_check->literal, true);
}
}
}
static
u32 writeProgram(build_context &bc, RoseProgram &&program) {
if (program.empty()) {
DEBUG_PRINTF("no program\n");
return 0;
}
auto it = bc.program_cache.find(program);
if (it != end(bc.program_cache)) {
DEBUG_PRINTF("reusing cached program at %u\n", it->second);
return it->second;
}
recordResources(bc.resources, program);
recordLongLiterals(bc, program);
u32 len = 0;
auto prog_bytecode = writeProgram(bc.engine_blob, program, &len);
u32 offset = bc.engine_blob.add(prog_bytecode.get(), len,
ROSE_INSTR_MIN_ALIGN);
DEBUG_PRINTF("prog len %u written at offset %u\n", len, offset);
bc.program_cache.emplace(move(program), offset);
return offset;
}
static
void buildActiveLeftIter(const vector<LeftNfaInfo> &leftTable,
vector<mmbit_sparse_iter> &out) {
vector<u32> keys;
for (size_t i = 0; i < leftTable.size(); i++) {
if (!leftTable[i].transient) {
DEBUG_PRINTF("rose %zu is active\n", i);
keys.push_back(verify_u32(i));
}
}
DEBUG_PRINTF("%zu active roses\n", keys.size());
if (keys.empty()) {
out.clear();
return;
}
mmbBuildSparseIterator(out, keys, leftTable.size());
}
static
bool canEagerlyReportAtEod(const RoseBuildImpl &build, const RoseEdge &e) {
const auto &g = build.g;
const auto v = target(e, g);
if (!build.g[v].eod_accept) {
return false;
}
// If there's a graph between us and EOD, we shouldn't be eager.
if (build.g[v].left) {
return false;
}
// Must be exactly at EOD.
if (g[e].minBound != 0 || g[e].maxBound != 0) {
return false;
}
// In streaming mode, we can only eagerly report EOD for literals in the
// EOD-anchored table, as that's the only time we actually know where EOD
// is. In block mode, we always have this information.
const auto u = source(e, g);
if (build.cc.streaming && !build.isInETable(u)) {
return false;
}
return true;
}
static
bool hasEodAnchors(const RoseBuildImpl &build, const build_context &bc,
u32 outfixEndQueue) {
for (u32 i = 0; i < outfixEndQueue; i++) {
if (nfaAcceptsEod(get_nfa_from_blob(bc, i))) {
DEBUG_PRINTF("outfix has eod\n");
return true;
}
}
if (build.eod_event_literal_id != MO_INVALID_IDX) {
DEBUG_PRINTF("eod is an event to be celebrated\n");
return true;
}
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (g[v].eod_accept) {
DEBUG_PRINTF("literally report eod\n");
return true;
}
if (g[v].suffix && has_eod_accepts(g[v].suffix)) {
DEBUG_PRINTF("eod suffix\n");
return true;
}
}
DEBUG_PRINTF("yawn\n");
return false;
}
static
void fillLookaroundTables(char *look_base, char *reach_base,
const vector<LookEntry> &look_vec) {
DEBUG_PRINTF("%zu lookaround table entries\n", look_vec.size());
s8 *look = (s8 *)look_base;
u8 *reach = (u8 *)reach_base; // base for 256-bit bitvectors
for (const auto &le : look_vec) {
*look = verify_s8(le.offset);
const CharReach &cr = le.reach;
assert(cr.any()); // Should be at least one character!
fill_bitvector(cr, reach);
++look;
reach += REACH_BITVECTOR_LEN;
}
}
static
bool hasBoundaryReports(const BoundaryReports &boundary) {
if (!boundary.report_at_0.empty()) {
DEBUG_PRINTF("has boundary reports at 0\n");
return true;
}
if (!boundary.report_at_0_eod.empty()) {
DEBUG_PRINTF("has boundary reports at 0 eod\n");
return true;
}
if (!boundary.report_at_eod.empty()) {
DEBUG_PRINTF("has boundary reports at eod\n");
return true;
}
DEBUG_PRINTF("no boundary reports\n");
return false;
}
/**
* \brief True if the given vertex is a role that can only be switched on at
* EOD.
*/
static
bool onlyAtEod(const RoseBuildImpl &tbi, RoseVertex v) {
const RoseGraph &g = tbi.g;
// All such roles have only (0,0) edges to vertices with the eod_accept
// property, and no other effects (suffixes, ordinary reports, etc, etc).
if (isLeafNode(v, g) || !g[v].reports.empty() || g[v].suffix) {
return false;
}
for (const auto &e : out_edges_range(v, g)) {
RoseVertex w = target(e, g);
if (!g[w].eod_accept) {
return false;
}
assert(!g[w].reports.empty());
assert(g[w].literals.empty());
if (g[e].minBound || g[e].maxBound) {
return false;
}
}
/* There is no pointing enforcing this check at runtime if
* this role is only fired by the eod event literal */
if (tbi.eod_event_literal_id != MO_INVALID_IDX &&
g[v].literals.size() == 1 &&
*g[v].literals.begin() == tbi.eod_event_literal_id) {
return false;
}
return true;
}
static
u32 addLookaround(build_context &bc, const vector<LookEntry> &look) {
// Check the cache.
auto it = bc.lookaround_cache.find(look);
if (it != bc.lookaround_cache.end()) {
DEBUG_PRINTF("reusing look at idx %zu\n", it->second);
return verify_u32(it->second);
}
// Linear scan for sequence.
auto seq_it = search(begin(bc.lookaround), end(bc.lookaround), begin(look),
end(look));
if (seq_it != end(bc.lookaround)) {
size_t idx = distance(begin(bc.lookaround), seq_it);
DEBUG_PRINTF("linear scan found look at idx %zu\n", idx);
bc.lookaround_cache.emplace(look, idx);
return verify_u32(idx);
}
// New sequence.
size_t idx = bc.lookaround.size();
bc.lookaround_cache.emplace(look, idx);
insert(&bc.lookaround, bc.lookaround.end(), look);
DEBUG_PRINTF("adding look at idx %zu\n", idx);
return verify_u32(idx);
}
static
bool checkReachMask(const CharReach &cr, u8 &andmask, u8 &cmpmask) {
size_t reach_size = cr.count();
assert(reach_size > 0);
// check whether entry_size is some power of 2.
if ((reach_size - 1) & reach_size) {
return false;
}
make_and_cmp_mask(cr, &andmask, &cmpmask);
if ((1 << popcount32((u8)(~andmask))) ^ reach_size) {
return false;
}
return true;
}
static
bool checkReachWithFlip(const CharReach &cr, u8 &andmask,
u8 &cmpmask, u8 &flip) {
if (checkReachMask(cr, andmask, cmpmask)) {
flip = 0;
return true;
}
if (checkReachMask(~cr, andmask, cmpmask)) {
flip = 1;
return true;
}
return false;
}
static
bool makeRoleByte(const vector<LookEntry> &look, RoseProgram &program) {
if (look.size() == 1) {
const auto &entry = look[0];
u8 andmask_u8, cmpmask_u8;
u8 flip;
if (!checkReachWithFlip(entry.reach, andmask_u8, cmpmask_u8, flip)) {
return false;
}
s32 checkbyte_offset = verify_s32(entry.offset);
DEBUG_PRINTF("CHECK BYTE offset=%d\n", checkbyte_offset);
const auto *end_inst = program.end_instruction();
auto ri = make_unique<RoseInstrCheckByte>(andmask_u8, cmpmask_u8, flip,
checkbyte_offset, end_inst);
program.add_before_end(move(ri));
return true;
}
return false;
}
static
bool makeRoleMask(const vector<LookEntry> &look, RoseProgram &program) {
if (look.back().offset < look.front().offset + 8) {
s32 base_offset = verify_s32(look.front().offset);
u64a and_mask = 0;
u64a cmp_mask = 0;
u64a neg_mask = 0;
for (const auto &entry : look) {
u8 andmask_u8, cmpmask_u8, flip;
if (!checkReachWithFlip(entry.reach, andmask_u8,
cmpmask_u8, flip)) {
return false;
}
DEBUG_PRINTF("entry offset %d\n", entry.offset);
u32 shift = (entry.offset - base_offset) << 3;
and_mask |= (u64a)andmask_u8 << shift;
cmp_mask |= (u64a)cmpmask_u8 << shift;
if (flip) {
neg_mask |= 0xffLLU << shift;
}
}
DEBUG_PRINTF("CHECK MASK and_mask=%llx cmp_mask=%llx\n",
and_mask, cmp_mask);
const auto *end_inst = program.end_instruction();
auto ri = make_unique<RoseInstrCheckMask>(and_mask, cmp_mask, neg_mask,
base_offset, end_inst);
program.add_before_end(move(ri));
return true;
}
return false;
}
static UNUSED
string convertMaskstoString(u8 *p, int byte_len) {
string s;
for (int i = 0; i < byte_len; i++) {
u8 hi = *p >> 4;
u8 lo = *p & 0xf;
s += (char)(hi + (hi < 10 ? 48 : 87));
s += (char)(lo + (lo < 10 ? 48 : 87));
p++;
}
return s;
}
static
bool makeRoleMask32(const vector<LookEntry> &look,
RoseProgram &program) {
if (look.back().offset >= look.front().offset + 32) {
return false;
}
s32 base_offset = verify_s32(look.front().offset);
array<u8, 32> and_mask, cmp_mask;
and_mask.fill(0);
cmp_mask.fill(0);
u32 neg_mask = 0;
for (const auto &entry : look) {
u8 andmask_u8, cmpmask_u8, flip;
if (!checkReachWithFlip(entry.reach, andmask_u8,
cmpmask_u8, flip)) {
return false;
}
u32 shift = entry.offset - base_offset;
assert(shift < 32);
and_mask[shift] = andmask_u8;
cmp_mask[shift] = cmpmask_u8;
if (flip) {
neg_mask |= 1 << shift;
}
}
DEBUG_PRINTF("and_mask %s\n",
convertMaskstoString(and_mask.data(), 32).c_str());
DEBUG_PRINTF("cmp_mask %s\n",
convertMaskstoString(cmp_mask.data(), 32).c_str());
DEBUG_PRINTF("neg_mask %08x\n", neg_mask);
DEBUG_PRINTF("base_offset %d\n", base_offset);
const auto *end_inst = program.end_instruction();
auto ri = make_unique<RoseInstrCheckMask32>(and_mask, cmp_mask, neg_mask,
base_offset, end_inst);
program.add_before_end(move(ri));
return true;
}
// Sorting by the size of every bucket.
// Used in map<u32, vector<s8>, cmpNibble>.
struct cmpNibble {
bool operator()(const u32 data1, const u32 data2) const{
u32 size1 = popcount32(data1 >> 16) * popcount32(data1 << 16);
u32 size2 = popcount32(data2 >> 16) * popcount32(data2 << 16);
return std::tie(size1, data1) < std::tie(size2, data2);
}
};
// Insert all pairs of bucket and offset into buckets.
static really_inline
void getAllBuckets(const vector<LookEntry> &look,
map<u32, vector<s8>, cmpNibble> &buckets, u32 &neg_mask) {
s32 base_offset = verify_s32(look.front().offset);
for (const auto &entry : look) {
CharReach cr = entry.reach;
// Flip heavy character classes to save buckets.
if (cr.count() > 128 ) {
cr.flip();
} else {
neg_mask ^= 1 << (entry.offset - base_offset);
}
map <u16, u16> lo2hi;
// We treat Ascii Table as a 16x16 grid.
// Push every row in cr into lo2hi and mark the row number.
for (size_t i = cr.find_first(); i != CharReach::npos;) {
u8 it_hi = i >> 4;
u16 low_encode = 0;
while (i != CharReach::npos && (i >> 4) == it_hi) {
low_encode |= 1 << (i & 0xf);
i = cr.find_next(i);
}
lo2hi[low_encode] |= 1 << it_hi;
}
for (const auto &it : lo2hi) {
u32 hi_lo = (it.second << 16) | it.first;
buckets[hi_lo].push_back(entry.offset);
}
}
}
// Once we have a new bucket, we'll try to combine it with all old buckets.
static really_inline
void nibUpdate(map<u32, u16> &nib, u32 hi_lo) {
u16 hi = hi_lo >> 16;
u16 lo = hi_lo & 0xffff;
for (const auto pairs : nib) {
u32 old = pairs.first;
if ((old >> 16) == hi || (old & 0xffff) == lo) {
if (!nib[old | hi_lo]) {
nib[old | hi_lo] = nib[old] | nib[hi_lo];
}
}
}
}
static really_inline
void nibMaskUpdate(array<u8, 32> &mask, u32 data, u8 bit_index) {
for (u8 index = 0; data > 0; data >>= 1, index++) {
if (data & 1) {
// 0 ~ 7 bucket in first 16 bytes,
// 8 ~ 15 bucket in second 16 bytes.
if (bit_index >= 8) {
mask[index + 16] |= 1 << (bit_index - 8);
} else {
mask[index] |= 1 << bit_index;
}
}
}
}
static
bool makeRoleShufti(const vector<LookEntry> &look,
RoseProgram &program) {
s32 base_offset = verify_s32(look.front().offset);
if (look.back().offset >= base_offset + 32) {
return false;
}
array<u8, 32> hi_mask, lo_mask;
hi_mask.fill(0);
lo_mask.fill(0);
array<u8, 32> bucket_select_hi, bucket_select_lo;
bucket_select_hi.fill(0); // will not be used in 16x8 and 32x8.
bucket_select_lo.fill(0);
u8 bit_index = 0; // number of buckets
map<u32, u16> nib; // map every bucket to its bucket number.
map<u32, vector<s8>, cmpNibble> bucket2offsets;
u32 neg_mask = ~0u;
getAllBuckets(look, bucket2offsets, neg_mask);
for (const auto &it : bucket2offsets) {
u32 hi_lo = it.first;
// New bucket.
if (!nib[hi_lo]) {
if (bit_index >= 16) {
return false;
}
nib[hi_lo] = 1 << bit_index;
nibUpdate(nib, hi_lo);
nibMaskUpdate(hi_mask, hi_lo >> 16, bit_index);
nibMaskUpdate(lo_mask, hi_lo & 0xffff, bit_index);
bit_index++;
}
DEBUG_PRINTF("hi_lo %x bucket %x\n", hi_lo, nib[hi_lo]);
// Update bucket_select_mask.
u8 nib_hi = nib[hi_lo] >> 8;
u8 nib_lo = nib[hi_lo] & 0xff;
for (const auto offset : it.second) {
bucket_select_hi[offset - base_offset] |= nib_hi;
bucket_select_lo[offset - base_offset] |= nib_lo;
}
}
DEBUG_PRINTF("hi_mask %s\n",
convertMaskstoString(hi_mask.data(), 32).c_str());
DEBUG_PRINTF("lo_mask %s\n",
convertMaskstoString(lo_mask.data(), 32).c_str());
DEBUG_PRINTF("bucket_select_hi %s\n",
convertMaskstoString(bucket_select_hi.data(), 32).c_str());
DEBUG_PRINTF("bucket_select_lo %s\n",
convertMaskstoString(bucket_select_lo.data(), 32).c_str());
const auto *end_inst = program.end_instruction();
if (bit_index < 8) {
if (look.back().offset < base_offset + 16) {
neg_mask &= 0xffff;
array<u8, 32> nib_mask;
array<u8, 16> bucket_select_mask_16;
copy(lo_mask.begin(), lo_mask.begin() + 16, nib_mask.begin());
copy(hi_mask.begin(), hi_mask.begin() + 16, nib_mask.begin() + 16);
copy(bucket_select_lo.begin(), bucket_select_lo.begin() + 16,
bucket_select_mask_16.begin());
auto ri = make_unique<RoseInstrCheckShufti16x8>
(nib_mask, bucket_select_mask_16,
neg_mask, base_offset, end_inst);
program.add_before_end(move(ri));
} else {
array<u8, 16> hi_mask_16;
array<u8, 16> lo_mask_16;
copy(hi_mask.begin(), hi_mask.begin() + 16, hi_mask_16.begin());
copy(lo_mask.begin(), lo_mask.begin() + 16, lo_mask_16.begin());
auto ri = make_unique<RoseInstrCheckShufti32x8>
(hi_mask_16, lo_mask_16, bucket_select_lo,
neg_mask, base_offset, end_inst);
program.add_before_end(move(ri));
}
} else {
if (look.back().offset < base_offset + 16) {
neg_mask &= 0xffff;
array<u8, 32> bucket_select_mask_32;
copy(bucket_select_lo.begin(), bucket_select_lo.begin() + 16,
bucket_select_mask_32.begin());
copy(bucket_select_hi.begin(), bucket_select_hi.begin() + 16,
bucket_select_mask_32.begin() + 16);
auto ri = make_unique<RoseInstrCheckShufti16x16>
(hi_mask, lo_mask, bucket_select_mask_32,
neg_mask, base_offset, end_inst);
program.add_before_end(move(ri));
} else {
auto ri = make_unique<RoseInstrCheckShufti32x16>
(hi_mask, lo_mask, bucket_select_hi, bucket_select_lo,
neg_mask, base_offset, end_inst);
program.add_before_end(move(ri));
}
}
return true;
}
/**
* Builds a lookaround instruction, or an appropriate specialization if one is
* available.
*/
static
void makeLookaroundInstruction(build_context &bc, const vector<LookEntry> &look,
RoseProgram &program) {
assert(!look.empty());
if (makeRoleByte(look, program)) {
return;
}
if (look.size() == 1) {
s8 offset = look.begin()->offset;
u32 look_idx = addLookaround(bc, look);
auto ri = make_unique<RoseInstrCheckSingleLookaround>(offset, look_idx,
program.end_instruction());
program.add_before_end(move(ri));
return;
}
if (makeRoleMask(look, program)) {
return;
}
if (makeRoleMask32(look, program)) {
return;
}
if (makeRoleShufti(look, program)) {
return;
}
u32 look_idx = addLookaround(bc, look);
u32 look_count = verify_u32(look.size());
auto ri = make_unique<RoseInstrCheckLookaround>(look_idx, look_count,
program.end_instruction());
program.add_before_end(move(ri));
}
static
void makeRoleLookaround(RoseBuildImpl &build, build_context &bc, RoseVertex v,
RoseProgram &program) {
if (!build.cc.grey.roseLookaroundMasks) {
return;
}
vector<LookEntry> look;
// Lookaround from leftfix (mandatory).
if (contains(bc.leftfix_info, v) && bc.leftfix_info.at(v).has_lookaround) {
DEBUG_PRINTF("using leftfix lookaround\n");
look = bc.leftfix_info.at(v).lookaround;
}
// We may be able to find more lookaround info (advisory) and merge it
// in.
vector<LookEntry> look_more;
findLookaroundMasks(build, v, look_more);
mergeLookaround(look, look_more);
if (look.empty()) {
return;
}
makeLookaroundInstruction(bc, look, program);
}
static
void makeRoleCheckLeftfix(RoseBuildImpl &build, build_context &bc, RoseVertex v,
RoseProgram &program) {
auto it = bc.leftfix_info.find(v);
if (it == end(bc.leftfix_info)) {
return;
}
const left_build_info &lni = it->second;
if (lni.has_lookaround) {
return; // Leftfix completely implemented by lookaround.
}
assert(!build.cc.streaming ||
build.g[v].left.lag <= MAX_STORED_LEFTFIX_LAG);
bool is_prefix = build.isRootSuccessor(v);
const auto *end_inst = program.end_instruction();
unique_ptr<RoseInstruction> ri;
if (is_prefix) {
ri = make_unique<RoseInstrCheckPrefix>(lni.queue, build.g[v].left.lag,
build.g[v].left.leftfix_report,
end_inst);
} else {
ri = make_unique<RoseInstrCheckInfix>(lni.queue, build.g[v].left.lag,
build.g[v].left.leftfix_report,
end_inst);
}
program.add_before_end(move(ri));
}
static
void makeRoleAnchoredDelay(RoseBuildImpl &build, build_context &bc,
RoseVertex v, RoseProgram &program) {
// Only relevant for roles that can be triggered by the anchored table.
if (!build.isAnchored(v)) {
return;
}
// If this match cannot occur after floatingMinLiteralMatchOffset, we do
// not need this check.
if (build.g[v].max_offset <= bc.floatingMinLiteralMatchOffset) {
return;
}
const auto *end_inst = program.end_instruction();
auto ri = make_unique<RoseInstrAnchoredDelay>(build.g[v].groups, end_inst);
program.add_before_end(move(ri));
}
static
void makeDedupe(const RoseBuildImpl &build, const Report &report,
RoseProgram &program) {
const auto *end_inst = program.end_instruction();
auto ri =
make_unique<RoseInstrDedupe>(report.quashSom, build.rm.getDkey(report),
report.offsetAdjust, end_inst);
program.add_before_end(move(ri));
}
static
void makeDedupeSom(const RoseBuildImpl &build, const Report &report,
RoseProgram &program) {
const auto *end_inst = program.end_instruction();
auto ri = make_unique<RoseInstrDedupeSom>(report.quashSom,
build.rm.getDkey(report),
report.offsetAdjust, end_inst);
program.add_before_end(move(ri));
}
static
void makeCatchup(RoseBuildImpl &build, build_context &bc,
const flat_set<ReportID> &reports, RoseProgram &program) {
if (!bc.needs_catchup) {
return;
}
// Everything except the INTERNAL_ROSE_CHAIN report needs catchup to run
// before reports are triggered.
auto report_needs_catchup = [&](const ReportID &id) {
const Report &report = build.rm.getReport(id);
return report.type != INTERNAL_ROSE_CHAIN;
};
if (!any_of(begin(reports), end(reports), report_needs_catchup)) {
DEBUG_PRINTF("none of the given reports needs catchup\n");
return;
}
program.add_before_end(make_unique<RoseInstrCatchUp>());
}
static
void makeCatchupMpv(RoseBuildImpl &build, build_context &bc, ReportID id,
RoseProgram &program) {
if (!bc.needs_mpv_catchup) {
return;
}
const Report &report = build.rm.getReport(id);
if (report.type == INTERNAL_ROSE_CHAIN) {
return;
}
program.add_before_end(make_unique<RoseInstrCatchUpMpv>());
}
static
void writeSomOperation(const Report &report, som_operation *op) {
assert(op);
memset(op, 0, sizeof(*op));
switch (report.type) {
case EXTERNAL_CALLBACK_SOM_REL:
op->type = SOM_EXTERNAL_CALLBACK_REL;
break;
case INTERNAL_SOM_LOC_SET:
op->type = SOM_INTERNAL_LOC_SET;
break;
case INTERNAL_SOM_LOC_SET_IF_UNSET:
op->type = SOM_INTERNAL_LOC_SET_IF_UNSET;
break;
case INTERNAL_SOM_LOC_SET_IF_WRITABLE:
op->type = SOM_INTERNAL_LOC_SET_IF_WRITABLE;
break;
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA:
op->type = SOM_INTERNAL_LOC_SET_REV_NFA;
break;
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA_IF_UNSET:
op->type = SOM_INTERNAL_LOC_SET_REV_NFA_IF_UNSET;
break;
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA_IF_WRITABLE:
op->type = SOM_INTERNAL_LOC_SET_REV_NFA_IF_WRITABLE;
break;
case INTERNAL_SOM_LOC_COPY:
op->type = SOM_INTERNAL_LOC_COPY;
break;
case INTERNAL_SOM_LOC_COPY_IF_WRITABLE:
op->type = SOM_INTERNAL_LOC_COPY_IF_WRITABLE;
break;
case INTERNAL_SOM_LOC_MAKE_WRITABLE:
op->type = SOM_INTERNAL_LOC_MAKE_WRITABLE;
break;
case EXTERNAL_CALLBACK_SOM_STORED:
op->type = SOM_EXTERNAL_CALLBACK_STORED;
break;
case EXTERNAL_CALLBACK_SOM_ABS:
op->type = SOM_EXTERNAL_CALLBACK_ABS;
break;
case EXTERNAL_CALLBACK_SOM_REV_NFA:
op->type = SOM_EXTERNAL_CALLBACK_REV_NFA;
break;
case INTERNAL_SOM_LOC_SET_FROM:
op->type = SOM_INTERNAL_LOC_SET_FROM;
break;
case INTERNAL_SOM_LOC_SET_FROM_IF_WRITABLE:
op->type = SOM_INTERNAL_LOC_SET_FROM_IF_WRITABLE;
break;
default:
// This report doesn't correspond to a SOM operation.
assert(0);
throw CompileError("Unable to generate bytecode.");
}
op->onmatch = report.onmatch;
switch (report.type) {
case EXTERNAL_CALLBACK_SOM_REV_NFA:
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA:
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA_IF_UNSET:
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA_IF_WRITABLE:
op->aux.revNfaIndex = report.revNfaIndex;
break;
default:
op->aux.somDistance = report.somDistance;
break;
}
}
static
void makeReport(RoseBuildImpl &build, const ReportID id,
const bool has_som, RoseProgram &program) {
assert(id < build.rm.numReports());
const Report &report = build.rm.getReport(id);
RoseProgram report_block;
const RoseInstruction *end_inst = report_block.end_instruction();
// Handle min/max offset checks.
if (report.minOffset > 0 || report.maxOffset < MAX_OFFSET) {
auto ri = make_unique<RoseInstrCheckBounds>(report.minOffset,
report.maxOffset, end_inst);
report_block.add_before_end(move(ri));
}
// If this report has an exhaustion key, we can check it in the program
// rather than waiting until we're in the callback adaptor.
if (report.ekey != INVALID_EKEY) {
auto ri = make_unique<RoseInstrCheckExhausted>(report.ekey, end_inst);
report_block.add_before_end(move(ri));
}
// External SOM reports that aren't passthrough need their SOM value
// calculated.
if (isExternalSomReport(report) &&
report.type != EXTERNAL_CALLBACK_SOM_PASS) {
auto ri = make_unique<RoseInstrSomFromReport>();
writeSomOperation(report, &ri->som);
report_block.add_before_end(move(ri));
}
// Min length constraint.
if (report.minLength > 0) {
assert(build.hasSom);
auto ri = make_unique<RoseInstrCheckMinLength>(
report.offsetAdjust, report.minLength, end_inst);
report_block.add_before_end(move(ri));
}
if (report.quashSom) {
report_block.add_before_end(make_unique<RoseInstrSomZero>());
}
switch (report.type) {
case EXTERNAL_CALLBACK:
if (!has_som) {
// Dedupe is only necessary if this report has a dkey, or if there
// are SOM reports to catch up.
bool needs_dedupe = build.rm.getDkey(report) != ~0U || build.hasSom;
if (report.ekey == INVALID_EKEY) {
if (needs_dedupe) {
report_block.add_before_end(
make_unique<RoseInstrDedupeAndReport>(
report.quashSom, build.rm.getDkey(report),
report.onmatch, report.offsetAdjust, end_inst));
} else {
report_block.add_before_end(make_unique<RoseInstrReport>(
report.onmatch, report.offsetAdjust));
}
} else {
if (needs_dedupe) {
makeDedupe(build, report, report_block);
}
report_block.add_before_end(make_unique<RoseInstrReportExhaust>(
report.onmatch, report.offsetAdjust, report.ekey));
}
} else { // has_som
makeDedupeSom(build, report, report_block);
if (report.ekey == INVALID_EKEY) {
report_block.add_before_end(make_unique<RoseInstrReportSom>(
report.onmatch, report.offsetAdjust));
} else {
report_block.add_before_end(
make_unique<RoseInstrReportSomExhaust>(
report.onmatch, report.offsetAdjust, report.ekey));
}
}
break;
case INTERNAL_SOM_LOC_SET:
case INTERNAL_SOM_LOC_SET_IF_UNSET:
case INTERNAL_SOM_LOC_SET_IF_WRITABLE:
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA:
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA_IF_UNSET:
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA_IF_WRITABLE:
case INTERNAL_SOM_LOC_COPY:
case INTERNAL_SOM_LOC_COPY_IF_WRITABLE:
case INTERNAL_SOM_LOC_MAKE_WRITABLE:
case INTERNAL_SOM_LOC_SET_FROM:
case INTERNAL_SOM_LOC_SET_FROM_IF_WRITABLE:
if (has_som) {
auto ri = make_unique<RoseInstrReportSomAware>();
writeSomOperation(report, &ri->som);
report_block.add_before_end(move(ri));
} else {
auto ri = make_unique<RoseInstrReportSomInt>();
writeSomOperation(report, &ri->som);
report_block.add_before_end(move(ri));
}
break;
case INTERNAL_ROSE_CHAIN: {
report_block.add_before_end(make_unique<RoseInstrReportChain>(
report.onmatch, report.topSquashDistance));
break;
}
case EXTERNAL_CALLBACK_SOM_REL:
case EXTERNAL_CALLBACK_SOM_STORED:
case EXTERNAL_CALLBACK_SOM_ABS:
case EXTERNAL_CALLBACK_SOM_REV_NFA:
makeDedupeSom(build, report, report_block);
if (report.ekey == INVALID_EKEY) {
report_block.add_before_end(make_unique<RoseInstrReportSom>(
report.onmatch, report.offsetAdjust));
} else {
report_block.add_before_end(make_unique<RoseInstrReportSomExhaust>(
report.onmatch, report.offsetAdjust, report.ekey));
}
break;
case EXTERNAL_CALLBACK_SOM_PASS:
makeDedupeSom(build, report, report_block);
if (report.ekey == INVALID_EKEY) {
report_block.add_before_end(make_unique<RoseInstrReportSom>(
report.onmatch, report.offsetAdjust));
} else {
report_block.add_before_end(make_unique<RoseInstrReportSomExhaust>(
report.onmatch, report.offsetAdjust, report.ekey));
}
break;
default:
assert(0);
throw CompileError("Unable to generate bytecode.");
}
assert(!report_block.empty());
program.add_block(move(report_block));
}
static
void makeRoleReports(RoseBuildImpl &build, build_context &bc, RoseVertex v,
RoseProgram &program) {
const auto &g = build.g;
/* we are a suffaig - need to update role to provide som to the
* suffix. */
bool has_som = false;
if (g[v].left.tracksSom()) {
assert(contains(bc.leftfix_info, v));
const left_build_info &lni = bc.leftfix_info.at(v);
program.add_before_end(
make_unique<RoseInstrSomLeftfix>(lni.queue, g[v].left.lag));
has_som = true;
} else if (g[v].som_adjust) {
program.add_before_end(
make_unique<RoseInstrSomAdjust>(g[v].som_adjust));
has_som = true;
}
const auto &reports = g[v].reports;
makeCatchup(build, bc, reports, program);
RoseProgram report_block;
for (ReportID id : reports) {
makeReport(build, id, has_som, report_block);
}
program.add_before_end(move(report_block));
}
static
void makeRoleSuffix(RoseBuildImpl &build, build_context &bc, RoseVertex v,
RoseProgram &program) {
const auto &g = build.g;
if (!g[v].suffix) {
return;
}
assert(contains(bc.suffixes, g[v].suffix));
u32 qi = bc.suffixes.at(g[v].suffix);
assert(contains(bc.engineOffsets, qi));
const NFA *nfa = get_nfa_from_blob(bc, qi);
u32 suffixEvent;
if (isContainerType(nfa->type)) {
auto tamaProto = g[v].suffix.tamarama.get();
assert(tamaProto);
u32 top = (u32)MQE_TOP_FIRST +
tamaProto->top_remap.at(make_pair(g[v].index,
g[v].suffix.top));
assert(top < MQE_INVALID);
suffixEvent = top;
} else if (isMultiTopType(nfa->type)) {
assert(!g[v].suffix.haig);
u32 top = (u32)MQE_TOP_FIRST + g[v].suffix.top;
assert(top < MQE_INVALID);
suffixEvent = top;
} else {
// DFAs/Puffs have no MQE_TOP_N support, so they get a classic TOP
// event.
assert(!g[v].suffix.graph || onlyOneTop(*g[v].suffix.graph));
suffixEvent = MQE_TOP;
}
program.add_before_end(
make_unique<RoseInstrTriggerSuffix>(qi, suffixEvent));
}
static
void makeRoleGroups(RoseBuildImpl &build, build_context &bc, RoseVertex v,
RoseProgram &program) {
const auto &g = build.g;
rose_group groups = g[v].groups;
if (!groups) {
return;
}
// The set of "already on" groups as we process this vertex is the
// intersection of the groups set by our predecessors.
assert(in_degree(v, g) > 0);
rose_group already_on = ~rose_group{0};
for (const auto &u : inv_adjacent_vertices_range(v, g)) {
already_on &= bc.vertex_group_map.at(u);
}
DEBUG_PRINTF("already_on=0x%llx\n", already_on);
DEBUG_PRINTF("squashable=0x%llx\n", bc.squashable_groups);
DEBUG_PRINTF("groups=0x%llx\n", groups);
already_on &= ~bc.squashable_groups;
DEBUG_PRINTF("squashed already_on=0x%llx\n", already_on);
// We don't *have* to mask off the groups that we know are already on, but
// this will make bugs more apparent.
groups &= ~already_on;
if (!groups) {
DEBUG_PRINTF("no new groups to set, skipping\n");
return;
}
program.add_before_end(make_unique<RoseInstrSetGroups>(groups));
}
static
void makeRoleInfixTriggers(RoseBuildImpl &build, build_context &bc,
RoseVertex u, RoseProgram &program) {
const auto &g = build.g;
vector<RoseInstrTriggerInfix> infix_program;
for (const auto &e : out_edges_range(u, g)) {
RoseVertex v = target(e, g);
if (!g[v].left) {
continue;
}
assert(contains(bc.leftfix_info, v));
const left_build_info &lbi = bc.leftfix_info.at(v);
if (lbi.has_lookaround) {
continue;
}
const NFA *nfa = get_nfa_from_blob(bc, lbi.queue);
// DFAs have no TOP_N support, so they get a classic MQE_TOP event.
u32 top;
if (isContainerType(nfa->type)) {
auto tamaProto = g[v].left.tamarama.get();
assert(tamaProto);
top = MQE_TOP_FIRST + tamaProto->top_remap.at(
make_pair(g[v].index, g[e].rose_top));
assert(top < MQE_INVALID);
} else if (!isMultiTopType(nfa->type)) {
assert(num_tops(g[v].left) == 1);
top = MQE_TOP;
} else {
top = MQE_TOP_FIRST + g[e].rose_top;
assert(top < MQE_INVALID);
}
infix_program.emplace_back(g[e].rose_cancel_prev_top, lbi.queue, top);
}
if (infix_program.empty()) {
return;
}
// Order, de-dupe and add instructions to the end of program.
sort(begin(infix_program), end(infix_program),
[](const RoseInstrTriggerInfix &a, const RoseInstrTriggerInfix &b) {
return tie(a.cancel, a.queue, a.event) <
tie(b.cancel, b.queue, b.event);
});
infix_program.erase(unique(begin(infix_program), end(infix_program)),
end(infix_program));
for (const auto &ri : infix_program) {
program.add_before_end(make_unique<RoseInstrTriggerInfix>(ri));
}
}
static
void makeRoleSetState(const build_context &bc, RoseVertex v,
RoseProgram &program) {
// We only need this instruction if a state index has been assigned to this
// vertex.
auto it = bc.roleStateIndices.find(v);
if (it == end(bc.roleStateIndices)) {
return;
}
program.add_before_end(make_unique<RoseInstrSetState>(it->second));
}
static
void makeRoleCheckBounds(const RoseBuildImpl &build, RoseVertex v,
const RoseEdge &e, RoseProgram &program) {
const RoseGraph &g = build.g;
const RoseVertex u = source(e, g);
// We know that we can trust the anchored table (DFA) to always deliver us
// literals at the correct offset.
if (build.isAnchored(v)) {
DEBUG_PRINTF("literal in anchored table, skipping bounds check\n");
return;
}
// Use the minimum literal length.
u32 lit_length = g[v].eod_accept ? 0 : verify_u32(build.minLiteralLen(v));
u64a min_bound = g[e].minBound + lit_length;
u64a max_bound = g[e].maxBound == ROSE_BOUND_INF
? ROSE_BOUND_INF
: g[e].maxBound + lit_length;
if (g[e].history == ROSE_ROLE_HISTORY_ANCH) {
assert(g[u].fixedOffset());
// Make offsets absolute.
min_bound += g[u].max_offset;
if (max_bound != ROSE_BOUND_INF) {
max_bound += g[u].max_offset;
}
}
assert(max_bound <= ROSE_BOUND_INF);
assert(min_bound <= max_bound);
// CHECK_BOUNDS instruction uses 64-bit bounds, so we can use MAX_OFFSET
// (max value of a u64a) to represent ROSE_BOUND_INF.
if (max_bound == ROSE_BOUND_INF) {
max_bound = MAX_OFFSET;
}
// This instruction should be doing _something_ -- bounds should be tighter
// than just {length, inf}.
assert(min_bound > lit_length || max_bound < MAX_OFFSET);
const auto *end_inst = program.end_instruction();
program.add_before_end(
make_unique<RoseInstrCheckBounds>(min_bound, max_bound, end_inst));
}
static
void makeRoleCheckNotHandled(build_context &bc, RoseVertex v,
RoseProgram &program) {
u32 handled_key;
if (contains(bc.handledKeys, v)) {
handled_key = bc.handledKeys.at(v);
} else {
handled_key = verify_u32(bc.handledKeys.size());
bc.handledKeys.emplace(v, handled_key);
}
const auto *end_inst = program.end_instruction();
auto ri = make_unique<RoseInstrCheckNotHandled>(handled_key, end_inst);
program.add_before_end(move(ri));
}
static
void makeRoleEagerEodReports(RoseBuildImpl &build, build_context &bc,
RoseVertex v, RoseProgram &program) {
RoseProgram eod_program;
for (const auto &e : out_edges_range(v, build.g)) {
if (canEagerlyReportAtEod(build, e)) {
RoseProgram block;
makeRoleReports(build, bc, target(e, build.g), block);
eod_program.add_block(move(block));
}
}
if (eod_program.empty()) {
return;
}
if (!onlyAtEod(build, v)) {
// The rest of our program wasn't EOD anchored, so we need to guard
// these reports with a check.
const auto *end_inst = eod_program.end_instruction();
eod_program.insert(begin(eod_program),
make_unique<RoseInstrCheckOnlyEod>(end_inst));
}
program.add_before_end(move(eod_program));
}
static
RoseProgram makeProgram(RoseBuildImpl &build, build_context &bc,
const RoseEdge &e) {
const RoseGraph &g = build.g;
auto v = target(e, g);
RoseProgram program;
// First, add program instructions that enforce preconditions without
// effects.
makeRoleAnchoredDelay(build, bc, v, program);
if (onlyAtEod(build, v)) {
DEBUG_PRINTF("only at eod\n");
const auto *end_inst = program.end_instruction();
program.add_before_end(make_unique<RoseInstrCheckOnlyEod>(end_inst));
}
if (g[e].history == ROSE_ROLE_HISTORY_ANCH) {
makeRoleCheckBounds(build, v, e, program);
}
// This program may be triggered by different predecessors, with different
// offset bounds. We must ensure we put this check/set operation after the
// bounds check to deal with this case.
if (in_degree(v, g) > 1) {
makeRoleCheckNotHandled(bc, v, program);
}
makeRoleLookaround(build, bc, v, program);
makeRoleCheckLeftfix(build, bc, v, program);
// Next, we can add program instructions that have effects. This must be
// done as a series of blocks, as some of them (like reports) are
// escapable.
RoseProgram effects_block;
RoseProgram reports_block;
makeRoleReports(build, bc, v, reports_block);
effects_block.add_block(move(reports_block));
RoseProgram infix_block;
makeRoleInfixTriggers(build, bc, v, infix_block);
effects_block.add_block(move(infix_block));
// Note: SET_GROUPS instruction must be after infix triggers, as an infix
// going dead may switch off groups.
RoseProgram groups_block;
makeRoleGroups(build, bc, v, groups_block);
effects_block.add_block(move(groups_block));
RoseProgram suffix_block;
makeRoleSuffix(build, bc, v, suffix_block);
effects_block.add_block(move(suffix_block));
RoseProgram state_block;
makeRoleSetState(bc, v, state_block);
effects_block.add_block(move(state_block));
// Note: EOD eager reports may generate a CHECK_ONLY_EOD instruction (if
// the program doesn't have one already).
RoseProgram eod_block;
makeRoleEagerEodReports(build, bc, v, eod_block);
effects_block.add_block(move(eod_block));
program.add_before_end(move(effects_block));
return program;
}
static
u32 writeBoundaryProgram(RoseBuildImpl &build, build_context &bc,
const set<ReportID> &reports) {
if (reports.empty()) {
return 0;
}
// Note: no CATCHUP instruction is necessary in the boundary case, as we
// should always be caught up (and may not even have the resources in
// scratch to support it).
const bool has_som = false;
RoseProgram program;
for (const auto &id : reports) {
makeReport(build, id, has_som, program);
}
applyFinalSpecialisation(program);
return writeProgram(bc, move(program));
}
static
RoseBoundaryReports
makeBoundaryPrograms(RoseBuildImpl &build, build_context &bc,
const BoundaryReports &boundary,
const DerivedBoundaryReports &dboundary) {
RoseBoundaryReports out;
memset(&out, 0, sizeof(out));
DEBUG_PRINTF("report ^: %zu\n", boundary.report_at_0.size());
DEBUG_PRINTF("report $: %zu\n", boundary.report_at_eod.size());
DEBUG_PRINTF("report ^$: %zu\n", dboundary.report_at_0_eod_full.size());
out.reportEodOffset =
writeBoundaryProgram(build, bc, boundary.report_at_eod);
out.reportZeroOffset =
writeBoundaryProgram(build, bc, boundary.report_at_0);
out.reportZeroEodOffset =
writeBoundaryProgram(build, bc, dboundary.report_at_0_eod_full);
return out;
}
static
void assignStateIndices(const RoseBuildImpl &build, build_context &bc) {
const auto &g = build.g;
u32 state = 0;
for (auto v : vertices_range(g)) {
// Virtual vertices (starts, EOD accept vertices) never need state
// indices.
if (build.isVirtualVertex(v)) {
continue;
}
// We only need a state index if we have successors that are not
// eagerly-reported EOD vertices.
bool needs_state_index = false;
for (const auto &e : out_edges_range(v, g)) {
if (!canEagerlyReportAtEod(build, e)) {
needs_state_index = true;
break;
}
}
if (!needs_state_index) {
continue;
}
/* TODO: also don't need a state index if all edges are nfa based */
bc.roleStateIndices.emplace(v, state++);
}
DEBUG_PRINTF("assigned %u states (from %zu vertices)\n", state,
num_vertices(g));
bc.numStates = state;
}
static
bool hasUsefulStops(const left_build_info &build) {
for (u32 i = 0; i < N_CHARS; i++) {
if (build.stopAlphabet[i]) {
return true;
}
}
return false;
}
static
void buildLeftInfoTable(const RoseBuildImpl &tbi, build_context &bc,
const set<u32> &eager_queues,
u32 leftfixBeginQueue, u32 leftfixCount,
vector<LeftNfaInfo> &leftTable, u32 *laggedRoseCount,
size_t *history) {
const RoseGraph &g = tbi.g;
const CompileContext &cc = tbi.cc;
ue2::unordered_set<u32> done_core;
leftTable.resize(leftfixCount);
u32 lagIndex = 0;
for (RoseVertex v : vertices_range(g)) {
if (!g[v].left) {
continue;
}
assert(contains(bc.leftfix_info, v));
const left_build_info &lbi = bc.leftfix_info.at(v);
if (lbi.has_lookaround) {
continue;
}
assert(lbi.queue >= leftfixBeginQueue);
u32 left_index = lbi.queue - leftfixBeginQueue;
assert(left_index < leftfixCount);
/* seedy hack to make miracles more effective.
*
* TODO: make miracle seeking not depend on history length and have
* runt scans */
if (hasUsefulStops(lbi)) {
ENSURE_AT_LEAST(history,
(size_t)MIN(cc.grey.maxHistoryAvailable,
g[v].left.lag + 1
+ cc.grey.miracleHistoryBonus));
}
LeftNfaInfo &left = leftTable[left_index];
if (!contains(done_core, left_index)) {
done_core.insert(left_index);
memset(&left, 0, sizeof(left));
left.squash_mask = ~0ULL;
DEBUG_PRINTF("populating info for %u\n", left_index);
left.maxQueueLen = lbi.max_queuelen;
if (hasUsefulStops(lbi)) {
assert(lbi.stopAlphabet.size() == N_CHARS);
left.stopTable = bc.engine_blob.add(lbi.stopAlphabet.begin(),
lbi.stopAlphabet.end());
}
assert(lbi.countingMiracleOffset || !lbi.countingMiracleCount);
left.countingMiracleOffset = lbi.countingMiracleOffset;
DEBUG_PRINTF("mw = %u\n", lbi.transient);
left.transient = verify_u8(lbi.transient);
left.infix = tbi.isNonRootSuccessor(v);
left.eager = contains(eager_queues, lbi.queue);
// A rose has a lagIndex if it's non-transient and we are
// streaming.
if (!lbi.transient && cc.streaming) {
assert(lagIndex < ROSE_OFFSET_INVALID);
left.lagIndex = lagIndex++;
} else {
left.lagIndex = ROSE_OFFSET_INVALID;
}
DEBUG_PRINTF("rose %u is %s\n", left_index,
left.infix ? "infix" : "prefix");
}
// Update squash mask.
left.squash_mask &= lbi.squash_mask;
// Update the max delay.
ENSURE_AT_LEAST(&left.maxLag, lbi.lag);
if (contains(g[v].literals, tbi.eod_event_literal_id)) {
left.eod_check = 1;
}
}
DEBUG_PRINTF("built %u roses with lag indices\n", lagIndex);
*laggedRoseCount = lagIndex;
}
static
void addPredBlockSingle(u32 pred_state, RoseProgram &pred_block,
RoseProgram &program) {
// Prepend an instruction to check the pred state is on.
const auto *end_inst = pred_block.end_instruction();
pred_block.insert(begin(pred_block),
make_unique<RoseInstrCheckState>(pred_state, end_inst));
program.add_block(move(pred_block));
}
static
void addPredBlocksAny(build_context &bc, map<u32, RoseProgram> &pred_blocks,
RoseProgram &program) {
RoseProgram sparse_program;
vector<u32> keys;
for (const u32 &key : pred_blocks | map_keys) {
keys.push_back(key);
}
const RoseInstruction *end_inst = sparse_program.end_instruction();
auto ri = make_unique<RoseInstrSparseIterAny>(bc.numStates, keys, end_inst);
sparse_program.add_before_end(move(ri));
RoseProgram &block = pred_blocks.begin()->second;
sparse_program.add_before_end(move(block));
program.add_block(move(sparse_program));
}
static
void addPredBlocksMulti(build_context &bc, map<u32, RoseProgram> &pred_blocks,
RoseProgram &program) {
assert(!pred_blocks.empty());
RoseProgram sparse_program;
const RoseInstruction *end_inst = sparse_program.end_instruction();
vector<pair<u32, const RoseInstruction *>> jump_table;
// BEGIN instruction.
auto ri_begin =
make_unique<RoseInstrSparseIterBegin>(bc.numStates, end_inst);
RoseInstrSparseIterBegin *begin_inst = ri_begin.get();
sparse_program.add_before_end(move(ri_begin));
// NEXT instructions, one per pred program.
u32 prev_key = pred_blocks.begin()->first;
for (auto it = next(begin(pred_blocks)); it != end(pred_blocks); ++it) {
auto ri = make_unique<RoseInstrSparseIterNext>(prev_key, begin_inst,
end_inst);
sparse_program.add_before_end(move(ri));
prev_key = it->first;
}
// Splice in each pred program after its BEGIN/NEXT.
auto out_it = begin(sparse_program);
for (auto &m : pred_blocks) {
u32 key = m.first;
RoseProgram &flat_prog = m.second;
assert(!flat_prog.empty());
const size_t block_len = flat_prog.size() - 1; // without INSTR_END.
assert(dynamic_cast<const RoseInstrSparseIterBegin *>(out_it->get()) ||
dynamic_cast<const RoseInstrSparseIterNext *>(out_it->get()));
out_it = sparse_program.insert(++out_it, move(flat_prog));
// Jump table target for this key is the beginning of the block we just
// spliced in.
jump_table.emplace_back(key, out_it->get());
assert(distance(begin(sparse_program), out_it) + block_len <=
sparse_program.size());
advance(out_it, block_len);
}
// Write the jump table back into the SPARSE_ITER_BEGIN instruction.
begin_inst->jump_table = move(jump_table);
program.add_block(move(sparse_program));
}
static
void addPredBlocks(build_context &bc, map<u32, RoseProgram> &pred_blocks,
RoseProgram &program) {
// Trim empty blocks, if any exist.
for (auto it = pred_blocks.begin(); it != pred_blocks.end();) {
if (it->second.empty()) {
it = pred_blocks.erase(it);
} else {
++it;
}
}
const size_t num_preds = pred_blocks.size();
if (num_preds == 0) {
return;
}
if (num_preds == 1) {
const auto head = pred_blocks.begin();
addPredBlockSingle(head->first, head->second, program);
return;
}
// First, see if all our blocks are equivalent, in which case we can
// collapse them down into one.
const auto &blocks = pred_blocks | map_values;
if (all_of(begin(blocks), end(blocks), [&](const RoseProgram &block) {
return RoseProgramEquivalence()(*begin(blocks), block);
})) {
DEBUG_PRINTF("all blocks equiv\n");
addPredBlocksAny(bc, pred_blocks, program);
return;
}
addPredBlocksMulti(bc, pred_blocks, program);
}
static
void makePushDelayedInstructions(const RoseBuildImpl &build, u32 final_id,
RoseProgram &program) {
const auto &lit_infos = getLiteralInfoByFinalId(build, final_id);
const auto &arb_lit_info = **lit_infos.begin();
if (arb_lit_info.delayed_ids.empty()) {
return;
}
for (const auto &int_id : arb_lit_info.delayed_ids) {
const auto &child_literal = build.literals.right.at(int_id);
u32 child_id = build.literal_info[int_id].final_id;
u32 delay_index = child_id - build.delay_base_id;
DEBUG_PRINTF("final_id=%u delay=%u child_id=%u\n", final_id,
child_literal.delay, child_id);
auto ri = make_unique<RoseInstrPushDelayed>(
verify_u8(child_literal.delay), delay_index);
program.add_before_end(move(ri));
}
}
static
rose_group getFinalIdGroupsUnion(const RoseBuildImpl &build, u32 final_id) {
assert(contains(build.final_id_to_literal, final_id));
const auto &lit_infos = getLiteralInfoByFinalId(build, final_id);
rose_group groups = 0;
for (const auto &li : lit_infos) {
groups |= li->group_mask;
}
return groups;
}
static
void makeGroupCheckInstruction(const RoseBuildImpl &build, u32 final_id,
RoseProgram &program) {
rose_group groups = getFinalIdGroupsUnion(build, final_id);
if (!groups) {
return;
}
program.add_before_end(make_unique<RoseInstrCheckGroups>(groups));
}
static
void makeCheckLitMaskInstruction(const RoseBuildImpl &build, build_context &bc,
u32 final_id, RoseProgram &program) {
assert(contains(build.final_id_to_literal, final_id));
const auto &lit_infos = getLiteralInfoByFinalId(build, final_id);
assert(!lit_infos.empty());
if (!lit_infos.front()->requires_benefits) {
return;
}
vector<LookEntry> look;
assert(build.final_id_to_literal.at(final_id).size() == 1);
u32 lit_id = *build.final_id_to_literal.at(final_id).begin();
const ue2_literal &s = build.literals.right.at(lit_id).s;
DEBUG_PRINTF("building mask for lit %u (final id %u) %s\n", lit_id,
final_id, dumpString(s).c_str());
assert(s.length() <= MAX_MASK2_WIDTH);
s32 i = 0 - s.length();
for (const auto &e : s) {
if (!e.nocase) {
look.emplace_back(verify_s8(i), e);
}
i++;
}
assert(!look.empty());
makeLookaroundInstruction(bc, look, program);
}
static
void makeGroupSquashInstruction(const RoseBuildImpl &build, u32 final_id,
RoseProgram &program) {
assert(contains(build.final_id_to_literal, final_id));
const auto &lit_infos = getLiteralInfoByFinalId(build, final_id);
if (!lit_infos.front()->squash_group) {
return;
}
rose_group groups = getFinalIdGroupsUnion(build, final_id);
if (!groups) {
return;
}
DEBUG_PRINTF("final_id %u squashes 0x%llx\n", final_id, groups);
program.add_before_end(
make_unique<RoseInstrSquashGroups>(~groups)); // Note negated.
}
static
u32 findMaxOffset(const RoseBuildImpl &build, u32 lit_id) {
const auto &lit_vertices = build.literal_info.at(lit_id).vertices;
assert(!lit_vertices.empty());
u32 max_offset = 0;
for (const auto &v : lit_vertices) {
max_offset = max(max_offset, build.g[v].max_offset);
}
return max_offset;
}
static
void makeRecordAnchoredInstruction(const RoseBuildImpl &build,
build_context &bc, u32 final_id,
RoseProgram &program) {
assert(contains(build.final_id_to_literal, final_id));
const auto &lit_ids = build.final_id_to_literal.at(final_id);
// Must be anchored.
assert(!lit_ids.empty());
if (build.literals.right.at(*begin(lit_ids)).table != ROSE_ANCHORED) {
return;
}
// If this anchored literal can never match past
// floatingMinLiteralMatchOffset, we will never have to record it.
u32 max_offset = 0;
for (u32 lit_id : lit_ids) {
assert(build.literals.right.at(lit_id).table == ROSE_ANCHORED);
max_offset = max(max_offset, findMaxOffset(build, lit_id));
}
if (max_offset <= bc.floatingMinLiteralMatchOffset) {
return;
}
program.add_before_end(make_unique<RoseInstrRecordAnchored>(final_id));
}
static
u32 findMinOffset(const RoseBuildImpl &build, u32 lit_id) {
const auto &lit_vertices = build.literal_info.at(lit_id).vertices;
assert(!lit_vertices.empty());
u32 min_offset = UINT32_MAX;
for (const auto &v : lit_vertices) {
min_offset = min(min_offset, build.g[v].min_offset);
}
return min_offset;
}
static
void makeCheckLitEarlyInstruction(const RoseBuildImpl &build, build_context &bc,
u32 final_id,
const vector<RoseEdge> &lit_edges,
RoseProgram &program) {
if (lit_edges.empty()) {
return;
}
if (bc.floatingMinLiteralMatchOffset == 0) {
return;
}
RoseVertex v = target(lit_edges.front(), build.g);
if (!build.isFloating(v)) {
return;
}
const auto &lit_ids = build.final_id_to_literal.at(final_id);
if (lit_ids.empty()) {
return;
}
size_t min_len = SIZE_MAX;
u32 min_offset = UINT32_MAX;
for (u32 lit_id : lit_ids) {
const auto &lit = build.literals.right.at(lit_id);
size_t lit_min_len = lit.elength();
u32 lit_min_offset = findMinOffset(build, lit_id);
DEBUG_PRINTF("lit_id=%u has min_len=%zu, min_offset=%u\n", lit_id,
lit_min_len, lit_min_offset);
min_len = min(min_len, lit_min_len);
min_offset = min(min_offset, lit_min_offset);
}
DEBUG_PRINTF("final_id=%u has min_len=%zu, min_offset=%u, "
"global min is %u\n", final_id, min_len, min_offset,
bc.floatingMinLiteralMatchOffset);
// If we can't match before the min offset, we don't need the check.
if (min_len >= bc.floatingMinLiteralMatchOffset) {
DEBUG_PRINTF("no need for check, min is %u\n",
bc.floatingMinLiteralMatchOffset);
return;
}
assert(min_offset >= bc.floatingMinLiteralMatchOffset);
assert(min_offset < UINT32_MAX);
DEBUG_PRINTF("adding lit early check, min_offset=%u\n", min_offset);
program.add_before_end(make_unique<RoseInstrCheckLitEarly>(min_offset));
}
static
void makeCheckLiteralInstruction(const RoseBuildImpl &build,
const build_context &bc, u32 final_id,
RoseProgram &program) {
assert(bc.longLitLengthThreshold > 0);
DEBUG_PRINTF("final_id %u, long lit threshold %zu\n", final_id,
bc.longLitLengthThreshold);
const auto &lits = build.final_id_to_literal.at(final_id);
if (lits.size() != 1) {
// final_id sharing is only allowed for literals that are short enough
// to not require any additional confirm work.
assert(all_of(begin(lits), end(lits), [&](u32 lit_id) {
const rose_literal_id &lit = build.literals.right.at(lit_id);
return lit.s.length() <= ROSE_SHORT_LITERAL_LEN_MAX;
}));
return;
}
u32 lit_id = *lits.begin();
if (build.isDelayed(lit_id)) {
return;
}
const rose_literal_id &lit = build.literals.right.at(lit_id);
if (lit.s.length() <= ROSE_SHORT_LITERAL_LEN_MAX) {
DEBUG_PRINTF("lit short enough to not need confirm\n");
return;
}
// Check resource limits as well.
if (lit.s.length() > build.cc.grey.limitLiteralLength) {
throw ResourceLimitError();
}
if (lit.s.length() <= bc.longLitLengthThreshold) {
DEBUG_PRINTF("is a medium-length literal\n");
const auto *end_inst = program.end_instruction();
unique_ptr<RoseInstruction> ri;
if (lit.s.any_nocase()) {
ri = make_unique<RoseInstrCheckMedLitNocase>(lit.s.get_string(),
end_inst);
} else {
ri = make_unique<RoseInstrCheckMedLit>(lit.s.get_string(),
end_inst);
}
program.add_before_end(move(ri));
return;
}
// Long literal support should only really be used for the floating table
// in streaming mode.
assert(lit.table == ROSE_FLOATING && build.cc.streaming);
DEBUG_PRINTF("is a long literal\n");
const auto *end_inst = program.end_instruction();
unique_ptr<RoseInstruction> ri;
if (lit.s.any_nocase()) {
ri = make_unique<RoseInstrCheckLongLitNocase>(lit.s.get_string(),
end_inst);
} else {
ri = make_unique<RoseInstrCheckLongLit>(lit.s.get_string(), end_inst);
}
program.add_before_end(move(ri));
}
static
bool hasDelayedLiteral(RoseBuildImpl &build,
const vector<RoseEdge> &lit_edges) {
auto is_delayed = bind(&RoseBuildImpl::isDelayed, &build, _1);
for (const auto &e : lit_edges) {
auto v = target(e, build.g);
const auto &lits = build.g[v].literals;
if (any_of(begin(lits), end(lits), is_delayed)) {
return true;
}
}
return false;
}
static
RoseProgram buildLitInitialProgram(RoseBuildImpl &build, build_context &bc,
u32 final_id,
const vector<RoseEdge> &lit_edges) {
RoseProgram program;
// No initial program for EOD.
if (final_id == MO_INVALID_IDX) {
return program;
}
DEBUG_PRINTF("final_id %u\n", final_id);
// Check long literal info.
makeCheckLiteralInstruction(build, bc, final_id, program);
// Check lit mask.
makeCheckLitMaskInstruction(build, bc, final_id, program);
// Check literal groups. This is an optimisation that we only perform for
// delayed literals, as their groups may be switched off; ordinarily, we
// can trust the HWLM matcher.
if (hasDelayedLiteral(build, lit_edges)) {
makeGroupCheckInstruction(build, final_id, program);
}
// Add instructions for pushing delayed matches, if there are any.
makePushDelayedInstructions(build, final_id, program);
// Add pre-check for early literals in the floating table.
makeCheckLitEarlyInstruction(build, bc, final_id, lit_edges, program);
return program;
}
static
RoseProgram buildLiteralProgram(RoseBuildImpl &build, build_context &bc,
u32 final_id,
const vector<RoseEdge> &lit_edges) {
const auto &g = build.g;
DEBUG_PRINTF("final id %u, %zu lit edges\n", final_id, lit_edges.size());
RoseProgram program;
// Predecessor state id -> program block.
map<u32, RoseProgram> pred_blocks;
// Construct sparse iter sub-programs.
for (const auto &e : lit_edges) {
const auto &u = source(e, g);
if (build.isAnyStart(u)) {
continue; // Root roles are not handled with sparse iterator.
}
DEBUG_PRINTF("sparse iter edge (%zu,%zu)\n", g[u].index,
g[target(e, g)].index);
assert(contains(bc.roleStateIndices, u));
u32 pred_state = bc.roleStateIndices.at(u);
pred_blocks[pred_state].add_block(makeProgram(build, bc, e));
}
// Add blocks to deal with non-root edges (triggered by sparse iterator or
// mmbit_isset checks).
addPredBlocks(bc, pred_blocks, program);
// Add blocks to handle root roles.
for (const auto &e : lit_edges) {
const auto &u = source(e, g);
if (!build.isAnyStart(u)) {
continue;
}
DEBUG_PRINTF("root edge (%zu,%zu)\n", g[u].index,
g[target(e, g)].index);
program.add_block(makeProgram(build, bc, e));
}
if (final_id != MO_INVALID_IDX) {
RoseProgram root_block;
// Literal may squash groups.
makeGroupSquashInstruction(build, final_id, root_block);
// Literal may be anchored and need to be recorded.
makeRecordAnchoredInstruction(build, bc, final_id, root_block);
program.add_block(move(root_block));
}
// Construct initial program up front, as its early checks must be able to
// jump to end and terminate processing for this literal.
auto lit_program = buildLitInitialProgram(build, bc, final_id, lit_edges);
lit_program.add_before_end(move(program));
return lit_program;
}
static
u32 writeLiteralProgram(RoseBuildImpl &build, build_context &bc, u32 final_id,
const vector<RoseEdge> &lit_edges) {
RoseProgram program = buildLiteralProgram(build, bc, final_id, lit_edges);
if (program.empty()) {
return 0;
}
applyFinalSpecialisation(program);
return writeProgram(bc, move(program));
}
static
u32 buildDelayRebuildProgram(RoseBuildImpl &build, build_context &bc,
u32 final_id) {
const auto &lit_infos = getLiteralInfoByFinalId(build, final_id);
const auto &arb_lit_info = **lit_infos.begin();
if (arb_lit_info.delayed_ids.empty()) {
return 0; // No delayed IDs, no work to do.
}
RoseProgram program;
makeCheckLiteralInstruction(build, bc, final_id, program);
makeCheckLitMaskInstruction(build, bc, final_id, program);
makePushDelayedInstructions(build, final_id, program);
assert(!program.empty());
applyFinalSpecialisation(program);
return writeProgram(bc, move(program));
}
static
map<u32, vector<RoseEdge>> findEdgesByLiteral(const RoseBuildImpl &build) {
// Use a set of edges while building the map to cull duplicates.
map<u32, flat_set<RoseEdge>> unique_lit_edge_map;
const auto &g = build.g;
for (const auto &e : edges_range(g)) {
const auto &v = target(e, g);
for (const auto &lit_id : g[v].literals) {
assert(lit_id < build.literal_info.size());
u32 final_id = build.literal_info.at(lit_id).final_id;
if (final_id == MO_INVALID_IDX) {
// Unused, special report IDs are handled elsewhere.
continue;
}
unique_lit_edge_map[final_id].insert(e);
}
}
// Build output map, sorting edges by (source, target) vertex index.
map<u32, vector<RoseEdge>> lit_edge_map;
for (const auto &m : unique_lit_edge_map) {
auto edge_list = vector<RoseEdge>(begin(m.second), end(m.second));
sort(begin(edge_list), end(edge_list),
[&g](const RoseEdge &a, const RoseEdge &b) {
return tie(g[source(a, g)].index, g[target(a, g)].index) <
tie(g[source(b, g)].index, g[target(b, g)].index);
});
lit_edge_map.emplace(m.first, edge_list);
}
return lit_edge_map;
}
/**
* \brief Build the interpreter programs for each literal.
*
* Returns the base of the literal program list and the base of the delay
* rebuild program list.
*/
static
pair<u32, u32> buildLiteralPrograms(RoseBuildImpl &build, build_context &bc) {
const u32 num_literals = build.final_id_to_literal.size();
auto lit_edge_map = findEdgesByLiteral(build);
bc.litPrograms.resize(num_literals);
vector<u32> delayRebuildPrograms(num_literals);
for (u32 finalId = 0; finalId != num_literals; ++finalId) {
const auto &lit_edges = lit_edge_map[finalId];
bc.litPrograms[finalId] =
writeLiteralProgram(build, bc, finalId, lit_edges);
delayRebuildPrograms[finalId] =
buildDelayRebuildProgram(build, bc, finalId);
}
u32 litProgramsOffset =
bc.engine_blob.add(begin(bc.litPrograms), end(bc.litPrograms));
u32 delayRebuildProgramsOffset = bc.engine_blob.add(
begin(delayRebuildPrograms), end(delayRebuildPrograms));
return {litProgramsOffset, delayRebuildProgramsOffset};
}
/**
* \brief Returns all reports used by output-exposed engines, for which we need
* to generate programs.
*/
static
set<ReportID> findEngineReports(const RoseBuildImpl &build) {
set<ReportID> reports;
// The small write engine uses these engine report programs.
insert(&reports, build.smwr.all_reports());
for (const auto &outfix : build.outfixes) {
insert(&reports, all_reports(outfix));
}
const auto &g = build.g;
for (auto v : vertices_range(g)) {
if (g[v].suffix) {
insert(&reports, all_reports(g[v].suffix));
}
}
DEBUG_PRINTF("%zu engine reports (of %zu)\n", reports.size(),
build.rm.numReports());
return reports;
}
static
pair<u32, u32> buildReportPrograms(RoseBuildImpl &build, build_context &bc) {
const auto reports = findEngineReports(build);
vector<u32> programs;
programs.reserve(reports.size());
for (ReportID id : reports) {
RoseProgram program;
const bool has_som = false;
makeCatchupMpv(build, bc, id, program);
makeReport(build, id, has_som, program);
applyFinalSpecialisation(program);
u32 offset = writeProgram(bc, move(program));
programs.push_back(offset);
build.rm.setProgramOffset(id, offset);
DEBUG_PRINTF("program for report %u @ %u (%zu instructions)\n", id,
programs.back(), program.size());
}
u32 offset = bc.engine_blob.add(begin(programs), end(programs));
u32 count = verify_u32(programs.size());
return {offset, count};
}
static
RoseProgram makeEodAnchorProgram(RoseBuildImpl &build, build_context &bc,
const RoseEdge &e, const bool multiple_preds) {
const RoseGraph &g = build.g;
const RoseVertex v = target(e, g);
RoseProgram program;
if (g[e].history == ROSE_ROLE_HISTORY_ANCH) {
makeRoleCheckBounds(build, v, e, program);
}
if (multiple_preds) {
// Only necessary when there is more than one pred.
makeRoleCheckNotHandled(bc, v, program);
}
const auto &reports = g[v].reports;
makeCatchup(build, bc, reports, program);
const bool has_som = false;
RoseProgram report_block;
for (const auto &id : reports) {
makeReport(build, id, has_som, report_block);
}
program.add_before_end(move(report_block));
return program;
}
static
bool hasEodAnchoredSuffix(const RoseBuildImpl &build) {
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (g[v].suffix && build.isInETable(v)) {
DEBUG_PRINTF("vertex %zu is in eod table and has a suffix\n",
g[v].index);
return true;
}
}
return false;
}
static
bool hasEodMatcher(const RoseBuildImpl &build) {
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (build.isInETable(v)) {
DEBUG_PRINTF("vertex %zu is in eod table\n", g[v].index);
return true;
}
}
return false;
}
static
void addEodAnchorProgram(RoseBuildImpl &build, build_context &bc,
bool in_etable, RoseProgram &program) {
const RoseGraph &g = build.g;
// Predecessor state id -> program block.
map<u32, RoseProgram> pred_blocks;
for (auto v : vertices_range(g)) {
if (!g[v].eod_accept) {
continue;
}
DEBUG_PRINTF("vertex %zu (with %zu preds) fires on EOD\n", g[v].index,
in_degree(v, g));
vector<RoseEdge> edge_list;
for (const auto &e : in_edges_range(v, g)) {
RoseVertex u = source(e, g);
if (build.isInETable(u) != in_etable) {
DEBUG_PRINTF("pred %zu %s in etable\n", g[u].index,
in_etable ? "is not" : "is");
continue;
}
if (canEagerlyReportAtEod(build, e)) {
DEBUG_PRINTF("already done report for vertex %zu\n", g[u].index);
continue;
}
edge_list.push_back(e);
}
const bool multiple_preds = edge_list.size() > 1;
for (const auto &e : edge_list) {
RoseVertex u = source(e, g);
assert(contains(bc.roleStateIndices, u));
u32 pred_state = bc.roleStateIndices.at(u);
pred_blocks[pred_state].add_block(
makeEodAnchorProgram(build, bc, e, multiple_preds));
}
}
addPredBlocks(bc, pred_blocks, program);
}
static
void addEodEventProgram(RoseBuildImpl &build, build_context &bc,
RoseProgram &program) {
if (build.eod_event_literal_id == MO_INVALID_IDX) {
return;
}
const RoseGraph &g = build.g;
const auto &lit_info = build.literal_info.at(build.eod_event_literal_id);
assert(lit_info.delayed_ids.empty());
assert(!lit_info.squash_group);
assert(!lit_info.requires_benefits);
// Collect all edges leading into EOD event literal vertices.
vector<RoseEdge> edge_list;
for (const auto &v : lit_info.vertices) {
for (const auto &e : in_edges_range(v, g)) {
edge_list.push_back(e);
}
}
// Sort edge list for determinism, prettiness.
sort(begin(edge_list), end(edge_list),
[&g](const RoseEdge &a, const RoseEdge &b) {
return tie(g[source(a, g)].index, g[target(a, g)].index) <
tie(g[source(b, g)].index, g[target(b, g)].index);
});
program.add_block(
buildLiteralProgram(build, bc, MO_INVALID_IDX, edge_list));
}
static
void addEnginesEodProgram(u32 eodNfaIterOffset, RoseProgram &program) {
if (!eodNfaIterOffset) {
return;
}
RoseProgram block;
block.add_before_end(make_unique<RoseInstrEnginesEod>(eodNfaIterOffset));
program.add_block(move(block));
}
static
void addSuffixesEodProgram(const RoseBuildImpl &build, RoseProgram &program) {
if (!hasEodAnchoredSuffix(build)) {
return;
}
RoseProgram block;
block.add_before_end(make_unique<RoseInstrSuffixesEod>());
program.add_block(move(block));
}
static
void addMatcherEodProgram(const RoseBuildImpl &build, RoseProgram &program) {
if (!hasEodMatcher(build)) {
return;
}
RoseProgram block;
block.add_before_end(make_unique<RoseInstrMatcherEod>());
program.add_block(move(block));
}
static
u32 writeEodProgram(RoseBuildImpl &build, build_context &bc,
u32 eodNfaIterOffset) {
RoseProgram program;
addEodEventProgram(build, bc, program);
addEnginesEodProgram(eodNfaIterOffset, program);
addEodAnchorProgram(build, bc, false, program);
addMatcherEodProgram(build, program);
addEodAnchorProgram(build, bc, true, program);
addSuffixesEodProgram(build, program);
if (program.empty()) {
return 0;
}
applyFinalSpecialisation(program);
return writeProgram(bc, move(program));
}
static
u32 history_required(const rose_literal_id &key) {
if (key.msk.size() < key.s.length()) {
return key.elength() - 1;
} else {
return key.msk.size() + key.delay - 1;
}
}
static
void fillMatcherDistances(const RoseBuildImpl &build, RoseEngine *engine) {
const RoseGraph &g = build.g;
engine->floatingDistance = 0;
engine->floatingMinDistance = ROSE_BOUND_INF;
engine->anchoredDistance = 0;
engine->maxFloatingDelayedMatch = 0;
u32 delayRebuildLength = 0;
engine->smallBlockDistance = 0;
for (auto v : vertices_range(g)) {
if (g[v].literals.empty()) {
continue;
}
assert(g[v].min_offset < ROSE_BOUND_INF); // cannot == ROSE_BOUND_INF
assert(g[v].min_offset <= g[v].max_offset);
for (u32 lit_id : g[v].literals) {
const rose_literal_id &key = build.literals.right.at(lit_id);
u32 max_d = g[v].max_offset;
u32 min_d = g[v].min_offset;
DEBUG_PRINTF("checking %u: elen %zu min/max %u/%u\n", lit_id,
key.elength_including_mask(), min_d, max_d);
if (build.literal_info[lit_id].undelayed_id != lit_id) {
/* this is a delayed match; need to update delay properties */
/* TODO: can delayed literals ever be in another table ? */
if (key.table == ROSE_FLOATING) {
ENSURE_AT_LEAST(&engine->maxFloatingDelayedMatch, max_d);
ENSURE_AT_LEAST(&delayRebuildLength, history_required(key));
}
}
/* for the FloatingDistances we need the true max depth of the
string */
if (max_d != ROSE_BOUND_INF && key.table != ROSE_ANCHORED) {
assert(max_d >= key.delay);
max_d -= key.delay;
}
switch (key.table) {
case ROSE_FLOATING:
ENSURE_AT_LEAST(&engine->floatingDistance, max_d);
if (min_d >= key.elength_including_mask()) {
LIMIT_TO_AT_MOST(&engine->floatingMinDistance,
min_d - (u32)key.elength_including_mask());
} else {
/* overlapped literals from rose + anchored table can
* cause us to underflow due to sloppiness in
* estimates */
engine->floatingMinDistance = 0;
}
break;
case ROSE_ANCHORED_SMALL_BLOCK:
ENSURE_AT_LEAST(&engine->smallBlockDistance, max_d);
break;
case ROSE_ANCHORED:
ENSURE_AT_LEAST(&engine->anchoredDistance, max_d);
break;
case ROSE_EOD_ANCHORED:
// EOD anchored literals are in another table, so they
// don't contribute to these calculations.
break;
case ROSE_EVENT:
break; // Not a real literal.
}
}
}
// Floating literals go in the small block table too.
ENSURE_AT_LEAST(&engine->smallBlockDistance, engine->floatingDistance);
// Clipped by its very nature.
LIMIT_TO_AT_MOST(&engine->smallBlockDistance, 32U);
engine->delayRebuildLength = delayRebuildLength;
DEBUG_PRINTF("anchoredDistance = %u\n", engine->anchoredDistance);
DEBUG_PRINTF("floatingDistance = %u\n", engine->floatingDistance);
DEBUG_PRINTF("smallBlockDistance = %u\n", engine->smallBlockDistance);
assert(engine->anchoredDistance <= build.cc.grey.maxAnchoredRegion);
/* anchored->floating squash literals may lower floating min distance */
/* TODO: find actual value */
if (!engine->anchoredDistance) {
return;
}
}
static
u32 buildEagerQueueIter(const set<u32> &eager, u32 leftfixBeginQueue,
u32 queue_count,
build_context &bc) {
if (eager.empty()) {
return 0;
}
vector<u32> vec;
for (u32 q : eager) {
assert(q >= leftfixBeginQueue);
vec.push_back(q - leftfixBeginQueue);
}
vector<mmbit_sparse_iter> iter;
mmbBuildSparseIterator(iter, vec, queue_count - leftfixBeginQueue);
return bc.engine_blob.add_iterator(iter);
}
static
void allocateFinalIdToSet(RoseBuildImpl &build, const set<u32> &lits,
u32 *next_final_id) {
const auto &g = build.g;
auto &literal_info = build.literal_info;
auto &final_id_to_literal = build.final_id_to_literal;
/* We can allocate the same final id to multiple literals of the same type
* if they share the same vertex set and trigger the same delayed literal
* ids and squash the same roles and have the same group squashing
* behaviour. Benefits literals cannot be merged. */
for (u32 int_id : lits) {
rose_literal_info &curr_info = literal_info[int_id];
const rose_literal_id &lit = build.literals.right.at(int_id);
const auto &verts = curr_info.vertices;
// Literals with benefits cannot be merged.
if (curr_info.requires_benefits) {
DEBUG_PRINTF("id %u has benefits\n", int_id);
goto assign_new_id;
}
// Literals that need confirmation with CHECK_LONG_LIT or CHECK_MED_LIT
// cannot be merged.
if (lit.s.length() > ROSE_SHORT_LITERAL_LEN_MAX) {
DEBUG_PRINTF("id %u needs lit confirm\n", int_id);
goto assign_new_id;
}
if (!verts.empty() && curr_info.delayed_ids.empty()) {
vector<u32> cand;
insert(&cand, cand.end(), g[*verts.begin()].literals);
for (auto v : verts) {
vector<u32> temp;
set_intersection(cand.begin(), cand.end(),
g[v].literals.begin(),
g[v].literals.end(),
inserter(temp, temp.end()));
cand.swap(temp);
}
for (u32 cand_id : cand) {
if (cand_id >= int_id) {
break;
}
const auto &cand_info = literal_info[cand_id];
const auto &cand_lit = build.literals.right.at(cand_id);
if (cand_lit.s.length() > ROSE_SHORT_LITERAL_LEN_MAX) {
continue;
}
if (cand_info.requires_benefits) {
continue;
}
if (!cand_info.delayed_ids.empty()) {
/* TODO: allow cases where delayed ids are equivalent.
* This is awkward currently as the have not had their
* final ids allocated yet */
continue;
}
if (lits.find(cand_id) == lits.end()
|| cand_info.vertices.size() != verts.size()
|| cand_info.squash_group != curr_info.squash_group) {
continue;
}
/* if we are squashing groups we need to check if they are the
* same group */
if (cand_info.squash_group
&& cand_info.group_mask != curr_info.group_mask) {
continue;
}
u32 final_id = cand_info.final_id;
assert(final_id != MO_INVALID_IDX);
assert(curr_info.final_id == MO_INVALID_IDX);
curr_info.final_id = final_id;
final_id_to_literal[final_id].insert(int_id);
goto next_lit;
}
}
assign_new_id:
/* oh well, have to give it a fresh one, hang the expense */
DEBUG_PRINTF("allocating final id %u to %u\n", *next_final_id, int_id);
assert(curr_info.final_id == MO_INVALID_IDX);
curr_info.final_id = *next_final_id;
final_id_to_literal[*next_final_id].insert(int_id);
(*next_final_id)++;
next_lit:;
}
}
static
bool isUsedLiteral(const RoseBuildImpl &build, u32 lit_id) {
assert(lit_id < build.literal_info.size());
const auto &info = build.literal_info[lit_id];
if (!info.vertices.empty()) {
return true;
}
for (const u32 &delayed_id : info.delayed_ids) {
assert(delayed_id < build.literal_info.size());
const rose_literal_info &delayed_info = build.literal_info[delayed_id];
if (!delayed_info.vertices.empty()) {
return true;
}
}
DEBUG_PRINTF("literal %u has no refs\n", lit_id);
return false;
}
/** \brief Allocate final literal IDs for all literals. */
static
void allocateFinalLiteralId(RoseBuildImpl &build) {
set<u32> anch;
set<u32> norm;
set<u32> delay;
/* undelayed ids come first */
assert(build.final_id_to_literal.empty());
u32 next_final_id = 0;
for (u32 i = 0; i < build.literal_info.size(); i++) {
assert(!build.hasFinalId(i));
if (!isUsedLiteral(build, i)) {
/* what is this literal good for? absolutely nothing */
continue;
}
// The special EOD event literal has its own program and does not need
// a real literal ID.
if (i == build.eod_event_literal_id) {
assert(build.eod_event_literal_id != MO_INVALID_IDX);
continue;
}
if (build.isDelayed(i)) {
assert(!build.literal_info[i].requires_benefits);
delay.insert(i);
} else if (build.literals.right.at(i).table == ROSE_ANCHORED) {
anch.insert(i);
} else {
norm.insert(i);
}
}
/* normal lits */
allocateFinalIdToSet(build, norm, &next_final_id);
/* next anchored stuff */
build.anchored_base_id = next_final_id;
allocateFinalIdToSet(build, anch, &next_final_id);
/* delayed ids come last */
build.delay_base_id = next_final_id;
allocateFinalIdToSet(build, delay, &next_final_id);
}
static
aligned_unique_ptr<RoseEngine> addSmallWriteEngine(RoseBuildImpl &build,
aligned_unique_ptr<RoseEngine> rose) {
assert(rose);
if (roseIsPureLiteral(rose.get())) {
DEBUG_PRINTF("pure literal case, not adding smwr\n");
return rose;
}
u32 qual = roseQuality(rose.get());
auto smwr_engine = build.smwr.build(qual);
if (!smwr_engine) {
DEBUG_PRINTF("no smwr built\n");
return rose;
}
const size_t mainSize = roseSize(rose.get());
const size_t smallWriteSize = smwrSize(smwr_engine.get());
DEBUG_PRINTF("adding smwr engine, size=%zu\n", smallWriteSize);
const size_t smwrOffset = ROUNDUP_CL(mainSize);
const size_t newSize = smwrOffset + smallWriteSize;
auto rose2 = aligned_zmalloc_unique<RoseEngine>(newSize);
char *ptr = (char *)rose2.get();
memcpy(ptr, rose.get(), mainSize);
memcpy(ptr + smwrOffset, smwr_engine.get(), smallWriteSize);
rose2->smallWriteOffset = verify_u32(smwrOffset);
rose2->size = verify_u32(newSize);
return rose2;
}
/**
* \brief Returns the pair (number of literals, max length) for all real
* literals in the floating table that are in-use.
*/
static
pair<size_t, size_t> floatingCountAndMaxLen(const RoseBuildImpl &build) {
size_t num = 0;
size_t max_len = 0;
for (const auto &e : build.literals.right) {
const u32 id = e.first;
const rose_literal_id &lit = e.second;
if (lit.table != ROSE_FLOATING) {
continue;
}
if (lit.delay) {
// Skip delayed literals, so that we only count the undelayed
// version that ends up in the HWLM table.
continue;
}
if (!isUsedLiteral(build, id)) {
continue;
}
num++;
max_len = max(max_len, lit.s.length());
}
DEBUG_PRINTF("%zu floating literals with max_len=%zu\n", num, max_len);
return {num, max_len};
}
size_t calcLongLitThreshold(const RoseBuildImpl &build,
const size_t historyRequired) {
const auto &cc = build.cc;
// In block mode, we don't have history, so we don't need long literal
// support and can just use "medium-length" literal confirm. TODO: we could
// specialize further and have a block mode literal confirm instruction.
if (!cc.streaming) {
return SIZE_MAX;
}
size_t longLitLengthThreshold = ROSE_LONG_LITERAL_THRESHOLD_MIN;
// Expand to size of history we've already allocated. Note that we need N-1
// bytes of history to match a literal of length N.
longLitLengthThreshold = max(longLitLengthThreshold, historyRequired + 1);
// If we only have one literal, allow for a larger value in order to avoid
// building a long literal table for a trivial Noodle case that we could
// fit in history.
const auto num_len = floatingCountAndMaxLen(build);
if (num_len.first == 1) {
if (num_len.second > longLitLengthThreshold) {
DEBUG_PRINTF("expanding for single literal of length %zu\n",
num_len.second);
longLitLengthThreshold = num_len.second;
}
}
// Clamp to max history available.
longLitLengthThreshold =
min(longLitLengthThreshold, size_t{cc.grey.maxHistoryAvailable} + 1);
return longLitLengthThreshold;
}
aligned_unique_ptr<RoseEngine> RoseBuildImpl::buildFinalEngine(u32 minWidth) {
DerivedBoundaryReports dboundary(boundary);
size_t historyRequired = calcHistoryRequired(); // Updated by HWLM.
size_t longLitLengthThreshold = calcLongLitThreshold(*this,
historyRequired);
DEBUG_PRINTF("longLitLengthThreshold=%zu\n", longLitLengthThreshold);
allocateFinalLiteralId(*this);
auto anchored_dfas = buildAnchoredDfas(*this);
build_context bc;
bc.floatingMinLiteralMatchOffset =
findMinFloatingLiteralMatch(*this, anchored_dfas);
bc.longLitLengthThreshold = longLitLengthThreshold;
bc.needs_catchup = needsCatchup(*this, anchored_dfas);
recordResources(bc.resources, *this);
if (!anchored_dfas.empty()) {
bc.resources.has_anchored = true;
}
bc.needs_mpv_catchup = needsMpvCatchup(*this);
bc.vertex_group_map = getVertexGroupMap(*this);
bc.squashable_groups = getSquashableGroups(*this);
auto boundary_out = makeBoundaryPrograms(*this, bc, boundary, dboundary);
u32 reportProgramOffset;
u32 reportProgramCount;
tie(reportProgramOffset, reportProgramCount) =
buildReportPrograms(*this, bc);
// Build NFAs
set<u32> no_retrigger_queues;
bool mpv_as_outfix;
prepMpv(*this, bc, &historyRequired, &mpv_as_outfix);
u32 outfixBeginQueue = qif.allocated_count();
if (!prepOutfixes(*this, bc, &historyRequired)) {
return nullptr;
}
u32 outfixEndQueue = qif.allocated_count();
u32 leftfixBeginQueue = outfixEndQueue;
set<u32> eager_queues;
/* Note: buildNfas may reduce the lag for vertices that have prefixes */
if (!buildNfas(*this, bc, qif, &no_retrigger_queues, &eager_queues,
&leftfixBeginQueue)) {
return nullptr;
}
u32 eodNfaIterOffset = buildEodNfaIterator(bc, leftfixBeginQueue);
buildCountingMiracles(bc);
u32 queue_count = qif.allocated_count(); /* excludes anchored matcher q;
* som rev nfas */
if (queue_count > cc.grey.limitRoseEngineCount) {
throw ResourceLimitError();
}
vector<u32> suffixEkeyLists;
buildSuffixEkeyLists(*this, bc, qif, &suffixEkeyLists);
assignStateIndices(*this, bc);
u32 laggedRoseCount = 0;
vector<LeftNfaInfo> leftInfoTable;
buildLeftInfoTable(*this, bc, eager_queues, leftfixBeginQueue,
queue_count - leftfixBeginQueue, leftInfoTable,
&laggedRoseCount, &historyRequired);
u32 litProgramOffset;
u32 litDelayRebuildProgramOffset;
tie(litProgramOffset, litDelayRebuildProgramOffset) =
buildLiteralPrograms(*this, bc);
u32 eodProgramOffset = writeEodProgram(*this, bc, eodNfaIterOffset);
size_t longLitStreamStateRequired = 0;
u32 longLitTableOffset = buildLongLiteralTable(*this, bc.engine_blob,
bc.longLiterals, longLitLengthThreshold, &historyRequired,
&longLitStreamStateRequired);
vector<mmbit_sparse_iter> activeLeftIter;
buildActiveLeftIter(leftInfoTable, activeLeftIter);
u32 lastByteOffset = buildLastByteIter(g, bc);
u32 eagerIterOffset = buildEagerQueueIter(eager_queues, leftfixBeginQueue,
queue_count, bc);
// Enforce role table resource limit.
if (num_vertices(g) > cc.grey.limitRoseRoleCount) {
throw ResourceLimitError();
}
u32 currOffset; /* relative to base of RoseEngine */
if (!bc.engine_blob.empty()) {
currOffset = bc.engine_blob.base_offset + bc.engine_blob.size();
} else {
currOffset = sizeof(RoseEngine);
}
UNUSED const size_t engineBlobSize = bc.engine_blob.size(); // test later
currOffset = ROUNDUP_CL(currOffset);
DEBUG_PRINTF("currOffset %u\n", currOffset);
// Build anchored matcher.
size_t asize = 0;
u32 amatcherOffset = 0;
auto atable = buildAnchoredMatcher(*this, anchored_dfas, bc.litPrograms,
&asize);
if (atable) {
currOffset = ROUNDUP_CL(currOffset);
amatcherOffset = currOffset;
currOffset += verify_u32(asize);
}
// Build floating HWLM matcher.
rose_group fgroups = 0;
size_t fsize = 0;
auto ftable = buildFloatingMatcher(*this, bc.longLitLengthThreshold,
&fgroups, &fsize, &historyRequired);
u32 fmatcherOffset = 0;
if (ftable) {
currOffset = ROUNDUP_CL(currOffset);
fmatcherOffset = currOffset;
currOffset += verify_u32(fsize);
}
// Build EOD-anchored HWLM matcher.
size_t esize = 0;
auto etable = buildEodAnchoredMatcher(*this, &esize);
u32 ematcherOffset = 0;
if (etable) {
currOffset = ROUNDUP_CL(currOffset);
ematcherOffset = currOffset;
currOffset += verify_u32(esize);
}
// Build small-block HWLM matcher.
size_t sbsize = 0;
auto sbtable = buildSmallBlockMatcher(*this, &sbsize);
u32 sbmatcherOffset = 0;
if (sbtable) {
currOffset = ROUNDUP_CL(currOffset);
sbmatcherOffset = currOffset;
currOffset += verify_u32(sbsize);
}
u32 leftOffset = ROUNDUP_N(currOffset, alignof(LeftNfaInfo));
u32 roseLen = sizeof(LeftNfaInfo) * leftInfoTable.size();
currOffset = leftOffset + roseLen;
u32 lookaroundReachOffset = currOffset;
u32 lookaroundReachLen = REACH_BITVECTOR_LEN * bc.lookaround.size();
currOffset = lookaroundReachOffset + lookaroundReachLen;
u32 lookaroundTableOffset = currOffset;
u32 lookaroundTableLen = sizeof(s8) * bc.lookaround.size();
currOffset = lookaroundTableOffset + lookaroundTableLen;
u32 nfaInfoOffset = ROUNDUP_N(currOffset, sizeof(u32));
u32 nfaInfoLen = sizeof(NfaInfo) * queue_count;
currOffset = nfaInfoOffset + nfaInfoLen;
currOffset = ROUNDUP_N(currOffset, alignof(mmbit_sparse_iter));
u32 activeLeftIterOffset = currOffset;
currOffset += activeLeftIter.size() * sizeof(mmbit_sparse_iter);
u32 activeArrayCount = leftfixBeginQueue;
u32 activeLeftCount = leftInfoTable.size();
u32 rosePrefixCount = countRosePrefixes(leftInfoTable);
u32 rev_nfa_table_offset;
vector<u32> rev_nfa_offsets;
prepSomRevNfas(ssm, &rev_nfa_table_offset, &rev_nfa_offsets, &currOffset);
// Build engine header and copy tables into place.
u32 anchorStateSize = atable ? anchoredStateSize(*atable) : 0;
DEBUG_PRINTF("rose history required %zu\n", historyRequired);
assert(!cc.streaming || historyRequired <= cc.grey.maxHistoryAvailable);
// Some SOM schemes (reverse NFAs, for example) may require more history.
historyRequired = max(historyRequired, (size_t)ssm.somHistoryRequired());
assert(!cc.streaming || historyRequired <=
max(cc.grey.maxHistoryAvailable, cc.grey.somMaxRevNfaLength));
RoseStateOffsets stateOffsets;
memset(&stateOffsets, 0, sizeof(stateOffsets));
fillStateOffsets(*this, bc.numStates, anchorStateSize,
activeArrayCount, activeLeftCount, laggedRoseCount,
longLitStreamStateRequired, historyRequired,
&stateOffsets);
scatter_plan_raw state_scatter;
buildStateScatterPlan(sizeof(u8), bc.numStates,
activeLeftCount, rosePrefixCount, stateOffsets,
cc.streaming, activeArrayCount, outfixBeginQueue,
outfixEndQueue, &state_scatter);
currOffset = ROUNDUP_N(currOffset, alignof(scatter_unit_u64a));
u32 state_scatter_aux_offset = currOffset;
currOffset += aux_size(state_scatter);
currOffset = ROUNDUP_N(currOffset, alignof(ReportID));
u32 dkeyOffset = currOffset;
currOffset += rm.numDkeys() * sizeof(ReportID);
aligned_unique_ptr<RoseEngine> engine
= aligned_zmalloc_unique<RoseEngine>(currOffset);
assert(engine); // will have thrown bad_alloc otherwise.
char *ptr = (char *)engine.get();
assert(ISALIGNED_CL(ptr));
if (atable) {
assert(amatcherOffset);
memcpy(ptr + amatcherOffset, atable.get(), asize);
}
if (ftable) {
assert(fmatcherOffset);
memcpy(ptr + fmatcherOffset, ftable.get(), fsize);
}
if (etable) {
assert(ematcherOffset);
memcpy(ptr + ematcherOffset, etable.get(), esize);
}
if (sbtable) {
assert(sbmatcherOffset);
memcpy(ptr + sbmatcherOffset, sbtable.get(), sbsize);
}
memcpy(&engine->stateOffsets, &stateOffsets, sizeof(stateOffsets));
engine->historyRequired = verify_u32(historyRequired);
engine->ekeyCount = rm.numEkeys();
engine->dkeyCount = rm.numDkeys();
engine->dkeyLogSize = fatbit_size(engine->dkeyCount);
engine->invDkeyOffset = dkeyOffset;
copy_bytes(ptr + dkeyOffset, rm.getDkeyToReportTable());
engine->somHorizon = ssm.somPrecision();
engine->somLocationCount = ssm.numSomSlots();
engine->somLocationFatbitSize = fatbit_size(engine->somLocationCount);
engine->needsCatchup = bc.needs_catchup ? 1 : 0;
engine->literalCount = verify_u32(final_id_to_literal.size());
engine->litProgramOffset = litProgramOffset;
engine->litDelayRebuildProgramOffset = litDelayRebuildProgramOffset;
engine->reportProgramOffset = reportProgramOffset;
engine->reportProgramCount = reportProgramCount;
engine->runtimeImpl = pickRuntimeImpl(*this, bc, outfixEndQueue);
engine->mpvTriggeredByLeaf = anyEndfixMpvTriggers(*this);
engine->activeArrayCount = activeArrayCount;
engine->activeLeftCount = activeLeftCount;
engine->queueCount = queue_count;
engine->activeQueueArraySize = fatbit_size(queue_count);
engine->eagerIterOffset = eagerIterOffset;
engine->handledKeyCount = bc.handledKeys.size();
engine->handledKeyFatbitSize = fatbit_size(engine->handledKeyCount);
engine->rolesWithStateCount = bc.numStates;
engine->leftOffset = leftOffset;
engine->roseCount = verify_u32(leftInfoTable.size());
engine->lookaroundTableOffset = lookaroundTableOffset;
engine->lookaroundReachOffset = lookaroundReachOffset;
engine->outfixBeginQueue = outfixBeginQueue;
engine->outfixEndQueue = outfixEndQueue;
engine->leftfixBeginQueue = leftfixBeginQueue;
engine->initMpvNfa = mpv_as_outfix ? 0 : MO_INVALID_IDX;
engine->stateSize = mmbit_size(bc.numStates);
engine->anchorStateSize = anchorStateSize;
engine->nfaInfoOffset = nfaInfoOffset;
engine->eodProgramOffset = eodProgramOffset;
engine->lastByteHistoryIterOffset = lastByteOffset;
engine->delay_count =
verify_u32(final_id_to_literal.size() - delay_base_id);
engine->delay_fatbit_size = fatbit_size(engine->delay_count);
engine->delay_base_id = delay_base_id;
engine->anchored_base_id = anchored_base_id;
engine->anchored_count = delay_base_id - anchored_base_id;
engine->anchored_fatbit_size = fatbit_size(engine->anchored_count);
engine->rosePrefixCount = rosePrefixCount;
engine->activeLeftIterOffset
= activeLeftIter.empty() ? 0 : activeLeftIterOffset;
// Set scanning mode.
if (!cc.streaming) {
engine->mode = HS_MODE_BLOCK;
} else if (cc.vectored) {
engine->mode = HS_MODE_VECTORED;
} else {
engine->mode = HS_MODE_STREAM;
}
// The Small Write matcher is (conditionally) added to the RoseEngine in
// another pass by the caller. Set to zero (meaning no SMWR engine) for
// now.
engine->smallWriteOffset = 0;
engine->amatcherOffset = amatcherOffset;
engine->ematcherOffset = ematcherOffset;
engine->sbmatcherOffset = sbmatcherOffset;
engine->fmatcherOffset = fmatcherOffset;
engine->longLitTableOffset = longLitTableOffset;
engine->amatcherMinWidth = findMinWidth(*this, ROSE_ANCHORED);
engine->fmatcherMinWidth = findMinWidth(*this, ROSE_FLOATING);
engine->eodmatcherMinWidth = findMinWidth(*this, ROSE_EOD_ANCHORED);
engine->amatcherMaxBiAnchoredWidth = findMaxBAWidth(*this, ROSE_ANCHORED);
engine->fmatcherMaxBiAnchoredWidth = findMaxBAWidth(*this, ROSE_FLOATING);
engine->size = currOffset;
engine->minWidth = hasBoundaryReports(boundary) ? 0 : minWidth;
engine->minWidthExcludingBoundaries = minWidth;
engine->floatingMinLiteralMatchOffset = bc.floatingMinLiteralMatchOffset;
engine->maxBiAnchoredWidth = findMaxBAWidth(*this);
engine->noFloatingRoots = hasNoFloatingRoots();
engine->requiresEodCheck = hasEodAnchors(*this, bc, outfixEndQueue);
engine->hasOutfixesInSmallBlock = hasNonSmallBlockOutfix(outfixes);
engine->canExhaust = rm.patternSetCanExhaust();
engine->hasSom = hasSom;
/* populate anchoredDistance, floatingDistance, floatingMinDistance, etc */
fillMatcherDistances(*this, engine.get());
engine->initialGroups = getInitialGroups();
engine->floating_group_mask = fgroups;
engine->totalNumLiterals = verify_u32(literal_info.size());
engine->asize = verify_u32(asize);
engine->ematcherRegionSize = ematcher_region_size;
engine->longLitStreamState = verify_u32(longLitStreamStateRequired);
engine->boundary.reportEodOffset = boundary_out.reportEodOffset;
engine->boundary.reportZeroOffset = boundary_out.reportZeroOffset;
engine->boundary.reportZeroEodOffset = boundary_out.reportZeroEodOffset;
write_out(&engine->state_init, (char *)engine.get(), state_scatter,
state_scatter_aux_offset);
NfaInfo *nfa_infos = (NfaInfo *)(ptr + nfaInfoOffset);
populateNfaInfoBasics(*this, bc, outfixes, suffixEkeyLists,
no_retrigger_queues, nfa_infos);
updateNfaState(bc, &engine->stateOffsets, nfa_infos,
&engine->scratchStateSize, &engine->nfaStateSize,
&engine->tStateSize);
// Copy in other tables
bc.engine_blob.write_bytes(engine.get());
copy_bytes(ptr + engine->leftOffset, leftInfoTable);
fillLookaroundTables(ptr + lookaroundTableOffset,
ptr + lookaroundReachOffset, bc.lookaround);
fillInSomRevNfas(engine.get(), ssm, rev_nfa_table_offset, rev_nfa_offsets);
copy_bytes(ptr + engine->activeLeftIterOffset, activeLeftIter);
// Safety check: we shouldn't have written anything to the engine blob
// after we copied it into the engine bytecode.
assert(bc.engine_blob.size() == engineBlobSize);
// Add a small write engine if appropriate.
engine = addSmallWriteEngine(*this, move(engine));
DEBUG_PRINTF("rose done %p\n", engine.get());
return engine;
}
} // namespace ue2