vectorscan/src/rose/rose_build_bytecode.cpp
Justin Viiret 060defe6c4 Rose: move more report handling work into program
Move report preconditions (bounds, exhaustion, etc) into program
instructions and use a more direct path to the user match callback than
the adaptor functions.

Report handling has been moved to new file src/report.h. Reporting from
EOD now uses the same instructions as normal report handling, rather
than its own.

Jump target tracking in rose_build_bytecode.cpp has been cleaned up.
2016-03-01 11:32:01 +11:00

4632 lines
150 KiB
C++

/*
* Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "rose_build_impl.h"
#include "ue2common.h"
#include "grey.h"
#include "hs_compile.h" // for HS_MODE_*
#include "rose_build_add_internal.h"
#include "rose_build_anchored.h"
#include "rose_build_infix.h"
#include "rose_build_lookaround.h"
#include "rose_build_scatter.h"
#include "rose_build_util.h"
#include "rose_build_width.h"
#include "rose_program.h"
#include "hwlm/hwlm.h" /* engine types */
#include "hwlm/hwlm_build.h"
#include "nfa/castlecompile.h"
#include "nfa/goughcompile.h"
#include "nfa/mcclellancompile.h"
#include "nfa/nfa_api_queue.h"
#include "nfa/nfa_build_util.h"
#include "nfa/nfa_internal.h"
#include "nfa/shufticompile.h"
#include "nfagraph/ng_holder.h"
#include "nfagraph/ng_lbr.h"
#include "nfagraph/ng_limex.h"
#include "nfagraph/ng_mcclellan.h"
#include "nfagraph/ng_repeat.h"
#include "nfagraph/ng_reports.h"
#include "nfagraph/ng_revacc.h"
#include "nfagraph/ng_stop.h"
#include "nfagraph/ng_util.h"
#include "nfagraph/ng_width.h"
#include "som/slot_manager.h"
#include "util/alloc.h"
#include "util/bitutils.h"
#include "util/boundary_reports.h"
#include "util/charreach.h"
#include "util/charreach_util.h"
#include "util/compile_context.h"
#include "util/compile_error.h"
#include "util/container.h"
#include "util/graph_range.h"
#include "util/dump_charclass.h"
#include "util/internal_report.h"
#include "util/multibit_build.h"
#include "util/order_check.h"
#include "util/queue_index_factory.h"
#include "util/report_manager.h"
#include "util/ue2string.h"
#include "util/verify_types.h"
#include <algorithm>
#include <iomanip>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <utility>
#include <boost/range/adaptor/map.hpp>
using namespace std;
using boost::adaptors::map_values;
using boost::adaptors::map_keys;
namespace ue2 {
/* The rose bytecode construction is a giant cesspit.
*
* One issue is that bits and pieces are constructed piecemeal and these
* sections are used by later in the construction process. Until the very end of
* the construction there is no useful invariant holding for the bytecode. This
* makes reordering / understanding the construction process awkward as there
* are hidden dependencies everywhere. We should start by shifting towards
* a model where the bytecode is only written to during the construction so that
* the dependencies can be understood by us mere mortals.
*
* I am sure the construction process is also bad from a number of other
* standpoints as well but the can come later.
*
* Actually, one other annoying issues the plague of member functions on the
* impl which tightly couples the internals of this file to all the other rose
* build files. Need more egregiously awesome free functions.
*/
namespace /* anon */ {
struct left_build_info {
// Constructor for an engine implementation.
left_build_info(u32 q, u32 l, u32 t, rose_group sm,
const std::vector<u8> &stops, u32 max_ql, u8 cm_count,
const CharReach &cm_cr)
: queue(q), lag(l), transient(t), squash_mask(sm), stopAlphabet(stops),
max_queuelen(max_ql), countingMiracleCount(cm_count),
countingMiracleReach(cm_cr) {}
// Constructor for a lookaround implementation.
explicit left_build_info(const vector<LookEntry> &look)
: has_lookaround(true), lookaround(look) {}
u32 queue = 0; /* uniquely idents the left_build_info */
u32 lag = 0;
u32 transient = 0;
rose_group squash_mask = ~rose_group{0};
vector<u8> stopAlphabet;
u32 max_queuelen = 0;
u8 countingMiracleCount = 0;
CharReach countingMiracleReach;
u32 countingMiracleOffset = 0; /* populated later when laying out bytecode */
bool has_lookaround = false;
vector<LookEntry> lookaround; // alternative implementation to the NFA
};
/**
* \brief Possible jump targets for roles that perform checks.
*
* Fixed up into offsets before the program is written to bytecode.
*/
enum class JumpTarget {
NO_JUMP, //!< Instruction does not jump.
PROGRAM_END, //!< Jump to end of program.
NEXT_BLOCK, //!< Jump to start of next block (sparse iter check, etc).
FIXUP_DONE, //!< Target fixup already applied.
};
/** \brief Role instruction model used at compile time. */
class RoseInstruction {
public:
RoseInstruction(enum RoseInstructionCode c, JumpTarget j) : target(j) {
memset(&u, 0, sizeof(u));
u.end.code = c;
}
explicit RoseInstruction(enum RoseInstructionCode c)
: RoseInstruction(c, JumpTarget::NO_JUMP) {}
bool operator<(const RoseInstruction &a) const {
if (code() != a.code()) {
return code() < a.code();
}
if (target != a.target) {
return target < a.target;
}
return memcmp(&u, &a.u, sizeof(u)) < 0;
}
bool operator==(const RoseInstruction &a) const {
return code() == a.code() && target == a.target &&
memcmp(&u, &a.u, sizeof(u)) == 0;
}
enum RoseInstructionCode code() const {
// Note that this sort of type-punning (relying on identical initial
// layout) is explicitly allowed by the C++11 standard.
return (enum RoseInstructionCode)u.end.code;
}
const void *get() const {
switch (code()) {
case ROSE_INSTR_CHECK_LIT_MASK: return &u.checkLitMask;
case ROSE_INSTR_CHECK_LIT_EARLY: return &u.checkLitEarly;
case ROSE_INSTR_CHECK_GROUPS: return &u.checkGroups;
case ROSE_INSTR_CHECK_ONLY_EOD: return &u.checkOnlyEod;
case ROSE_INSTR_CHECK_BOUNDS: return &u.checkBounds;
case ROSE_INSTR_CHECK_NOT_HANDLED: return &u.checkNotHandled;
case ROSE_INSTR_CHECK_LOOKAROUND: return &u.checkLookaround;
case ROSE_INSTR_CHECK_LEFTFIX: return &u.checkLeftfix;
case ROSE_INSTR_ANCHORED_DELAY: return &u.anchoredDelay;
case ROSE_INSTR_PUSH_DELAYED: return &u.pushDelayed;
case ROSE_INSTR_CATCH_UP: return &u.catchUp;
case ROSE_INSTR_SOM_ADJUST: return &u.somAdjust;
case ROSE_INSTR_SOM_LEFTFIX: return &u.somLeftfix;
case ROSE_INSTR_SOM_FROM_REPORT: return &u.somFromReport;
case ROSE_INSTR_SOM_ZERO: return &u.somZero;
case ROSE_INSTR_TRIGGER_INFIX: return &u.triggerInfix;
case ROSE_INSTR_TRIGGER_SUFFIX: return &u.triggerSuffix;
case ROSE_INSTR_DEDUPE: return &u.dedupe;
case ROSE_INSTR_DEDUPE_SOM: return &u.dedupeSom;
case ROSE_INSTR_REPORT_CHAIN: return &u.reportChain;
case ROSE_INSTR_REPORT_SOM_INT: return &u.reportSomInt;
case ROSE_INSTR_REPORT_SOM_AWARE: return &u.reportSom;
case ROSE_INSTR_REPORT: return &u.report;
case ROSE_INSTR_REPORT_EXHAUST: return &u.reportExhaust;
case ROSE_INSTR_REPORT_SOM: return &u.reportSom;
case ROSE_INSTR_REPORT_SOM_EXHAUST: return &u.reportSomExhaust;
case ROSE_INSTR_CHECK_EXHAUSTED: return &u.checkExhausted;
case ROSE_INSTR_CHECK_MIN_LENGTH: return &u.checkMinLength;
case ROSE_INSTR_SET_STATE: return &u.setState;
case ROSE_INSTR_SET_GROUPS: return &u.setGroups;
case ROSE_INSTR_SQUASH_GROUPS: return &u.squashGroups;
case ROSE_INSTR_CHECK_STATE: return &u.checkState;
case ROSE_INSTR_SPARSE_ITER_BEGIN: return &u.sparseIterBegin;
case ROSE_INSTR_SPARSE_ITER_NEXT: return &u.sparseIterNext;
case ROSE_INSTR_END: return &u.end;
}
assert(0);
return &u.end;
}
size_t length() const {
switch (code()) {
case ROSE_INSTR_CHECK_LIT_MASK: return sizeof(u.checkLitMask);
case ROSE_INSTR_CHECK_LIT_EARLY: return sizeof(u.checkLitEarly);
case ROSE_INSTR_CHECK_GROUPS: return sizeof(u.checkGroups);
case ROSE_INSTR_CHECK_ONLY_EOD: return sizeof(u.checkOnlyEod);
case ROSE_INSTR_CHECK_BOUNDS: return sizeof(u.checkBounds);
case ROSE_INSTR_CHECK_NOT_HANDLED: return sizeof(u.checkNotHandled);
case ROSE_INSTR_CHECK_LOOKAROUND: return sizeof(u.checkLookaround);
case ROSE_INSTR_CHECK_LEFTFIX: return sizeof(u.checkLeftfix);
case ROSE_INSTR_ANCHORED_DELAY: return sizeof(u.anchoredDelay);
case ROSE_INSTR_PUSH_DELAYED: return sizeof(u.pushDelayed);
case ROSE_INSTR_CATCH_UP: return sizeof(u.catchUp);
case ROSE_INSTR_SOM_ADJUST: return sizeof(u.somAdjust);
case ROSE_INSTR_SOM_LEFTFIX: return sizeof(u.somLeftfix);
case ROSE_INSTR_SOM_FROM_REPORT: return sizeof(u.somFromReport);
case ROSE_INSTR_SOM_ZERO: return sizeof(u.somZero);
case ROSE_INSTR_TRIGGER_INFIX: return sizeof(u.triggerInfix);
case ROSE_INSTR_TRIGGER_SUFFIX: return sizeof(u.triggerSuffix);
case ROSE_INSTR_DEDUPE: return sizeof(u.dedupe);
case ROSE_INSTR_DEDUPE_SOM: return sizeof(u.dedupeSom);
case ROSE_INSTR_REPORT_CHAIN: return sizeof(u.reportChain);
case ROSE_INSTR_REPORT_SOM_INT: return sizeof(u.reportSomInt);
case ROSE_INSTR_REPORT_SOM_AWARE: return sizeof(u.reportSom);
case ROSE_INSTR_REPORT: return sizeof(u.report);
case ROSE_INSTR_REPORT_EXHAUST: return sizeof(u.reportExhaust);
case ROSE_INSTR_REPORT_SOM: return sizeof(u.reportSom);
case ROSE_INSTR_REPORT_SOM_EXHAUST: return sizeof(u.reportSomExhaust);
case ROSE_INSTR_CHECK_EXHAUSTED: return sizeof(u.checkExhausted);
case ROSE_INSTR_CHECK_MIN_LENGTH: return sizeof(u.checkMinLength);
case ROSE_INSTR_SET_STATE: return sizeof(u.setState);
case ROSE_INSTR_SET_GROUPS: return sizeof(u.setGroups);
case ROSE_INSTR_SQUASH_GROUPS: return sizeof(u.squashGroups);
case ROSE_INSTR_CHECK_STATE: return sizeof(u.checkState);
case ROSE_INSTR_SPARSE_ITER_BEGIN: return sizeof(u.sparseIterBegin);
case ROSE_INSTR_SPARSE_ITER_NEXT: return sizeof(u.sparseIterNext);
case ROSE_INSTR_END: return sizeof(u.end);
}
assert(0);
return 0;
}
union {
ROSE_STRUCT_CHECK_LIT_MASK checkLitMask;
ROSE_STRUCT_CHECK_LIT_EARLY checkLitEarly;
ROSE_STRUCT_CHECK_GROUPS checkGroups;
ROSE_STRUCT_CHECK_ONLY_EOD checkOnlyEod;
ROSE_STRUCT_CHECK_BOUNDS checkBounds;
ROSE_STRUCT_CHECK_NOT_HANDLED checkNotHandled;
ROSE_STRUCT_CHECK_LOOKAROUND checkLookaround;
ROSE_STRUCT_CHECK_LEFTFIX checkLeftfix;
ROSE_STRUCT_ANCHORED_DELAY anchoredDelay;
ROSE_STRUCT_PUSH_DELAYED pushDelayed;
ROSE_STRUCT_CATCH_UP catchUp;
ROSE_STRUCT_SOM_ADJUST somAdjust;
ROSE_STRUCT_SOM_LEFTFIX somLeftfix;
ROSE_STRUCT_SOM_FROM_REPORT somFromReport;
ROSE_STRUCT_SOM_ZERO somZero;
ROSE_STRUCT_TRIGGER_INFIX triggerInfix;
ROSE_STRUCT_TRIGGER_SUFFIX triggerSuffix;
ROSE_STRUCT_DEDUPE dedupe;
ROSE_STRUCT_DEDUPE_SOM dedupeSom;
ROSE_STRUCT_REPORT_CHAIN reportChain;
ROSE_STRUCT_REPORT_SOM_INT reportSomInt;
ROSE_STRUCT_REPORT_SOM_AWARE reportSomAware;
ROSE_STRUCT_REPORT report;
ROSE_STRUCT_REPORT_EXHAUST reportExhaust;
ROSE_STRUCT_REPORT_SOM reportSom;
ROSE_STRUCT_REPORT_SOM_EXHAUST reportSomExhaust;
ROSE_STRUCT_CHECK_EXHAUSTED checkExhausted;
ROSE_STRUCT_CHECK_MIN_LENGTH checkMinLength;
ROSE_STRUCT_SET_STATE setState;
ROSE_STRUCT_SET_GROUPS setGroups;
ROSE_STRUCT_SQUASH_GROUPS squashGroups;
ROSE_STRUCT_CHECK_STATE checkState;
ROSE_STRUCT_SPARSE_ITER_BEGIN sparseIterBegin;
ROSE_STRUCT_SPARSE_ITER_NEXT sparseIterNext;
ROSE_STRUCT_END end;
} u;
JumpTarget target;
};
static
size_t hash_value(const RoseInstruction &ri) {
size_t val = 0;
boost::hash_combine(val, ri.code());
boost::hash_combine(val, ri.target);
const char *bytes = (const char *)ri.get();
const size_t len = ri.length();
for (size_t i = 0; i < len; i++) {
boost::hash_combine(val, bytes[i]);
}
return val;
}
struct build_context : boost::noncopyable {
/** \brief information about engines to the left of a vertex */
map<RoseVertex, left_build_info> leftfix_info;
/** \brief mapping from suffix to queue index. */
map<suffix_id, u32> suffixes;
/** \brief Mapping from vertex to key, for vertices with a
* CHECK_NOT_HANDLED instruction. */
ue2::unordered_map<RoseVertex, u32> handledKeys;
/** \brief Number of roles with a state bit.
*
* This is set by assignStateIndices() and should be constant throughout
* the rest of the compile.
*/
size_t numStates = 0;
/** \brief Very simple cache from sparse iter to offset, used when building
* up iterators in early misc. */
map<vector<mmbit_sparse_iter>, u32> iterCache;
/** \brief Simple cache of programs written to engine blob, used for
* deduplication. */
ue2::unordered_map<vector<RoseInstruction>, u32> program_cache;
/** \brief LookEntry list cache, so that we don't have to go scanning
* through the full list to find cases we've used already. */
ue2::unordered_map<vector<LookEntry>, size_t> lookaround_cache;
/** \brief Lookaround table for Rose roles. */
vector<LookEntry> lookaround;
/** \brief State indices, for those roles that have them. */
ue2::unordered_map<RoseVertex, u32> roleStateIndices;
/** \brief Mapping from queue index to bytecode offset for built engines
* that have already been pushed into the engine_blob. */
ue2::unordered_map<u32, u32> engineOffsets;
/** \brief Minimum offset of a match from the floating table. */
u32 floatingMinLiteralMatchOffset = 0;
/** \brief Contents of the Rose bytecode immediately following the
* RoseEngine. */
vector<char, AlignedAllocator<char, 64>> engine_blob;
/** \brief Base offset of engine_blob in the Rose engine bytecode. */
static constexpr u32 engine_blob_base = ROUNDUP_CL(sizeof(RoseEngine));
};
}
static
void pad_engine_blob(build_context &bc, size_t align) {
assert(ISALIGNED_N(bc.engine_blob_base, align));
size_t s = bc.engine_blob.size();
if (ISALIGNED_N(s, align)) {
return;
}
bc.engine_blob.resize(s + align - s % align);
}
static
u32 add_to_engine_blob(build_context &bc, const void *a, const size_t len,
const size_t align) {
pad_engine_blob(bc, align);
size_t rv = bc.engine_blob_base + bc.engine_blob.size();
assert(rv >= bc.engine_blob_base);
DEBUG_PRINTF("write %zu bytes at offset %zu\n", len, rv);
assert(ISALIGNED_N(bc.engine_blob.size(), align));
bc.engine_blob.resize(bc.engine_blob.size() + len);
memcpy(&bc.engine_blob.back() - len + 1, a, len);
return verify_u32(rv);
}
template<typename T>
static
u32 add_to_engine_blob(build_context &bc, const T &a) {
static_assert(is_pod<T>::value, "should be pod");
return add_to_engine_blob(bc, &a, sizeof(a), alignof(T));
}
template<typename T>
static
u32 add_to_engine_blob(build_context &bc, const T &a, const size_t len) {
static_assert(is_pod<T>::value, "should be pod");
return add_to_engine_blob(bc, &a, len, alignof(T));
}
template<typename Iter>
static
u32 add_to_engine_blob(build_context &bc, Iter b, const Iter &e) {
using value_type = typename Iter::value_type;
static_assert(is_pod<value_type>::value, "should be pod");
if (b == e) {
return 0;
}
u32 offset = add_to_engine_blob(bc, *b);
for (++b; b != e; ++b) {
add_to_engine_blob(bc, *b);
}
return offset;
}
static
const NFA *get_nfa_from_blob(const build_context &bc, u32 qi) {
assert(contains(bc.engineOffsets, qi));
u32 nfa_offset = bc.engineOffsets.at(qi);
assert(nfa_offset >= bc.engine_blob_base);
const NFA *n = (const NFA *)(bc.engine_blob.data() + nfa_offset -
bc.engine_blob_base);
assert(n->queueIndex == qi);
return n;
}
static
const NFA *add_nfa_to_blob(build_context &bc, NFA &nfa) {
u32 qi = nfa.queueIndex;
u32 nfa_offset = add_to_engine_blob(bc, nfa, nfa.length);
DEBUG_PRINTF("added nfa qi=%u, type=%u, length=%u at offset=%u\n", qi,
nfa.type, nfa.length, nfa_offset);
assert(!contains(bc.engineOffsets, qi));
bc.engineOffsets.emplace(qi, nfa_offset);
const NFA *n = get_nfa_from_blob(bc, qi);
assert(memcmp(&nfa, n, nfa.length) == 0);
return n;
}
static
u32 countRosePrefixes(const vector<LeftNfaInfo> &roses) {
u32 num = 0;
for (const auto &r : roses) {
if (!r.infix) {
num++;
}
}
return num;
}
static
bool isPureFloating(const RoseBuildImpl &tbi) {
if (!tbi.outfixes.empty()) {
DEBUG_PRINTF("has outfixes\n");
return false;
}
const RoseGraph &g = tbi.g;
if (!isLeafNode(tbi.anchored_root, g)) {
DEBUG_PRINTF("has anchored vertices\n");
return false;
}
for (auto v : vertices_range(g)) {
if (tbi.root == v) {
continue;
}
if (tbi.anchored_root == v) {
assert(isLeafNode(v, g));
continue;
}
if (!tbi.hasDirectFinalId(v) || !tbi.isFloating(v)) {
DEBUG_PRINTF("vertex %zu isn't floating and direct\n", g[v].idx);
return false;
}
for (ReportID r : g[v].reports) {
const Report &ri = tbi.rm.getReport(r);
if (!isExternalReport(ri)) {
DEBUG_PRINTF("vertex %zu has non-external report\n", g[v].idx);
return false;
}
}
}
DEBUG_PRINTF("pure floating literals\n");
return true;
}
static
bool isSingleOutfix(const RoseBuildImpl &tbi, u32 outfixEndQueue) {
for (auto v : vertices_range(tbi.g)) {
if (tbi.isAnyStart(v)) {
continue;
}
if (tbi.hasLiteralInTable(v, ROSE_ANCHORED_SMALL_BLOCK)) {
continue;
}
DEBUG_PRINTF("has role\n");
return false;
}
if (tbi.ssm.numSomSlots()) {
return false;
}
if (!tbi.boundary.report_at_eod.empty()) {
return false; /* streaming runtime makes liberal use of broken flag */
}
return outfixEndQueue == 1;
}
static
u8 pickRuntimeImpl(const RoseBuildImpl &tbi, u32 outfixEndQueue) {
if (isPureFloating(tbi)) {
return ROSE_RUNTIME_PURE_LITERAL;
}
if (isSingleOutfix(tbi, outfixEndQueue)) {
return ROSE_RUNTIME_SINGLE_OUTFIX;
}
return ROSE_RUNTIME_FULL_ROSE;
}
static
void fillStateOffsets(const RoseBuildImpl &tbi, u32 rolesWithStateCount,
u32 anchorStateSize, u32 activeArrayCount,
u32 activeLeftCount, u32 laggedRoseCount,
u32 floatingStreamStateRequired, u32 historyRequired,
RoseStateOffsets *so) {
u32 curr_offset = 0;
// First, runtime state (stores per-stream state, like whether we need a
// delay rebuild or have been told to halt matching.)
curr_offset += sizeof(RoseRuntimeState);
// Role state storage.
curr_offset += mmbit_size(rolesWithStateCount);
so->activeLeafArray = curr_offset; /* TODO: limit size of array */
curr_offset += mmbit_size(activeArrayCount);
so->activeLeftArray = curr_offset; /* TODO: limit size of array */
so->activeLeftArray_size = mmbit_size(activeLeftCount);
curr_offset += so->activeLeftArray_size;
so->floatingMatcherState = curr_offset;
curr_offset += floatingStreamStateRequired;
// ONE WHOLE BYTE for each active leftfix with lag.
so->leftfixLagTable = curr_offset;
curr_offset += laggedRoseCount;
// Anchored state is McClellan full state, and needs to be 2-byte aligned.
// We potentially waste a byte here.
if (curr_offset % 2) {
curr_offset++;
}
so->anchorState = curr_offset;
curr_offset += anchorStateSize;
so->groups = curr_offset;
so->groups_size = (tbi.group_end + 7) / 8;
assert(so->groups_size <= sizeof(u64a));
curr_offset += so->groups_size;
// The history consists of the bytes in the history only. YAY
so->history = curr_offset;
curr_offset += historyRequired;
// Exhausted bit vector.
so->exhausted = curr_offset;
curr_offset += ROUNDUP_N(tbi.rm.numEkeys(), 8) / 8;
// SOM locations and valid/writeable multibit structures.
if (tbi.ssm.numSomSlots()) {
const u32 somWidth = tbi.ssm.somPrecision();
if (somWidth) { // somWidth is zero in block mode.
curr_offset = ROUNDUP_N(curr_offset, somWidth);
so->somLocation = curr_offset;
curr_offset += tbi.ssm.numSomSlots() * somWidth;
} else {
so->somLocation = 0;
}
so->somValid = curr_offset;
curr_offset += mmbit_size(tbi.ssm.numSomSlots());
so->somWritable = curr_offset;
curr_offset += mmbit_size(tbi.ssm.numSomSlots());
} else {
// No SOM handling, avoid growing the stream state any further.
so->somLocation = 0;
so->somValid = 0;
so->somWritable = 0;
}
// note: state space for mask nfas is allocated later
so->end = curr_offset;
}
// Get the mask of initial vertices due to root and anchored_root.
rose_group RoseBuildImpl::getInitialGroups() const {
rose_group groups = getSuccGroups(root) | getSuccGroups(anchored_root);
DEBUG_PRINTF("initial groups = %016llx\n", groups);
return groups;
}
static
bool nfaStuckOn(const NGHolder &g) {
assert(!proper_out_degree(g.startDs, g));
set<NFAVertex> succ;
insert(&succ, adjacent_vertices(g.start, g));
succ.erase(g.startDs);
set<NFAVertex> asucc;
set<u32> tops;
set<u32> done_tops;
for (const auto &e : out_edges_range(g.start, g)) {
tops.insert(g[e].top);
if (!g[target(e, g)].char_reach.all()) {
continue;
}
asucc.clear();
insert(&asucc, adjacent_vertices(target(e, g), g));
if (asucc == succ) {
done_tops.insert(g[e].top);
}
}
return tops == done_tops;
}
namespace {
struct PredTopPair {
PredTopPair(RoseVertex v, u32 t) : pred(v), top(t) {}
bool operator<(const PredTopPair &b) const {
const PredTopPair &a = *this;
ORDER_CHECK(pred);
ORDER_CHECK(top);
return false;
}
RoseVertex pred;
u32 top;
};
}
static
void findFixedDepthTops(const RoseGraph &g, const set<PredTopPair> &triggers,
map<u32, u32> *fixed_depth_tops) {
DEBUG_PRINTF("|trig| %zu\n", triggers.size());
/* find all pred roles for this holder, group by top */
/* if all pred roles for a given top have the same min and max offset, we
* add the top to the fixed_depth_top map */
map<u32, set<RoseVertex> > pred_by_top;
for (const auto &ptp : triggers) {
u32 top = ptp.top;
RoseVertex u = ptp.pred;
pred_by_top[top].insert(u);
}
for (const auto &e : pred_by_top) {
u32 top = e.first;
const set<RoseVertex> &preds = e.second;
if (!g[*preds.begin()].fixedOffset()) {
continue;
}
u32 depth = g[*preds.begin()].min_offset;
for (RoseVertex u : preds) {
if (g[u].min_offset != depth || g[u].max_offset != depth) {
goto next_top;
}
}
DEBUG_PRINTF("%u at depth %u\n", top, depth);
(*fixed_depth_tops)[top] = depth;
next_top:;
}
}
/**
* \brief Heuristic for picking between a DFA or NFA implementation of an
* engine.
*/
static
aligned_unique_ptr<NFA> pickImpl(aligned_unique_ptr<NFA> dfa_impl,
aligned_unique_ptr<NFA> nfa_impl) {
assert(nfa_impl);
assert(dfa_impl);
assert(isMcClellanType(dfa_impl->type));
// If our NFA is an LBR, it always wins.
if (isLbrType(nfa_impl->type)) {
return nfa_impl;
}
bool d_accel = has_accel(*dfa_impl);
bool n_accel = has_accel(*nfa_impl);
bool d_big = dfa_impl->type == MCCLELLAN_NFA_16;
bool n_vsmall = nfa_impl->nPositions <= 32;
bool n_br = has_bounded_repeats(*nfa_impl);
DEBUG_PRINTF("da %d na %d db %d nvs %d nbr %d\n", (int)d_accel,
(int)n_accel, (int)d_big, (int)n_vsmall, (int)n_br);
if (d_big) {
if (!n_vsmall) {
if (d_accel || !n_accel) {
return dfa_impl;
} else {
return nfa_impl;
}
} else {
if (n_accel) {
return nfa_impl;
} else {
return dfa_impl;
}
}
} else {
/* favour a McClellan 8, unless the nfa looks really good and the dfa
* looks like trouble */
if (!d_accel && n_vsmall && n_accel && !n_br) {
return nfa_impl;
} else {
return dfa_impl;
}
}
}
/**
* \brief Builds an LBR if there's one repeat in the given CastleProto,
* otherwise a Castle.
*/
static
aligned_unique_ptr<NFA>
buildRepeatEngine(const CastleProto &proto,
const map<u32, vector<vector<CharReach>>> &triggers,
const CompileContext &cc) {
// If we only have one repeat, the LBR should always be the best possible
// implementation.
if (proto.repeats.size() == 1 && cc.grey.allowLbr) {
return constructLBR(proto.repeats.begin()->second, triggers.at(0), cc);
}
aligned_unique_ptr<NFA> castle_nfa = buildCastle(proto, triggers, cc);
assert(castle_nfa); // Should always be constructible.
return castle_nfa;
}
/* builds suffix nfas */
static
aligned_unique_ptr<NFA>
buildSuffix(const ReportManager &rm, const SomSlotManager &ssm,
const map<u32, u32> &fixed_depth_tops,
const map<u32, vector<vector<CharReach>>> &triggers,
suffix_id suff, const CompileContext &cc) {
if (suff.castle()) {
auto n = buildRepeatEngine(*suff.castle(), triggers, cc);
assert(n);
return n;
}
if (suff.haig()) {
auto n = goughCompile(*suff.haig(), ssm.somPrecision(), cc);
assert(n);
return n;
}
if (suff.dfa()) {
auto d = mcclellanCompile(*suff.dfa(), cc);
assert(d);
return d;
}
assert(suff.graph());
NGHolder &holder = *suff.graph();
assert(holder.kind == NFA_SUFFIX);
const bool oneTop = onlyOneTop(holder);
bool compress_state = cc.streaming;
// Take a shot at the LBR engine.
if (oneTop) {
auto lbr = constructLBR(holder, triggers.at(0), cc);
if (lbr) {
return lbr;
}
}
auto n = constructNFA(holder, &rm, fixed_depth_tops, triggers,
compress_state, cc);
assert(n);
if (oneTop && cc.grey.roseMcClellanSuffix) {
if (cc.grey.roseMcClellanSuffix == 2 || n->nPositions > 128 ||
!has_bounded_repeats_other_than_firsts(*n)) {
auto rdfa = buildMcClellan(holder, &rm, false, triggers.at(0),
cc.grey);
if (rdfa) {
auto d = mcclellanCompile(*rdfa, cc);
assert(d);
if (cc.grey.roseMcClellanSuffix != 2) {
n = pickImpl(move(d), move(n));
} else {
n = move(d);
}
assert(n);
if (isMcClellanType(n->type)) {
// DFA chosen. We may be able to set some more properties
// in the NFA structure here.
u64a maxOffset = findMaxOffset(holder, rm);
if (maxOffset != MAX_OFFSET && maxOffset < 0xffffffffull) {
n->maxOffset = (u32)maxOffset;
DEBUG_PRINTF("dfa max offset %llu\n", maxOffset);
} else {
n->maxOffset = 0; // inf
}
}
}
}
}
return n;
}
static
void findInfixTriggers(const RoseBuildImpl &build,
map<left_id, set<PredTopPair> > *infixTriggers) {
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (!g[v].left) {
continue;
}
set<PredTopPair> &triggers = (*infixTriggers)[left_id(g[v].left)];
for (const auto &e : in_edges_range(v, g)) {
RoseVertex u = source(e, g);
if (build.isAnyStart(u)) {
continue;
}
triggers.insert(PredTopPair(u, g[e].rose_top));
}
}
}
static
vector<CharReach> as_cr_seq(const rose_literal_id &lit) {
vector<CharReach> rv = as_cr_seq(lit.s);
for (u32 i = 0; i < lit.delay; i++) {
rv.push_back(CharReach::dot());
}
/* TODO: take into account cmp/msk */
return rv;
}
/**
* \brief Returns a map of trigger literals as sequences of CharReach, grouped
* by top index.
*/
static
void findTriggerSequences(const RoseBuildImpl &tbi,
const set<PredTopPair> &triggers,
map<u32, vector<vector<CharReach> > > *trigger_lits) {
map<u32, set<u32> > lit_ids_by_top;
for (const PredTopPair &t : triggers) {
insert(&lit_ids_by_top[t.top], tbi.g[t.pred].literals);
}
for (const auto &e : lit_ids_by_top) {
const u32 top = e.first;
const set<u32> &lit_ids = e.second;
for (u32 id : lit_ids) {
const rose_literal_id &lit = tbi.literals.right.at(id);
(*trigger_lits)[top].push_back(as_cr_seq(lit));
}
}
}
static aligned_unique_ptr<NFA>
makeLeftNfa(const RoseBuildImpl &tbi, left_id &left,
const bool is_prefix, const bool is_transient,
const map<left_id, set<PredTopPair> > &infixTriggers,
const CompileContext &cc) {
aligned_unique_ptr<NFA> n;
// Should compress state if this rose is non-transient and we're in
// streaming mode.
const bool compress_state = !is_transient;
assert(!left.graph()
|| left.graph()->kind == (is_prefix ? NFA_PREFIX : NFA_INFIX));
// Holder should be implementable as an NFA at the very least.
if (!left.dfa() && left.graph()) {
assert(isImplementableNFA(*left.graph(), nullptr, cc));
}
map<u32, u32> fixed_depth_tops;
if (!is_prefix /* infix */) {
const set<PredTopPair> &triggers = infixTriggers.at(left);
findFixedDepthTops(tbi.g, triggers, &fixed_depth_tops);
}
if (left.castle()) {
assert(!is_prefix);
map<u32, vector<vector<CharReach> > > triggers;
findTriggerSequences(tbi, infixTriggers.at(left), &triggers);
n = buildRepeatEngine(*left.castle(), triggers, cc);
assert(n);
return n; // Castles/LBRs are always best!
}
if (left.dfa()) {
n = mcclellanCompile(*left.dfa(), cc);
} else if (left.graph() && cc.grey.roseMcClellanPrefix == 2 && is_prefix &&
!is_transient) {
auto rdfa = buildMcClellan(*left.graph(), nullptr, cc.grey);
if (rdfa) {
n = mcclellanCompile(*rdfa, cc);
}
}
// We can attempt to build LBRs for infixes.
if (!n && !is_prefix && left.graph() && onlyOneTop(*left.graph())) {
map<u32, vector<vector<CharReach> > > triggers;
findTriggerSequences(tbi, infixTriggers.at(left), &triggers);
assert(contains(triggers, 0)); // single top
n = constructLBR(*left.graph(), triggers[0], cc);
}
if (!n && left.graph()) {
map<u32, vector<vector<CharReach>>> triggers;
findTriggerSequences(tbi, infixTriggers.at(left), &triggers);
n = constructNFA(*left.graph(), nullptr, fixed_depth_tops, triggers,
compress_state, cc);
}
if (cc.grey.roseMcClellanPrefix == 1 && is_prefix && !left.dfa()
&& left.graph()
&& (!n || !has_bounded_repeats_other_than_firsts(*n) || !is_fast(*n))) {
auto rdfa = buildMcClellan(*left.graph(), nullptr, cc.grey);
if (rdfa) {
auto d = mcclellanCompile(*rdfa, cc);
assert(d);
n = pickImpl(move(d), move(n));
}
}
return n;
}
static
void setLeftNfaProperties(NFA &n, const left_id &left) {
depth min_width = findMinWidth(left);
DEBUG_PRINTF("min_width=%s\n", min_width.str().c_str());
u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0;
n.minWidth = min_width_value;
depth max_width = findMaxWidth(left);
DEBUG_PRINTF("max_width=%s\n", max_width.str().c_str());
u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0;
n.maxWidth = max_width_value;
// FIXME: NFA::maxOffset in Rose can't be found from reports as they don't
// map to internal_report structures; it would have to come from the Rose
// graph.
}
static
bool buildLeftfixes(const RoseBuildImpl &tbi, build_context &bc,
QueueIndexFactory &qif, set<u32> *no_retrigger_queues,
bool do_prefix) {
const RoseGraph &g = tbi.g;
const CompileContext &cc = tbi.cc;
ue2::unordered_map<left_id, u32> seen; // already built queue indices
map<left_id, set<PredTopPair> > infixTriggers;
findInfixTriggers(tbi, &infixTriggers);
for (auto v : vertices_range(g)) {
if (!g[v].left) {
continue;
}
bool is_prefix = tbi.isRootSuccessor(v);
if (do_prefix != is_prefix) {
/* we require prefixes and then infixes */
continue;
}
left_id leftfix(g[v].left);
// Sanity check: our NFA should contain each of the tops mentioned on
// our in-edges.
assert(roseHasTops(g, v));
u32 qi; // queue index, set below.
u32 lag = g[v].left.lag;
bool is_transient = contains(tbi.transient, leftfix);
if (is_transient && tbi.cc.grey.roseLookaroundMasks) {
vector<LookEntry> lookaround;
if (makeLeftfixLookaround(tbi, v, lookaround)) {
DEBUG_PRINTF("implementing as lookaround!\n");
bc.leftfix_info.emplace(v, left_build_info(lookaround));
continue;
}
}
if (contains(seen, leftfix)) {
// NFA already built.
qi = seen[leftfix];
assert(contains(bc.engineOffsets, qi));
DEBUG_PRINTF("sharing leftfix, qi=%u\n", qi);
} else {
DEBUG_PRINTF("making %sleftfix\n", is_transient ? "transient " : "");
aligned_unique_ptr<NFA> nfa;
// Need to build NFA, which is either predestined to be a Haig (in
// SOM mode) or could be all manner of things.
if (leftfix.haig()) {
nfa = goughCompile(*leftfix.haig(), tbi.ssm.somPrecision(), cc);
} else {
assert(tbi.isNonRootSuccessor(v) != tbi.isRootSuccessor(v));
nfa = makeLeftNfa(tbi, leftfix, is_prefix, is_transient,
infixTriggers, cc);
}
if (!nfa) {
assert(!"failed to build leftfix");
return false;
}
setLeftNfaProperties(*nfa, leftfix);
qi = qif.get_queue();
nfa->queueIndex = qi;
if (!is_prefix && !leftfix.haig() && leftfix.graph() &&
nfaStuckOn(*leftfix.graph())) {
DEBUG_PRINTF("%u sticks on\n", qi);
no_retrigger_queues->insert(qi);
}
DEBUG_PRINTF("built leftfix, qi=%u\n", qi);
add_nfa_to_blob(bc, *nfa);
seen.emplace(leftfix, qi);
}
rose_group squash_mask = tbi.rose_squash_masks.at(leftfix);
// Leftfixes can have stop alphabets.
vector<u8> stop(N_CHARS, 0);
/* haigs track som information - need more care */
som_type som = leftfix.haig() ? SOM_LEFT : SOM_NONE;
if (leftfix.graph()) {
stop = findLeftOffsetStopAlphabet(*leftfix.graph(), som);
} else if (leftfix.castle()) {
stop = findLeftOffsetStopAlphabet(*leftfix.castle(), som);
}
// Infix NFAs can have bounds on their queue lengths.
u32 max_queuelen = UINT32_MAX;
if (!is_prefix) {
set<ue2_literal> lits;
for (auto u : inv_adjacent_vertices_range(v, tbi.g)) {
for (u32 lit_id : tbi.g[u].literals) {
lits.insert(tbi.literals.right.at(lit_id).s);
}
}
DEBUG_PRINTF("%zu literals\n", lits.size());
max_queuelen = findMaxInfixMatches(leftfix, lits);
if (max_queuelen < UINT32_MAX) {
max_queuelen++;
}
}
u32 max_width;
if (is_transient) {
depth d = findMaxWidth(leftfix);
assert(d.is_finite());
max_width = d;
} else {
max_width = 0;
}
u8 cm_count = 0;
CharReach cm_cr;
if (cc.grey.allowCountingMiracles) {
findCountingMiracleInfo(leftfix, stop, &cm_count, &cm_cr);
}
bc.leftfix_info.emplace(
v, left_build_info(qi, lag, max_width, squash_mask, stop,
max_queuelen, cm_count, cm_cr));
}
return true;
}
static
void findSuffixTriggers(const RoseBuildImpl &tbi,
map<suffix_id, set<PredTopPair> > *suffixTriggers) {
const RoseGraph &g = tbi.g;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
PredTopPair ptp(v, g[v].suffix.top);
(*suffixTriggers)[g[v].suffix].insert(ptp);
}
}
static
bool hasNonSmallBlockOutfix(const vector<OutfixInfo> &outfixes) {
for (const auto &out : outfixes) {
if (!out.in_sbmatcher) {
return true;
}
}
return false;
}
static
aligned_unique_ptr<NFA> buildOutfix(RoseBuildImpl &tbi, OutfixInfo &outfix) {
assert(!outfix.is_dead()); // should not be marked dead.
const CompileContext &cc = tbi.cc;
const ReportManager &rm = tbi.rm;
aligned_unique_ptr<NFA> n;
if (outfix.rdfa) {
// Unleash the McClellan!
n = mcclellanCompile(*outfix.rdfa, cc);
} else if (outfix.haig) {
// Unleash the Goughfish!
n = goughCompile(*outfix.haig, tbi.ssm.somPrecision(), cc);
} else if (outfix.holder) {
NGHolder &h = *outfix.holder;
assert(h.kind == NFA_OUTFIX);
// Build NFA.
if (!n) {
const map<u32, u32> fixed_depth_tops; /* no tops */
const map<u32, vector<vector<CharReach>>> triggers; /* no tops */
bool compress_state = cc.streaming;
n = constructNFA(h, &rm, fixed_depth_tops, triggers, compress_state,
cc);
}
// Try for a DFA upgrade.
if (n && cc.grey.roseMcClellanOutfix
&& !has_bounded_repeats_other_than_firsts(*n)) {
auto rdfa = buildMcClellan(h, &rm, cc.grey);
if (rdfa) {
auto d = mcclellanCompile(*rdfa, cc);
if (d) {
n = pickImpl(move(d), move(n));
}
}
}
} else if (!outfix.puffettes.empty()) {
assert(0);
}
if (n && tbi.cc.grey.reverseAccelerate) {
buildReverseAcceleration(n.get(), outfix.rev_info, outfix.minWidth);
}
return n;
}
static
void prepMpv(RoseBuildImpl &tbi, build_context &bc, size_t *historyRequired,
bool *mpv_as_outfix) {
assert(bc.engineOffsets.empty()); // MPV should be first
*mpv_as_outfix = false;
OutfixInfo *mpv = nullptr;
/* assume outfixes are just above chain tails in queue indices */
for (auto &out : tbi.outfixes) {
if (out.is_nonempty_mpv()) {
assert(!mpv);
mpv = &out;
} else {
assert(!out.chained);
}
}
if (!mpv) {
return;
}
assert(mpv->chained);
auto nfa = mpvCompile(mpv->puffettes, mpv->triggered_puffettes);
assert(nfa);
if (!nfa) {
throw CompileError("Unable to generate bytecode.");
}
if (tbi.cc.grey.reverseAccelerate) {
buildReverseAcceleration(nfa.get(), mpv->rev_info, mpv->minWidth);
}
u32 qi = mpv->get_queue(tbi.qif);
nfa->queueIndex = qi;
DEBUG_PRINTF("built mpv\n");
if (!*historyRequired && requires_decompress_key(*nfa)) {
*historyRequired = 1;
}
add_nfa_to_blob(bc, *nfa);
*mpv_as_outfix = !mpv->puffettes.empty();
}
static
void setOutfixProperties(NFA &n, const OutfixInfo &outfix) {
depth min_width = outfix.minWidth;
DEBUG_PRINTF("min_width=%s\n", min_width.str().c_str());
u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0;
n.minWidth = min_width_value;
depth max_width = outfix.maxWidth;
DEBUG_PRINTF("max_width=%s\n", max_width.str().c_str());
u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0;
n.maxWidth = max_width_value;
DEBUG_PRINTF("max_offset=%llu\n", outfix.maxOffset);
u32 max_offset_value = outfix.maxOffset < ~0U ? (u32)outfix.maxOffset : 0;
n.maxOffset = max_offset_value;
DEBUG_PRINTF("maxBAWidth=%u\n", outfix.maxBAWidth);
if (outfix.maxBAWidth != ROSE_BOUND_INF && outfix.maxBAWidth < 256) {
n.maxBiAnchoredWidth = verify_u8(outfix.maxBAWidth);
}
}
static
bool prepOutfixes(RoseBuildImpl &tbi, build_context &bc,
size_t *historyRequired) {
if (tbi.cc.grey.onlyOneOutfix && tbi.outfixes.size() > 1) {
DEBUG_PRINTF("we have %zu outfixes, but Grey::onlyOneOutfix is set\n",
tbi.outfixes.size());
throw ResourceLimitError();
}
assert(tbi.qif.allocated_count() == bc.engineOffsets.size());
for (auto &out : tbi.outfixes) {
if (out.chained) {
continue; /* already done */
}
DEBUG_PRINTF("building outfix %zd (holder %p rdfa %p)\n",
&out - &tbi.outfixes[0], out.holder.get(), out.rdfa.get());
auto n = buildOutfix(tbi, out);
if (!n) {
assert(0);
return false;
}
setOutfixProperties(*n, out);
n->queueIndex = out.get_queue(tbi.qif);
if (!*historyRequired && requires_decompress_key(*n)) {
*historyRequired = 1;
}
add_nfa_to_blob(bc, *n);
}
return true;
}
static
void assignSuffixQueues(RoseBuildImpl &build, build_context &bc) {
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
const suffix_id s(g[v].suffix);
DEBUG_PRINTF("vertex %zu triggers suffix %p\n", g[v].idx, s.graph());
// We may have already built this NFA.
if (contains(bc.suffixes, s)) {
continue;
}
u32 queue = build.qif.get_queue();
DEBUG_PRINTF("assigning %p to queue %u\n", s.graph(), queue);
bc.suffixes.emplace(s, queue);
}
}
static
void setSuffixProperties(NFA &n, const suffix_id &suff,
const ReportManager &rm) {
depth min_width = findMinWidth(suff);
DEBUG_PRINTF("min_width=%s\n", min_width.str().c_str());
u32 min_width_value = min_width.is_finite() ? (u32)min_width : 0;
n.minWidth = min_width_value;
depth max_width = findMaxWidth(suff);
DEBUG_PRINTF("max_width=%s\n", max_width.str().c_str());
u32 max_width_value = max_width.is_finite() ? (u32)max_width : 0;
n.maxWidth = max_width_value;
u64a max_offset = findMaxOffset(all_reports(suff), rm);
DEBUG_PRINTF("max_offset=%llu\n", max_offset);
u32 max_offset_value = max_offset < ~0U ? (u32)max_offset : 0;
n.maxOffset = max_offset_value;
}
static
bool buildSuffixes(const RoseBuildImpl &tbi, build_context &bc,
set<u32> *no_retrigger_queues) {
map<suffix_id, set<PredTopPair> > suffixTriggers;
findSuffixTriggers(tbi, &suffixTriggers);
// To ensure compile determinism, build suffix engines in order of their
// (unique) queue indices, so that we call add_nfa_to_blob in the same
// order.
vector<pair<u32, suffix_id>> ordered;
for (const auto &e : bc.suffixes) {
ordered.emplace_back(e.second, e.first);
}
sort(begin(ordered), end(ordered));
for (const auto &e : ordered) {
const u32 queue = e.first;
const suffix_id &s = e.second;
const set<PredTopPair> &s_triggers = suffixTriggers.at(s);
map<u32, u32> fixed_depth_tops;
findFixedDepthTops(tbi.g, s_triggers, &fixed_depth_tops);
map<u32, vector<vector<CharReach>>> triggers;
findTriggerSequences(tbi, s_triggers, &triggers);
auto n = buildSuffix(tbi.rm, tbi.ssm, fixed_depth_tops, triggers,
s, tbi.cc);
if (!n) {
return false;
}
setSuffixProperties(*n, s, tbi.rm);
n->queueIndex = queue;
if (s.graph() && nfaStuckOn(*s.graph())) { /* todo: have corresponding
* haig analysis */
assert(!s.haig());
DEBUG_PRINTF("%u sticks on\n", queue);
no_retrigger_queues->insert(queue);
}
add_nfa_to_blob(bc, *n);
}
return true;
}
static
void buildCountingMiracles(RoseBuildImpl &build, build_context &bc) {
map<pair<CharReach, u8>, u32> pre_built;
// To ensure compile determinism, we need to iterate over our leftfixes in
// a stronger order than directly over bc.leftfix_info.
vector<RoseVertex> cm_vertices;
for (const auto &m : bc.leftfix_info) {
if (m.second.countingMiracleCount) {
cm_vertices.push_back(m.first);
}
}
sort(begin(cm_vertices), end(cm_vertices), VertexIndexComp(build.g));
DEBUG_PRINTF("%zu vertices with counting miracles\n", cm_vertices.size());
for (const auto &v : cm_vertices) {
auto &lbi = bc.leftfix_info.at(v);
assert(lbi.countingMiracleCount);
const CharReach &cr = lbi.countingMiracleReach;
assert(!cr.all() && !cr.none());
auto key = make_pair(cr, lbi.countingMiracleCount);
if (contains(pre_built, key)) {
lbi.countingMiracleOffset = pre_built[key];
continue;
}
RoseCountingMiracle rcm;
memset(&rcm, 0, sizeof(rcm));
if (cr.count() == 1) {
rcm.c = cr.find_first();
} else {
rcm.shufti = 1;
int rv = shuftiBuildMasks(cr, &rcm.lo, &rcm.hi);
if (rv == -1) {
DEBUG_PRINTF("failed to build shufti\n");
lbi.countingMiracleCount = 0; /* remove counting miracle */
continue;
}
rcm.poison = (~cr).find_first();
}
rcm.count = lbi.countingMiracleCount;
lbi.countingMiracleOffset = add_to_engine_blob(bc, rcm);
pre_built[key] = lbi.countingMiracleOffset;
DEBUG_PRINTF("built cm for count of %u @ %u\n", rcm.count,
lbi.countingMiracleOffset);
}
}
static
bool buildNfas(RoseBuildImpl &tbi, build_context &bc, QueueIndexFactory &qif,
set<u32> *no_retrigger_queues, u32 *leftfixBeginQueue) {
assignSuffixQueues(tbi, bc);
if (!buildSuffixes(tbi, bc, no_retrigger_queues)) {
return false;
}
*leftfixBeginQueue = qif.allocated_count();
if (!buildLeftfixes(tbi, bc, qif, no_retrigger_queues, true)) {
return false;
}
if (!buildLeftfixes(tbi, bc, qif, no_retrigger_queues, false)) {
return false;
}
return true;
}
static
void allocateStateSpace(const NFA *nfa, const set<u32> &transient_queues,
RoseStateOffsets *so, NfaInfo *nfa_infos,
u32 *currFullStateSize, u32 *maskStateSize,
u32 *tStateSize) {
u32 qi = nfa->queueIndex;
bool transient = transient_queues.find(qi) != transient_queues.end();
u32 stateSize = verify_u32(nfa->streamStateSize);
u32 state_offset;
if (transient) {
state_offset = *tStateSize;
*tStateSize += stateSize;
} else {
// Pack NFA state on to the end of the Rose state.
state_offset = so->end;
so->end += stateSize;
*maskStateSize += stateSize;
}
nfa_infos[qi].stateOffset = state_offset;
// Uncompressed state must be aligned.
u32 scratchStateSize = verify_u32(nfa->scratchStateSize);
u32 alignReq = state_alignment(*nfa);
assert(alignReq);
while (*currFullStateSize % alignReq) {
(*currFullStateSize)++;
}
nfa_infos[qi].fullStateOffset = *currFullStateSize;
*currFullStateSize += scratchStateSize;
}
static
void findTransientQueues(const map<RoseVertex, left_build_info> &leftfix_info,
set<u32> *out) {
DEBUG_PRINTF("curating transient queues\n");
for (const auto &rbi : leftfix_info | map_values) {
if (rbi.transient) {
DEBUG_PRINTF("q %u is transient\n", rbi.queue);
out->insert(rbi.queue);
}
}
}
static
void updateNfaState(const build_context &bc, RoseStateOffsets *so,
NfaInfo *nfa_infos, u32 *fullStateSize, u32 *nfaStateSize,
u32 *tStateSize) {
*nfaStateSize = 0;
*tStateSize = 0;
*fullStateSize = 0;
set<u32> transient_queues;
findTransientQueues(bc.leftfix_info, &transient_queues);
for (const auto &m : bc.engineOffsets) {
const NFA *n = get_nfa_from_blob(bc, m.first);
allocateStateSpace(n, transient_queues, so, nfa_infos, fullStateSize,
nfaStateSize, tStateSize);
}
}
/* does not include history requirements for outfixes or literal matchers */
u32 RoseBuildImpl::calcHistoryRequired() const {
u32 m = cc.grey.minHistoryAvailable;
for (auto v : vertices_range(g)) {
if (g[v].suffix) {
m = MAX(m, 2); // so that history req is at least 1, for state
// compression.
/* TODO: check if suffix uses state compression */
}
if (g[v].left) {
const u32 lag = g[v].left.lag;
const left_id leftfix(g[v].left);
if (contains(transient, leftfix)) {
u32 mv = lag + findMaxWidth(leftfix);
// If this vertex has an event literal, we need to add one to
// cope with it.
if (hasLiteralInTable(v, ROSE_EVENT)) {
mv++;
}
m = MAX(m, mv);
} else {
/* rose will be caught up from (lag - 1), also need an extra
* byte behind that to find the decompression key */
m = MAX(m, lag + 1);
m = MAX(m, 2); // so that history req is at least 1, for state
// compression.
}
}
}
// Delayed literals contribute to history requirement as well.
for (const auto &e : literals.right) {
const u32 id = e.first;
const auto &lit = e.second;
if (lit.delay) {
// If the literal is delayed _and_ has a mask that is longer than
// the literal, we need enough history to match the whole mask as
// well when rebuilding delayed matches.
size_t len = std::max(lit.elength(), lit.msk.size() + lit.delay);
ENSURE_AT_LEAST(&m, verify_u32(len));
}
/* Benefit checks require data is available. */
if (literal_info.at(id).requires_benefits) {
ENSURE_AT_LEAST(&m,
MIN(verify_u32(lit.elength()), MAX_MASK2_WIDTH));
}
}
m = MAX(m, max_rose_anchored_floating_overlap);
DEBUG_PRINTF("m=%u, ematcher_region_size=%u\n", m, ematcher_region_size);
if (ematcher_region_size >= m) {
return ematcher_region_size;
}
return m ? m - 1 : 0;
}
#ifdef DEBUG
static UNUSED
string dumpMask(const vector<u8> &v) {
ostringstream oss;
for (u8 e : v) {
oss << setfill('0') << setw(2) << hex << (unsigned int)e;
}
return oss.str();
}
#endif
static
bool maskFromLeftGraph(const LeftEngInfo &left, vector<u8> &msk,
vector<u8> &cmp) {
const u32 lag = left.lag;
const ReportID report = left.leftfix_report;
DEBUG_PRINTF("leftfix with lag %u, report %u\n", lag, report);
assert(left.graph);
const NGHolder &h = *left.graph;
assert(in_degree(h.acceptEod, h) == 1); // no eod reports
// Start with the set of reporter vertices for this leftfix.
set<NFAVertex> curr;
for (auto u : inv_adjacent_vertices_range(h.accept, h)) {
if (contains(h[u].reports, report)) {
curr.insert(u);
}
}
assert(!curr.empty());
size_t i = HWLM_MASKLEN - lag - 1;
do {
if (curr.empty() || contains(curr, h.start)
|| contains(curr, h.startDs)) {
DEBUG_PRINTF("end of the road\n");
break;
}
set<NFAVertex> next;
CharReach cr;
for (NFAVertex v : curr) {
const auto &v_cr = h[v].char_reach;
DEBUG_PRINTF("vertex %u, reach %s\n", h[v].index,
describeClass(v_cr).c_str());
cr |= v_cr;
insert(&next, inv_adjacent_vertices(v, h));
}
make_and_cmp_mask(cr, &msk.at(i), &cmp.at(i));
DEBUG_PRINTF("%zu: reach=%s, msk=%u, cmp=%u\n", i,
describeClass(cr).c_str(), msk[i], cmp[i]);
curr.swap(next);
} while (i-- > 0);
return true;
}
static
bool maskFromLeftCastle(const LeftEngInfo &left, vector<u8> &msk,
vector<u8> &cmp) {
const u32 lag = left.lag;
const ReportID report = left.leftfix_report;
DEBUG_PRINTF("leftfix with lag %u, report %u\n", lag, report);
assert(left.castle);
const CastleProto &c = *left.castle;
depth min_width(depth::infinity());
for (const PureRepeat &repeat : c.repeats | map_values) {
if (contains(repeat.reports, report)) {
min_width = min(min_width, repeat.bounds.min);
}
}
DEBUG_PRINTF("castle min width for this report is %s\n",
min_width.str().c_str());
if (!min_width.is_finite() || min_width == depth(0)) {
DEBUG_PRINTF("bad min width\n");
return false;
}
u32 len = min_width;
u32 end = HWLM_MASKLEN - lag;
for (u32 i = end; i > end - min(end, len); i--) {
make_and_cmp_mask(c.reach(), &msk.at(i - 1), &cmp.at(i - 1));
}
return true;
}
static
bool maskFromLeft(const LeftEngInfo &left, vector<u8> &msk, vector<u8> &cmp) {
if (left.lag >= HWLM_MASKLEN) {
DEBUG_PRINTF("too much lag\n");
return false;
}
if (left.graph) {
return maskFromLeftGraph(left, msk, cmp);
} else if (left.castle) {
return maskFromLeftCastle(left, msk, cmp);
}
return false;
}
static
bool maskFromPreds(const RoseBuildImpl &tbi, const rose_literal_id &id,
const RoseVertex v, vector<u8> &msk, vector<u8> &cmp) {
const RoseGraph &g = tbi.g;
// For right now, wuss out and only handle cases with one pred.
if (in_degree(v, g) != 1) {
return false;
}
// Root successors have no literal before them.
if (tbi.isRootSuccessor(v)) {
return false;
}
// If we have a single predecessor with a short bound, we may be able to
// fill out a mask with the trailing bytes of the previous literal. This
// allows us to improve literals like the 'bar' in 'fo.bar'.
RoseEdge e = *(in_edges(v, g).first);
u32 bound = g[e].maxBound;
if (bound != g[e].minBound || bound >= HWLM_MASKLEN) {
return false;
}
bound += id.s.length();
if (bound >= HWLM_MASKLEN) {
return false;
}
DEBUG_PRINTF("bound %u\n", bound);
RoseVertex u = source(e, g);
if (g[u].literals.size() != 1) {
DEBUG_PRINTF("u has %zu literals\n", g[u].literals.size());
return false;
}
u32 u_lit_id = *(g[u].literals.begin());
const rose_literal_id &u_id = tbi.literals.right.at(u_lit_id);
DEBUG_PRINTF("u has lit: %s\n", escapeString(u_id.s).c_str());
// Number of characters to take from the back of u's literal.
size_t u_len = u_id.s.length();
size_t u_sublen = min(u_len, (size_t)HWLM_MASKLEN - bound);
size_t i = HWLM_MASKLEN - (bound + u_sublen);
ue2_literal::const_iterator it, ite;
for (it = u_id.s.begin() + (u_len - u_sublen), ite = u_id.s.end();
it != ite; ++it) {
make_and_cmp_mask(*it, &msk.at(i), &cmp.at(i));
++i;
}
return true;
}
static
bool findHamsterMask(const RoseBuildImpl &tbi, const rose_literal_id &id,
const rose_literal_info &info, const RoseVertex v,
vector<u8> &msk, vector<u8> &cmp) {
// Start with zero masks.
msk.assign(HWLM_MASKLEN, 0);
cmp.assign(HWLM_MASKLEN, 0);
// Masks can come from literal benefits (for mixed-case literals).
if (info.requires_benefits) {
assert(mixed_sensitivity(id.s));
size_t j = 0;
for (ue2_literal::const_reverse_iterator it = id.s.rbegin(),
ite = id.s.rend();
it != ite && j < HWLM_MASKLEN; ++it, ++j) {
size_t offset = HWLM_MASKLEN - j - 1;
const CharReach &cr = *it;
make_and_cmp_mask(cr, &msk[offset], &cmp[offset]);
}
return true;
}
const LeftEngInfo &left = tbi.g[v].left;
if (left && left.lag < HWLM_MASKLEN) {
if (maskFromLeft(left, msk, cmp)) {
DEBUG_PRINTF("mask from a leftfix!\n");
return true;
}
}
if (id.s.length() < HWLM_MASKLEN) {
if (maskFromPreds(tbi, id, v, msk, cmp)) {
DEBUG_PRINTF("mask from preds!\n");
return true;
}
}
return false;
}
static
bool hamsterMaskCombine(vector<u8> &msk, vector<u8> &cmp,
const vector<u8> &v_msk, const vector<u8> &v_cmp) {
assert(msk.size() == HWLM_MASKLEN && cmp.size() == HWLM_MASKLEN);
assert(v_msk.size() == HWLM_MASKLEN && v_cmp.size() == HWLM_MASKLEN);
u8 all_masks = 0;
for (size_t i = 0; i < HWLM_MASKLEN; i++) {
u8 filter = ~(cmp[i] ^ v_cmp[i]);
msk[i] &= v_msk[i];
msk[i] &= filter;
cmp[i] &= filter;
all_masks |= msk[i];
}
// Return false if we have no bits on in any mask elements.
return all_masks != 0;
}
static
bool findHamsterMask(const RoseBuildImpl &tbi, const rose_literal_id &id,
const rose_literal_info &info,
vector<u8> &msk, vector<u8> &cmp) {
if (!tbi.cc.grey.roseHamsterMasks) {
return false;
}
if (!info.delayed_ids.empty()) {
// Not safe to add masks to delayed literals at this late stage.
return false;
}
size_t num = 0;
vector<u8> v_msk, v_cmp;
for (RoseVertex v : info.vertices) {
if (!findHamsterMask(tbi, id, info, v, v_msk, v_cmp)) {
DEBUG_PRINTF("no mask\n");
return false;
}
if (!num++) {
// First (or only) vertex, this becomes the mask/cmp pair.
msk = v_msk;
cmp = v_cmp;
} else {
// Multiple vertices with potentially different masks. We combine
// them into an 'advisory' mask.
if (!hamsterMaskCombine(msk, cmp, v_msk, v_cmp)) {
DEBUG_PRINTF("mask went to zero\n");
return false;
}
}
}
normaliseLiteralMask(id.s, msk, cmp);
if (msk.empty()) {
DEBUG_PRINTF("no mask\n");
return false;
}
DEBUG_PRINTF("msk=%s, cmp=%s\n", dumpMask(msk).c_str(),
dumpMask(cmp).c_str());
return true;
}
static
bool isDirectHighlander(const RoseBuildImpl &tbi,
const rose_literal_info &info) {
u32 final_id = info.final_id;
assert(final_id != MO_INVALID_IDX);
if ((final_id & LITERAL_MDR_FLAG) == LITERAL_MDR_FLAG) {
u32 i = final_id & ~LITERAL_MDR_FLAG;
assert(i < tbi.mdr_reports.size());
for (ReportID report = tbi.mdr_reports[i]; report != MO_INVALID_IDX;
report = tbi.mdr_reports[++i]) {
const Report &ir = tbi.rm.getReport(report);
if (!isSimpleExhaustible(ir)) {
return false;
}
}
return true;
} else if (final_id & LITERAL_DR_FLAG) {
ReportID report = final_id & ~LITERAL_DR_FLAG;
const Report &ir = tbi.rm.getReport(report);
if (isSimpleExhaustible(ir)) {
return true;
}
}
return false;
}
// Called by isNoRunsLiteral below.
static
bool isNoRunsVertex(const RoseBuildImpl &tbi, NFAVertex u) {
const RoseGraph &g = tbi.g;
if (!g[u].isBoring()) {
DEBUG_PRINTF("u=%zu is not boring\n", g[u].idx);
return false;
}
if (!g[u].reports.empty()) {
DEBUG_PRINTF("u=%zu has accept\n", g[u].idx);
return false;
}
/* TODO: handle non-root roles as well. It can't be that difficult... */
if (!in_degree_equal_to(u, g, 1)) {
DEBUG_PRINTF("u=%zu is not a root role\n", g[u].idx);
return false;
}
RoseEdge e;
bool exists;
tie(e, exists) = edge_by_target(tbi.root, u, g);
if (!exists) {
DEBUG_PRINTF("u=%zu is not a root role\n", g[u].idx);
return false;
}
if (g[e].minBound != 0 || g[e].maxBound != ROSE_BOUND_INF) {
DEBUG_PRINTF("u=%zu has bounds from root\n", g[u].idx);
return false;
}
for (const auto &oe : out_edges_range(u, g)) {
RoseVertex v = target(oe, g);
if (g[oe].maxBound != ROSE_BOUND_INF) {
DEBUG_PRINTF("edge (%zu,%zu) has max bound\n", g[u].idx,
g[target(oe, g)].idx);
return false;
}
if (g[v].left) {
DEBUG_PRINTF("v=%zu has rose prefix\n", g[v].idx);
return false;
}
}
return true;
}
static
bool isNoRunsLiteral(const RoseBuildImpl &tbi, UNUSED const u32 id,
const rose_literal_info &info) {
DEBUG_PRINTF("lit id %u\n", id);
if (info.requires_benefits) {
DEBUG_PRINTF("requires benefits\n"); // which would need confirm
return false;
}
if (isDirectHighlander(tbi, info)) {
DEBUG_PRINTF("highlander direct report\n");
return true;
}
// Undelayed vertices.
for (RoseVertex v : info.vertices) {
if (!isNoRunsVertex(tbi, v)) {
return false;
}
}
// Delayed vertices.
for (u32 d : info.delayed_ids) {
assert(d < tbi.literal_info.size());
const rose_literal_info &delayed_info = tbi.literal_info.at(d);
assert(delayed_info.undelayed_id == id);
for (RoseVertex v : delayed_info.vertices) {
if (!isNoRunsVertex(tbi, v)) {
return false;
}
}
}
DEBUG_PRINTF("is no-runs literal\n");
return true;
}
void fillHamsterLiteralList(const RoseBuildImpl &tbi, rose_literal_table table,
vector<hwlmLiteral> *hl) {
for (const auto &e : tbi.literals.right) {
const u32 id = e.first;
if (!tbi.hasFinalId(id)) {
continue;
}
if (e.second.delay) {
continue; /* delay id's are virtual-ish */
}
if (e.second.table != table) {
continue; /* wrong table */
}
assert(id < tbi.literal_info.size());
const rose_literal_info &info = tbi.literal_info[id];
u32 final_id = info.final_id;
rose_group groups = info.group_mask;
/* Note: requires_benefits are handled in the literal entries */
const ue2_literal &lit = e.second.s;
DEBUG_PRINTF("lit='%s'\n", escapeString(lit).c_str());
vector<u8> msk = e.second.msk; // copy
vector<u8> cmp = e.second.cmp; // copy
if (msk.empty()) {
// Try and pick up an advisory mask.
if (!findHamsterMask(tbi, e.second, info, msk, cmp)) {
msk.clear(); cmp.clear();
} else {
DEBUG_PRINTF("picked up late mask %zu\n", msk.size());
}
}
bool noruns = isNoRunsLiteral(tbi, id, info);
if (info.requires_explode) {
DEBUG_PRINTF("exploding lit\n");
const vector<u8> empty_msk; // msk/cmp will be empty
case_iter cit = caseIterateBegin(lit);
case_iter cite = caseIterateEnd();
for (; cit != cite; ++cit) {
DEBUG_PRINTF("id=%u, s='%s', nocase=%d, noruns=%d msk=%s, "
"cmp=%s (exploded)\n",
final_id, escapeString(lit.get_string()).c_str(),
0, noruns, dumpMask(msk).c_str(),
dumpMask(cmp).c_str());
hl->push_back(hwlmLiteral(*cit, false, noruns, final_id, groups,
empty_msk, empty_msk));
}
} else {
const std::string &s = lit.get_string();
const bool nocase = lit.any_nocase();
DEBUG_PRINTF("id=%u, s='%s', nocase=%d, noruns=%d, msk=%s, "
"cmp=%s\n",
final_id, escapeString(s).c_str(), (int)nocase, noruns,
dumpMask(msk).c_str(), dumpMask(cmp).c_str());
if (!maskIsConsistent(s, nocase, msk, cmp)) {
DEBUG_PRINTF("msk/cmp for literal can't match, skipping\n");
continue;
}
hl->push_back(hwlmLiteral(lit.get_string(), lit.any_nocase(),
noruns, final_id, groups, msk, cmp));
}
}
}
static
aligned_unique_ptr<HWLM> buildFloatingMatcher(const RoseBuildImpl &tbi,
size_t *fsize,
size_t *historyRequired,
size_t *streamStateRequired) {
*fsize = 0;
vector<hwlmLiteral> fl;
fl.reserve(tbi.literals.size());
fillHamsterLiteralList(tbi, ROSE_FLOATING, &fl);
if (fl.empty()) {
DEBUG_PRINTF("empty floating matcher\n");
return nullptr;
}
hwlmStreamingControl ctl;
hwlmStreamingControl *ctlp;
if (tbi.cc.streaming) {
ctl.history_max = tbi.cc.grey.maxHistoryAvailable;
ctl.history_min = MAX(*historyRequired,
tbi.cc.grey.minHistoryAvailable);
DEBUG_PRINTF("streaming control, history max=%zu, min=%zu\n",
ctl.history_max, ctl.history_min);
ctlp = &ctl;
} else {
ctlp = nullptr; // Null for non-streaming.
}
aligned_unique_ptr<HWLM> ftable =
hwlmBuild(fl, ctlp, false, tbi.cc, tbi.getInitialGroups());
if (!ftable) {
throw CompileError("Unable to generate bytecode.");
}
if (tbi.cc.streaming) {
DEBUG_PRINTF("literal_history_required=%zu\n",
ctl.literal_history_required);
DEBUG_PRINTF("literal_stream_state_required=%zu\n",
ctl.literal_stream_state_required);
assert(ctl.literal_history_required <= tbi.cc.grey.maxHistoryAvailable);
*historyRequired = max(*historyRequired,
ctl.literal_history_required);
*streamStateRequired = ctl.literal_stream_state_required;
}
*fsize = hwlmSize(ftable.get());
assert(*fsize);
DEBUG_PRINTF("built floating literal table size %zu bytes\n", *fsize);
return ftable;
}
namespace {
struct LongerThanLimit {
explicit LongerThanLimit(size_t len) : max_len(len) {}
bool operator()(const hwlmLiteral &lit) const {
return lit.s.length() > max_len;
}
private:
size_t max_len;
};
}
static
aligned_unique_ptr<HWLM> buildSmallBlockMatcher(const RoseBuildImpl &tbi,
size_t *sbsize) {
*sbsize = 0;
if (tbi.cc.streaming) {
DEBUG_PRINTF("streaming mode\n");
return nullptr;
}
u32 float_min = findMinWidth(tbi, ROSE_FLOATING);
if (float_min > ROSE_SMALL_BLOCK_LEN) {
DEBUG_PRINTF("floating table has large min width %u, fail\n", float_min);
return nullptr;
}
vector<hwlmLiteral> lits;
fillHamsterLiteralList(tbi, ROSE_FLOATING, &lits);
if (lits.empty()) {
DEBUG_PRINTF("no floating table\n");
return nullptr;
} else if (lits.size() == 1) {
DEBUG_PRINTF("single floating literal, noodle will be fast enough\n");
return nullptr;
}
vector<hwlmLiteral> anchored_lits;
fillHamsterLiteralList(tbi, ROSE_ANCHORED_SMALL_BLOCK, &anchored_lits);
if (anchored_lits.empty()) {
DEBUG_PRINTF("no small-block anchored literals\n");
return nullptr;
}
lits.insert(lits.end(), anchored_lits.begin(), anchored_lits.end());
// Remove literals that are longer than our small block length, as they can
// never match. TODO: improve by removing literals that have a min match
// offset greater than ROSE_SMALL_BLOCK_LEN, which will catch anchored cases
// with preceding dots that put them over the limit.
lits.erase(std::remove_if(lits.begin(), lits.end(),
LongerThanLimit(ROSE_SMALL_BLOCK_LEN)),
lits.end());
if (lits.empty()) {
DEBUG_PRINTF("no literals shorter than small block len\n");
return nullptr;
}
aligned_unique_ptr<HWLM> hwlm =
hwlmBuild(lits, nullptr, true, tbi.cc, tbi.getInitialGroups());
if (!hwlm) {
throw CompileError("Unable to generate bytecode.");
}
*sbsize = hwlmSize(hwlm.get());
assert(*sbsize);
DEBUG_PRINTF("built small block literal table size %zu bytes\n", *sbsize);
return hwlm;
}
static
aligned_unique_ptr<HWLM> buildEodAnchoredMatcher(const RoseBuildImpl &tbi,
size_t *esize) {
*esize = 0;
vector<hwlmLiteral> el;
fillHamsterLiteralList(tbi, ROSE_EOD_ANCHORED, &el);
if (el.empty()) {
DEBUG_PRINTF("no eod anchored literals\n");
assert(!tbi.ematcher_region_size);
return nullptr;
}
assert(tbi.ematcher_region_size);
hwlmStreamingControl *ctlp = nullptr; // not a streaming case
aligned_unique_ptr<HWLM> etable =
hwlmBuild(el, ctlp, true, tbi.cc, tbi.getInitialGroups());
if (!etable) {
throw CompileError("Unable to generate bytecode.");
}
*esize = hwlmSize(etable.get());
assert(*esize);
DEBUG_PRINTF("built eod-anchored literal table size %zu bytes\n", *esize);
return etable;
}
// Adds a sparse iterator to the end of the iterator table, returning its
// offset.
static
u32 addIteratorToTable(build_context &bc,
const vector<mmbit_sparse_iter> &iter) {
if (contains(bc.iterCache, iter)) {
DEBUG_PRINTF("cache hit\n");
u32 offset = bc.iterCache.at(iter);
return offset;
}
u32 offset = add_to_engine_blob(bc, iter.begin(), iter.end());
bc.iterCache.insert(make_pair(iter, offset));
return offset;
}
static
bool hasLastByteHistoryOutEdge(const RoseGraph &g, RoseVertex v) {
for (const auto &e : out_edges_range(v, g)) {
if (g[e].history == ROSE_ROLE_HISTORY_LAST_BYTE) {
return true;
}
}
return false;
}
static
u32 buildLastByteIter(const RoseGraph &g, build_context &bc) {
vector<u32> lb_roles;
for (auto v : vertices_range(g)) {
if (hasLastByteHistoryOutEdge(g, v)) {
assert(contains(bc.roleStateIndices, v));
lb_roles.push_back(bc.roleStateIndices.at(v));
}
}
if (lb_roles.empty()) {
return 0; /* invalid offset */
}
vector<mmbit_sparse_iter> iter;
mmbBuildSparseIterator(iter, lb_roles, bc.numStates);
return addIteratorToTable(bc, iter);
}
static
void enforceEngineSizeLimit(const NFA *n, const size_t nfa_size, const Grey &grey) {
// Global limit.
if (nfa_size > grey.limitEngineSize) {
throw ResourceLimitError();
}
// Type-specific limit checks follow.
if (isDfaType(n->type)) {
if (nfa_size > grey.limitDFASize) {
throw ResourceLimitError();
}
} else if (isNfaType(n->type)) {
if (nfa_size > grey.limitNFASize) {
throw ResourceLimitError();
}
} else if (isLbrType(n->type)) {
if (nfa_size > grey.limitLBRSize) {
throw ResourceLimitError();
}
}
}
static
u32 findMinFloatingLiteralMatch(const RoseBuildImpl &build,
const anchored_matcher_info *atable) {
if (atable && anchoredIsMulti(*atable)) {
DEBUG_PRINTF("multiple anchored dfas\n");
/* We must regard matches from other anchored tables as unordered, as
* we do for floating matches. */
return 1;
}
const RoseGraph &g = build.g;
u32 minWidth = ROSE_BOUND_INF;
for (auto v : vertices_range(g)) {
if (build.isAnchored(v) || build.isVirtualVertex(v)) {
DEBUG_PRINTF("skipping %zu anchored or root\n", g[v].idx);
continue;
}
u32 w = g[v].min_offset;
DEBUG_PRINTF("%zu m_o = %u\n", g[v].idx, w);
if (w < minWidth) {
minWidth = w;
}
}
return minWidth;
}
static
void buildSuffixEkeyLists(const RoseBuildImpl &tbi, build_context &bc,
const QueueIndexFactory &qif,
vector<u32> *out) {
out->resize(qif.allocated_count());
map<u32, vector<u32> > qi_to_ekeys; /* for determinism */
for (const auto &e : bc.suffixes) {
const suffix_id &s = e.first;
u32 qi = e.second;
set<u32> ekeys = reportsToEkeys(all_reports(s), tbi.rm);
if (!ekeys.empty()) {
qi_to_ekeys[qi] = {ekeys.begin(), ekeys.end()};
}
}
/* for each outfix also build elists */
for (const auto &outfix : tbi.outfixes) {
u32 qi = outfix.get_queue();
set<u32> ekeys = reportsToEkeys(all_reports(outfix), tbi.rm);
if (!ekeys.empty()) {
qi_to_ekeys[qi] = {ekeys.begin(), ekeys.end()};
}
}
for (auto &e : qi_to_ekeys) {
assert(!e.second.empty());
e.second.push_back(INVALID_EKEY); /* terminator */
(*out)[e.first] = add_to_engine_blob(bc, e.second.begin(),
e.second.end());
}
}
/** Returns sparse iter offset in engine blob. */
static
u32 buildEodNfaIterator(build_context &bc, const u32 activeQueueCount) {
vector<u32> keys;
for (u32 qi = 0; qi < activeQueueCount; ++qi) {
const NFA *n = get_nfa_from_blob(bc, qi);
if (nfaAcceptsEod(n)) {
DEBUG_PRINTF("nfa qi=%u accepts eod\n", qi);
keys.push_back(qi);
}
}
if (keys.empty()) {
return 0;
}
DEBUG_PRINTF("building iter for %zu nfas\n", keys.size());
vector<mmbit_sparse_iter> iter;
mmbBuildSparseIterator(iter, keys, activeQueueCount);
return addIteratorToTable(bc, iter);
}
static
bool hasMpvTrigger(const set<u32> &reports, const ReportManager &rm) {
for (u32 r : reports) {
if (rm.getReport(r).type == INTERNAL_ROSE_CHAIN) {
return true;
}
}
return false;
}
static
bool anyEndfixMpvTriggers(const RoseBuildImpl &tbi) {
const RoseGraph &g = tbi.g;
ue2::unordered_set<suffix_id> done;
/* suffixes */
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
if (contains(done, g[v].suffix)) {
continue; /* already done */
}
done.insert(g[v].suffix);
if (hasMpvTrigger(all_reports(g[v].suffix), tbi.rm)) {
return true;
}
}
/* outfixes */
for (const auto &out : tbi.outfixes) {
if (hasMpvTrigger(all_reports(out), tbi.rm)) {
return true;
}
}
return false;
}
static
bool hasInternalReport(const set<ReportID> &reports, const ReportManager &rm) {
for (ReportID r : reports) {
if (!isExternalReport(rm.getReport(r))) {
return true;
}
}
return false;
}
static
void populateNfaInfoBasics(const RoseBuildImpl &build, const build_context &bc,
const vector<OutfixInfo> &outfixes,
const vector<u32> &ekeyListOffsets,
const set<u32> &no_retrigger_queues,
NfaInfo *infos) {
const u32 num_queues = build.qif.allocated_count();
for (u32 qi = 0; qi < num_queues; qi++) {
const NFA *n = get_nfa_from_blob(bc, qi);
enforceEngineSizeLimit(n, n->length, build.cc.grey);
NfaInfo &info = infos[qi];
info.nfaOffset = bc.engineOffsets.at(qi);
info.ekeyListOffset = ekeyListOffsets[qi];
info.no_retrigger = contains(no_retrigger_queues, qi) ? 1 : 0;
}
// Mark outfixes that only trigger external reports.
for (const auto &out : outfixes) {
const u32 qi = out.get_queue();
infos[qi].in_sbmatcher = out.in_sbmatcher;
if (!hasInternalReport(all_reports(out), build.rm)) {
infos[qi].only_external = 1;
}
}
// Mark suffixes that only trigger external reports.
for (const auto &e : bc.suffixes) {
const suffix_id &s = e.first;
u32 qi = e.second;
if (!hasInternalReport(all_reports(s), build.rm)) {
infos[qi].only_external = 1;
}
}
// Mark suffixes triggered by EOD table literals.
const RoseGraph &g = build.g;
for (auto v : vertices_range(g)) {
if (!g[v].suffix) {
continue;
}
u32 qi = bc.suffixes.at(g[v].suffix);
if (build.isInETable(v)) {
infos[qi].eod = 1;
}
}
}
struct DerivedBoundaryReports {
explicit DerivedBoundaryReports(const BoundaryReports &boundary) {
insert(&report_at_0_eod_full, boundary.report_at_0_eod);
insert(&report_at_0_eod_full, boundary.report_at_eod);
insert(&report_at_0_eod_full, boundary.report_at_0);
}
set<ReportID> report_at_0_eod_full;
};
static
void reserveBoundaryReports(const BoundaryReports &boundary,
const DerivedBoundaryReports &dboundary,
RoseBoundaryReports *out, u32 *currOffset) {
u32 curr = *currOffset;
curr = ROUNDUP_N(curr, alignof(ReportID));
memset(out, 0, sizeof(*out));
/* report lists are + 1 in size due to terminator */
if (!boundary.report_at_eod.empty()) {
out->reportEodOffset = curr;
curr += sizeof(ReportID) * (boundary.report_at_eod.size() + 1);
}
if (!boundary.report_at_0.empty()) {
out->reportZeroOffset = curr;
curr += sizeof(ReportID) * (boundary.report_at_0.size() + 1);
}
if (!dboundary.report_at_0_eod_full.empty()) {
out->reportZeroEodOffset = curr;
curr += sizeof(ReportID) * (dboundary.report_at_0_eod_full.size() + 1);
}
DEBUG_PRINTF("report ^: %zu\n", boundary.report_at_0.size());
DEBUG_PRINTF("report $: %zu\n", boundary.report_at_eod.size());
DEBUG_PRINTF("report ^$: %zu\n", dboundary.report_at_0_eod_full.size());
*currOffset = curr;
}
static
void fillInBoundaryReports(RoseEngine *engine, u32 offset,
const set<ReportID> &rl) {
if (rl.empty()) {
return;
}
u32 *out = (u32 *)((char *)engine + offset);
assert(ISALIGNED(out));
for (ReportID r : rl) {
*out = r;
++out;
}
*out = MO_INVALID_IDX;
}
static
void populateBoundaryReports(RoseEngine *engine,
const BoundaryReports &boundary,
const DerivedBoundaryReports &dboundary,
const RoseBoundaryReports &offsets) {
engine->boundary.reportEodOffset = offsets.reportEodOffset;
engine->boundary.reportZeroOffset = offsets.reportZeroOffset;
engine->boundary.reportZeroEodOffset = offsets.reportZeroEodOffset;
fillInBoundaryReports(engine, offsets.reportEodOffset,
boundary.report_at_eod);
fillInBoundaryReports(engine, offsets.reportZeroOffset,
boundary.report_at_0);
fillInBoundaryReports(engine, offsets.reportZeroEodOffset,
dboundary.report_at_0_eod_full);
}
static
void fillInReportInfo(RoseEngine *engine, u32 reportOffset,
const ReportManager &rm, const vector<Report> &reports) {
internal_report *dest = (internal_report *)((char *)engine + reportOffset);
engine->intReportOffset = reportOffset;
engine->intReportCount = (u32)reports.size();
assert(ISALIGNED(dest));
for (const auto &report : reports) {
writeInternalReport(report, rm, dest++);
}
DEBUG_PRINTF("%zu reports of size %zu\n", reports.size(),
sizeof(internal_report));
}
static
bool hasSimpleReports(const vector<Report> &reports) {
auto it = find_if(reports.begin(), reports.end(), isComplexReport);
DEBUG_PRINTF("runtime has %scomplex reports\n",
it == reports.end() ? "no " : "");
return it == reports.end();
}
static
void prepSomRevNfas(const SomSlotManager &ssm, u32 *rev_nfa_table_offset,
vector<u32> *nfa_offsets, u32 *currOffset) {
const deque<aligned_unique_ptr<NFA>> &nfas = ssm.getRevNfas();
*currOffset = ROUNDUP_N(*currOffset, alignof(u32));
*rev_nfa_table_offset = *currOffset;
*currOffset += sizeof(u32) * nfas.size();
*currOffset = ROUNDUP_CL(*currOffset);
for (const auto &n : nfas) {
u32 bs_offset;
bs_offset = *currOffset;
nfa_offsets->push_back(bs_offset);
*currOffset += ROUNDUP_CL(n->length);
/* note: som rev nfas don't need a queue assigned as only run in block
* mode reverse */
}
assert(nfa_offsets->size() == nfas.size());
}
static
void fillInSomRevNfas(RoseEngine *engine, const SomSlotManager &ssm,
u32 rev_nfa_table_offset,
const vector<u32> &nfa_offsets) {
const deque<aligned_unique_ptr<NFA>> &nfas = ssm.getRevNfas();
assert(nfa_offsets.size() == nfas.size());
engine->somRevCount = (u32)nfas.size();
engine->somRevOffsetOffset = rev_nfa_table_offset;
if (nfas.empty()) {
return;
}
char *out = (char *)engine + rev_nfa_table_offset;
size_t table_size = sizeof(u32) * nfa_offsets.size();
memcpy(out, nfa_offsets.data(), table_size);
out = (char *)engine + ROUNDUP_CL(rev_nfa_table_offset + table_size);
// Write the SOM reverse NFAs into place.
UNUSED size_t i = 0;
for (const auto &n : nfas) {
assert(n != nullptr);
assert(out == (char *)engine + nfa_offsets[i]);
memcpy(out, n.get(), n->length);
out += ROUNDUP_CL(n->length);
DEBUG_PRINTF("wrote som rev nfa with len %u\n", n->length);
++i;
}
}
static
vector<const rose_literal_info *>
getLiteralInfoByFinalId(const RoseBuildImpl &build, u32 final_id) {
vector<const rose_literal_info *> out;
const auto &final_id_to_literal = build.final_id_to_literal;
assert(contains(final_id_to_literal, final_id));
const auto &lits = final_id_to_literal.find(final_id)->second;
assert(!lits.empty());
for (const auto &lit_id : lits) {
const rose_literal_info &li = build.literal_info[lit_id];
assert(li.final_id == final_id);
out.push_back(&li);
}
return out;
}
/**
* \brief Flattens a list of role programs into one finalised program with its
* fail_jump/done_jump targets set correctly.
*/
static
vector<RoseInstruction>
flattenProgram(const vector<vector<RoseInstruction>> &programs) {
vector<RoseInstruction> out;
vector<u32> offsets; // offset of each instruction (bytes)
vector<u32> blocks; // track which block we're in
vector<u32> block_offsets; // start offsets for each block
DEBUG_PRINTF("%zu program blocks\n", programs.size());
size_t curr_offset = 0;
for (const auto &program : programs) {
DEBUG_PRINTF("block with %zu instructions\n", program.size());
block_offsets.push_back(curr_offset);
for (const auto &ri : program) {
assert(ri.code() != ROSE_INSTR_END);
out.push_back(ri);
offsets.push_back(curr_offset);
blocks.push_back(block_offsets.size() - 1);
curr_offset += ROUNDUP_N(ri.length(), ROSE_INSTR_MIN_ALIGN);
}
}
// Add a final END instruction, which is its own block.
out.emplace_back(ROSE_INSTR_END);
block_offsets.push_back(curr_offset);
offsets.push_back(curr_offset);
assert(offsets.size() == out.size());
for (size_t i = 0; i < out.size(); i++) {
auto &ri = out[i];
u32 jump_target = 0;
switch (ri.target) {
case JumpTarget::NO_JUMP:
case JumpTarget::FIXUP_DONE:
continue; // Next instruction.
case JumpTarget::PROGRAM_END:
assert(i != out.size() - 1);
jump_target = offsets.back();
break;
case JumpTarget::NEXT_BLOCK:
assert(blocks[i] + 1 < block_offsets.size());
jump_target = block_offsets[blocks[i] + 1];
break;
}
// We currently always make progress and never jump backwards.
assert(jump_target > offsets[i]);
assert(jump_target <= offsets.back());
u32 jump_val = jump_target - offsets[i];
switch (ri.code()) {
case ROSE_INSTR_ANCHORED_DELAY:
ri.u.anchoredDelay.done_jump = jump_val;
break;
case ROSE_INSTR_CHECK_ONLY_EOD:
ri.u.checkOnlyEod.fail_jump = jump_val;
break;
case ROSE_INSTR_CHECK_BOUNDS:
ri.u.checkBounds.fail_jump = jump_val;
break;
case ROSE_INSTR_CHECK_NOT_HANDLED:
ri.u.checkNotHandled.fail_jump = jump_val;
break;
case ROSE_INSTR_CHECK_LOOKAROUND:
ri.u.checkLookaround.fail_jump = jump_val;
break;
case ROSE_INSTR_CHECK_LEFTFIX:
ri.u.checkLeftfix.fail_jump = jump_val;
break;
case ROSE_INSTR_DEDUPE:
ri.u.dedupe.fail_jump = jump_val;
break;
case ROSE_INSTR_DEDUPE_SOM:
ri.u.dedupeSom.fail_jump = jump_val;
break;
case ROSE_INSTR_CHECK_EXHAUSTED:
ri.u.checkExhausted.fail_jump = jump_val;
break;
case ROSE_INSTR_CHECK_MIN_LENGTH:
ri.u.checkMinLength.fail_jump = jump_val;
break;
case ROSE_INSTR_CHECK_STATE:
ri.u.checkState.fail_jump = jump_val;
break;
case ROSE_INSTR_SPARSE_ITER_BEGIN:
ri.u.sparseIterBegin.fail_jump = jump_val;
break;
case ROSE_INSTR_SPARSE_ITER_NEXT:
ri.u.sparseIterNext.fail_jump = jump_val;
break;
default:
assert(0); // Unhandled opcode?
break;
}
ri.target = JumpTarget::FIXUP_DONE;
}
return out;
}
static
u32 writeProgram(build_context &bc, const vector<RoseInstruction> &program) {
if (program.empty()) {
DEBUG_PRINTF("no program\n");
return 0;
}
assert(program.back().code() == ROSE_INSTR_END);
assert(program.size() >= 1);
// This program must have been flattened; i.e. all check instructions must
// have their jump offsets set.
assert(all_of(begin(program), end(program), [](const RoseInstruction &ri) {
return ri.target == JumpTarget::NO_JUMP ||
ri.target == JumpTarget::FIXUP_DONE;
}));
auto it = bc.program_cache.find(program);
if (it != end(bc.program_cache)) {
DEBUG_PRINTF("reusing cached program at %u\n", it->second);
return it->second;
}
DEBUG_PRINTF("writing %zu instructions\n", program.size());
u32 programOffset = 0;
for (const auto &ri : program) {
u32 offset =
add_to_engine_blob(bc, ri.get(), ri.length(), ROSE_INSTR_MIN_ALIGN);
DEBUG_PRINTF("code %u len %zu written at offset %u\n", ri.code(),
ri.length(), offset);
if (!programOffset) {
programOffset = offset;
}
}
DEBUG_PRINTF("program begins at offset %u\n", programOffset);
bc.program_cache.emplace(program, programOffset);
return programOffset;
}
static
void buildActiveLeftIter(const vector<LeftNfaInfo> &leftTable,
vector<mmbit_sparse_iter> &out) {
vector<u32> keys;
for (size_t i = 0; i < leftTable.size(); i++) {
if (!leftTable[i].transient) {
DEBUG_PRINTF("rose %zu is active\n", i);
keys.push_back(verify_u32(i));
}
}
DEBUG_PRINTF("%zu active roses\n", keys.size());
if (keys.empty()) {
out.clear();
return;
}
mmbBuildSparseIterator(out, keys, leftTable.size());
}
static
bool hasEodAnchors(const RoseBuildImpl &tbi, const build_context &bc,
u32 outfixEndQueue) {
for (u32 i = 0; i < outfixEndQueue; i++) {
if (nfaAcceptsEod(get_nfa_from_blob(bc, i))) {
DEBUG_PRINTF("outfix has eod\n");
return true;
}
}
if (tbi.eod_event_literal_id != MO_INVALID_IDX) {
DEBUG_PRINTF("eod is an event to be celebrated\n");
return true;
}
for (auto v : vertices_range(tbi.g)) {
if (tbi.g[v].eod_accept) {
DEBUG_PRINTF("literally report eod\n");
return true;
}
if (tbi.g[v].suffix && has_eod_accepts(tbi.g[v].suffix)) {
DEBUG_PRINTF("eod suffix\n");
return true;
}
}
DEBUG_PRINTF("yawn\n");
return false;
}
static
void fillLookaroundTables(char *look_base, char *reach_base,
const vector<LookEntry> &look_vec) {
DEBUG_PRINTF("%zu lookaround table entries\n", look_vec.size());
s8 *look = (s8 *)look_base;
u8 *reach = (u8 *)reach_base; // base for 256-bit bitvectors
for (const auto &le : look_vec) {
*look = verify_s8(le.offset);
const CharReach &cr = le.reach;
assert(cr.any()); // Should be at least one character!
fill_bitvector(cr, reach);
++look;
reach += REACH_BITVECTOR_LEN;
}
}
static
bool hasBoundaryReports(const BoundaryReports &boundary) {
if (!boundary.report_at_0.empty()) {
DEBUG_PRINTF("has boundary reports at 0\n");
return true;
}
if (!boundary.report_at_0_eod.empty()) {
DEBUG_PRINTF("has boundary reports at 0 eod\n");
return true;
}
if (!boundary.report_at_eod.empty()) {
DEBUG_PRINTF("has boundary reports at eod\n");
return true;
}
DEBUG_PRINTF("no boundary reports\n");
return false;
}
/**
* \brief True if the given vertex is a role that can only be switched on at
* EOD.
*/
static
bool onlyAtEod(const RoseBuildImpl &tbi, RoseVertex v) {
const RoseGraph &g = tbi.g;
// All such roles have only (0,0) edges to vertices with the eod_accept
// property, and no other effects (suffixes, ordinary reports, etc, etc).
if (isLeafNode(v, g) || !g[v].reports.empty() || g[v].suffix) {
return false;
}
for (const auto &e : out_edges_range(v, g)) {
RoseVertex w = target(e, g);
if (!g[w].eod_accept) {
return false;
}
assert(!g[w].reports.empty());
assert(g[w].literals.empty());
if (g[e].minBound || g[e].maxBound) {
return false;
}
}
/* There is no pointing enforcing this check at runtime if
* this role is only fired by the eod event literal */
if (tbi.eod_event_literal_id != MO_INVALID_IDX &&
g[v].literals.size() == 1 &&
*g[v].literals.begin() == tbi.eod_event_literal_id) {
return false;
}
return true;
}
static
void makeRoleLookaround(RoseBuildImpl &build, build_context &bc, RoseVertex v,
vector<RoseInstruction> &program) {
if (!build.cc.grey.roseLookaroundMasks) {
return;
}
vector<LookEntry> look;
// Lookaround from leftfix (mandatory).
if (contains(bc.leftfix_info, v) && bc.leftfix_info.at(v).has_lookaround) {
DEBUG_PRINTF("using leftfix lookaround\n");
look = bc.leftfix_info.at(v).lookaround;
}
// We may be able to find more lookaround info (advisory) and merge it
// in.
vector<LookEntry> look_more;
findLookaroundMasks(build, v, look_more);
mergeLookaround(look, look_more);
if (look.empty()) {
return;
}
DEBUG_PRINTF("role has lookaround\n");
u32 look_idx;
auto it = bc.lookaround_cache.find(look);
if (it != bc.lookaround_cache.end()) {
DEBUG_PRINTF("reusing look at idx %zu\n", it->second);
look_idx = verify_u32(it->second);
} else {
size_t idx = bc.lookaround.size();
bc.lookaround_cache.emplace(look, idx);
insert(&bc.lookaround, bc.lookaround.end(), look);
DEBUG_PRINTF("adding look at idx %zu\n", idx);
look_idx = verify_u32(idx);
}
u32 look_count = verify_u32(look.size());
auto ri = RoseInstruction(ROSE_INSTR_CHECK_LOOKAROUND,
JumpTarget::NEXT_BLOCK);
ri.u.checkLookaround.index = look_idx;
ri.u.checkLookaround.count = look_count;
program.push_back(ri);
}
static
void makeRoleCheckLeftfix(RoseBuildImpl &build, build_context &bc, RoseVertex v,
vector<RoseInstruction> &program) {
auto it = bc.leftfix_info.find(v);
if (it == end(bc.leftfix_info)) {
return;
}
const left_build_info &lni = it->second;
if (lni.has_lookaround) {
return; // Leftfix completely implemented by lookaround.
}
assert(!build.cc.streaming ||
build.g[v].left.lag <= MAX_STORED_LEFTFIX_LAG);
auto ri = RoseInstruction(ROSE_INSTR_CHECK_LEFTFIX, JumpTarget::NEXT_BLOCK);
ri.u.checkLeftfix.queue = lni.queue;
ri.u.checkLeftfix.lag = build.g[v].left.lag;
ri.u.checkLeftfix.report = build.g[v].left.leftfix_report;
program.push_back(ri);
}
static
void makeRoleAnchoredDelay(RoseBuildImpl &build, build_context &bc,
RoseVertex v, vector<RoseInstruction> &program) {
// Only relevant for roles that can be triggered by the anchored table.
if (!build.isAnchored(v)) {
return;
}
// If this match cannot occur after floatingMinLiteralMatchOffset, we do
// not need this check.
if (build.g[v].max_offset <= bc.floatingMinLiteralMatchOffset) {
return;
}
auto ri = RoseInstruction(ROSE_INSTR_ANCHORED_DELAY,
JumpTarget::NEXT_BLOCK);
ri.u.anchoredDelay.groups = build.g[v].groups;
program.push_back(ri);
}
static
void makeDedupe(const ReportID id, vector<RoseInstruction> &report_block) {
auto ri = RoseInstruction(ROSE_INSTR_DEDUPE, JumpTarget::NEXT_BLOCK);
ri.u.dedupe.report = id;
report_block.push_back(move(ri));
}
static
void makeDedupeSom(const ReportID id, vector<RoseInstruction> &report_block) {
auto ri = RoseInstruction(ROSE_INSTR_DEDUPE_SOM, JumpTarget::NEXT_BLOCK);
ri.u.dedupeSom.report = id;
report_block.push_back(move(ri));
}
static
void makeReport(RoseBuildImpl &build, const ReportID id, const bool has_som,
vector<RoseInstruction> &program) {
assert(id < build.rm.numReports());
const Report &report = build.rm.getReport(id);
vector<RoseInstruction> report_block;
// If this report has an exhaustion key, we can check it in the program
// rather than waiting until we're in the callback adaptor.
if (report.ekey != INVALID_EKEY) {
auto ri = RoseInstruction(ROSE_INSTR_CHECK_EXHAUSTED,
JumpTarget::NEXT_BLOCK);
ri.u.checkExhausted.ekey = report.ekey;
report_block.push_back(move(ri));
}
// Similarly, we can handle min/max offset checks.
if (report.minOffset > 0 || report.maxOffset < MAX_OFFSET) {
auto ri = RoseInstruction(ROSE_INSTR_CHECK_BOUNDS,
JumpTarget::NEXT_BLOCK);
ri.u.checkBounds.min_bound = report.minOffset;
ri.u.checkBounds.max_bound = report.maxOffset;
report_block.push_back(move(ri));
}
// Catch up -- everything except the INTERNAL_ROSE_CHAIN report needs this.
// TODO: this could be floated in front of all the reports and only done
// once.
if (report.type != INTERNAL_ROSE_CHAIN) {
program.emplace_back(ROSE_INSTR_CATCH_UP);
}
// External SOM reports need their SOM value calculated.
if (isExternalSomReport(report)) {
auto ri = RoseInstruction(ROSE_INSTR_SOM_FROM_REPORT);
ri.u.somFromReport.report = id;
report_block.push_back(move(ri));
}
// Min length constraint.
if (report.minLength > 0) {
assert(build.hasSom);
auto ri = RoseInstruction(ROSE_INSTR_CHECK_MIN_LENGTH,
JumpTarget::NEXT_BLOCK);
ri.u.checkMinLength.end_adj = report.offsetAdjust;
ri.u.checkMinLength.min_length = report.minLength;
report_block.push_back(move(ri));
}
if (report.quashSom) {
report_block.emplace_back(ROSE_INSTR_SOM_ZERO);
}
switch (report.type) {
case EXTERNAL_CALLBACK:
if (!has_som) {
makeDedupe(id, report_block);
if (report.ekey == INVALID_EKEY) {
report_block.emplace_back(ROSE_INSTR_REPORT);
report_block.back().u.report.report = id;
} else {
report_block.emplace_back(ROSE_INSTR_REPORT_EXHAUST);
report_block.back().u.reportExhaust.report = id;
}
} else { // has_som
makeDedupeSom(id, report_block);
if (report.ekey == INVALID_EKEY) {
report_block.emplace_back(ROSE_INSTR_REPORT_SOM);
report_block.back().u.reportSom.report = id;
} else {
report_block.emplace_back(ROSE_INSTR_REPORT_SOM_EXHAUST);
report_block.back().u.reportSomExhaust.report = id;
}
}
break;
case INTERNAL_SOM_LOC_SET:
case INTERNAL_SOM_LOC_SET_IF_UNSET:
case INTERNAL_SOM_LOC_SET_IF_WRITABLE:
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA:
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA_IF_UNSET:
case INTERNAL_SOM_LOC_SET_SOM_REV_NFA_IF_WRITABLE:
case INTERNAL_SOM_LOC_COPY:
case INTERNAL_SOM_LOC_COPY_IF_WRITABLE:
case INTERNAL_SOM_LOC_MAKE_WRITABLE:
case INTERNAL_SOM_LOC_SET_FROM:
case INTERNAL_SOM_LOC_SET_FROM_IF_WRITABLE:
if (has_som) {
report_block.emplace_back(ROSE_INSTR_REPORT_SOM_AWARE);
report_block.back().u.reportSomAware.report = id;
} else {
report_block.emplace_back(ROSE_INSTR_REPORT_SOM_INT);
report_block.back().u.reportSomInt.report = id;
}
break;
case INTERNAL_ROSE_CHAIN:
report_block.emplace_back(ROSE_INSTR_REPORT_CHAIN);
report_block.back().u.reportChain.report = id;
break;
case EXTERNAL_CALLBACK_SOM_REL:
case EXTERNAL_CALLBACK_SOM_STORED:
case EXTERNAL_CALLBACK_SOM_ABS:
case EXTERNAL_CALLBACK_SOM_REV_NFA:
makeDedupeSom(id, report_block);
if (report.ekey == INVALID_EKEY) {
report_block.emplace_back(ROSE_INSTR_REPORT_SOM);
report_block.back().u.reportSom.report = id;
} else {
report_block.emplace_back(ROSE_INSTR_REPORT_SOM_EXHAUST);
report_block.back().u.reportSomExhaust.report = id;
}
break;
default:
assert(0);
throw CompileError("Unable to generate bytecode.");
}
assert(!report_block.empty());
report_block = flattenProgram({report_block});
assert(report_block.back().code() == ROSE_INSTR_END);
report_block.pop_back();
insert(&program, program.end(), report_block);
}
static
void makeRoleReports(RoseBuildImpl &build, build_context &bc, RoseVertex v,
vector<RoseInstruction> &program) {
const auto &g = build.g;
/* we are a suffaig - need to update role to provide som to the
* suffix. */
bool has_som = false;
if (g[v].left.tracksSom()) {
assert(contains(bc.leftfix_info, v));
const left_build_info &lni = bc.leftfix_info.at(v);
auto ri = RoseInstruction(ROSE_INSTR_SOM_LEFTFIX);
ri.u.somLeftfix.queue = lni.queue;
ri.u.somLeftfix.lag = g[v].left.lag;
program.push_back(ri);
has_som = true;
} else if (g[v].som_adjust) {
auto ri = RoseInstruction(ROSE_INSTR_SOM_ADJUST);
ri.u.somAdjust.distance = g[v].som_adjust;
program.push_back(ri);
has_som = true;
}
for (ReportID id : g[v].reports) {
makeReport(build, id, has_som, program);
}
}
static
void makeRoleSuffix(RoseBuildImpl &build, build_context &bc, RoseVertex v,
vector<RoseInstruction> &program) {
const auto &g = build.g;
if (!g[v].suffix) {
return;
}
assert(contains(bc.suffixes, g[v].suffix));
u32 qi = bc.suffixes.at(g[v].suffix);
assert(contains(bc.engineOffsets, qi));
const NFA *nfa = get_nfa_from_blob(bc, qi);
u32 suffixEvent;
if (isMultiTopType(nfa->type)) {
assert(!g[v].suffix.haig);
u32 top = (u32)MQE_TOP_FIRST + g[v].suffix.top;
assert(top < MQE_INVALID);
suffixEvent = top;
} else {
// DFAs/Puffs have no MQE_TOP_N support, so they get a classic TOP
// event.
assert(!g[v].suffix.graph || onlyOneTop(*g[v].suffix.graph));
suffixEvent = MQE_TOP;
}
auto ri = RoseInstruction(ROSE_INSTR_TRIGGER_SUFFIX);
ri.u.triggerSuffix.queue = qi;
ri.u.triggerSuffix.event = suffixEvent;
program.push_back(ri);
}
static
void makeRoleGroups(const rose_group &groups,
vector<RoseInstruction> &program) {
if (!groups) {
return;
}
auto ri = RoseInstruction(ROSE_INSTR_SET_GROUPS);
ri.u.setGroups.groups = groups;
program.push_back(ri);
}
static
void makeRoleInfixTriggers(RoseBuildImpl &build, build_context &bc,
RoseVertex u, vector<RoseInstruction> &program) {
const auto &g = build.g;
vector<RoseInstruction> infix_program;
for (const auto &e : out_edges_range(u, g)) {
RoseVertex v = target(e, g);
if (!g[v].left) {
continue;
}
assert(contains(bc.leftfix_info, v));
const left_build_info &lbi = bc.leftfix_info.at(v);
if (lbi.has_lookaround) {
continue;
}
const NFA *nfa = get_nfa_from_blob(bc, lbi.queue);
// DFAs have no TOP_N support, so they get a classic MQE_TOP event.
u32 top;
if (!isMultiTopType(nfa->type)) {
assert(num_tops(g[v].left) == 1);
top = MQE_TOP;
} else {
top = MQE_TOP_FIRST + g[e].rose_top;
assert(top < MQE_INVALID);
}
auto ri = RoseInstruction(ROSE_INSTR_TRIGGER_INFIX);
ri.u.triggerInfix.queue = lbi.queue;
ri.u.triggerInfix.event = top;
ri.u.triggerInfix.cancel = g[e].rose_cancel_prev_top;
infix_program.push_back(ri);
}
if (infix_program.empty()) {
return;
}
// Order, de-dupe and add instructions to the end of program.
sort(begin(infix_program), end(infix_program));
unique_copy(begin(infix_program), end(infix_program),
back_inserter(program));
// Groups may be cleared by an infix going quiet. Set groups immediately
// after infixes are triggered.
makeRoleGroups(g[u].groups, program);
}
static
void makeRoleSetState(const build_context &bc, RoseVertex v,
vector<RoseInstruction> &program) {
// We only need this instruction if a state index has been assigned to this
// vertex.
auto it = bc.roleStateIndices.find(v);
if (it == end(bc.roleStateIndices)) {
return;
}
u32 idx = it->second;
auto ri = RoseInstruction(ROSE_INSTR_SET_STATE);
ri.u.setState.index = idx;
program.push_back(ri);
}
static
void makeRoleCheckBounds(const RoseBuildImpl &build, RoseVertex v,
const RoseEdge &e, vector<RoseInstruction> &program) {
const RoseGraph &g = build.g;
const RoseVertex u = source(e, g);
// We know that we can trust the anchored table (DFA) to always deliver us
// literals at the correct offset.
if (build.isAnchored(v)) {
DEBUG_PRINTF("literal in anchored table, skipping bounds check\n");
return;
}
// Use the minimum literal length.
u32 lit_length = g[v].eod_accept ? 0 : verify_u32(build.minLiteralLen(v));
u64a min_bound = g[e].minBound + lit_length;
u64a max_bound = g[e].maxBound == ROSE_BOUND_INF
? ROSE_BOUND_INF
: g[e].maxBound + lit_length;
if (g[e].history == ROSE_ROLE_HISTORY_ANCH) {
assert(g[u].max_offset != ROSE_BOUND_INF);
// Make offsets absolute.
min_bound += g[u].max_offset;
if (max_bound != ROSE_BOUND_INF) {
max_bound += g[u].max_offset;
}
}
assert(max_bound <= ROSE_BOUND_INF);
assert(min_bound <= max_bound);
// CHECK_BOUNDS instruction uses 64-bit bounds, so we can use MAX_OFFSET
// (max value of a u64a) to represent ROSE_BOUND_INF.
if (max_bound == ROSE_BOUND_INF) {
max_bound = MAX_OFFSET;
}
auto ri = RoseInstruction(ROSE_INSTR_CHECK_BOUNDS, JumpTarget::NEXT_BLOCK);
ri.u.checkBounds.min_bound = min_bound;
ri.u.checkBounds.max_bound = max_bound;
// This precondition instruction should go near the start of
// the program, after the ONLY_EOD check if it's present.
auto it =
find_if(begin(program), end(program), [](const RoseInstruction &ri) {
return ri.code() > ROSE_INSTR_CHECK_ONLY_EOD;
});
program.insert(it, ri);
}
static
vector<RoseInstruction> makeProgram(RoseBuildImpl &build, build_context &bc,
const RoseEdge &e) {
const RoseGraph &g = build.g;
auto v = target(e, g);
vector<RoseInstruction> program;
// First, add program instructions that enforce preconditions without
// effects.
makeRoleAnchoredDelay(build, bc, v, program);
if (onlyAtEod(build, v)) {
DEBUG_PRINTF("only at eod\n");
program.push_back(RoseInstruction(ROSE_INSTR_CHECK_ONLY_EOD,
JumpTarget::NEXT_BLOCK));
}
if (g[e].history == ROSE_ROLE_HISTORY_ANCH) {
makeRoleCheckBounds(build, v, e, program);
}
makeRoleLookaround(build, bc, v, program);
makeRoleCheckLeftfix(build, bc, v, program);
// Next, we can add program instructions that have effects.
makeRoleReports(build, bc, v, program);
makeRoleInfixTriggers(build, bc, v, program);
makeRoleSuffix(build, bc, v, program);
makeRoleSetState(bc, v, program);
makeRoleGroups(g[v].groups, program);
return program;
}
static
void assignStateIndices(const RoseBuildImpl &build, build_context &bc) {
const auto &g = build.g;
u32 state = 0;
for (auto v : vertices_range(g)) {
// Virtual vertices (starts, EOD accept vertices) never need state
// indices.
if (build.isVirtualVertex(v)) {
continue;
}
// Leaf nodes don't need state indices, as they don't have successors.
if (isLeafNode(v, g)) {
continue;
}
/* TODO: also don't need a state index if all edges are nfa based */
bc.roleStateIndices.emplace(v, state++);
}
DEBUG_PRINTF("assigned %u states (from %zu vertices)\n", state,
num_vertices(g));
bc.numStates = state;
}
static
bool hasUsefulStops(const left_build_info &rbi) {
for (u32 i = 0; i < N_CHARS; i++) {
if (rbi.stopAlphabet[i]) {
return true;
}
}
return false;
}
static
void buildLeftInfoTable(const RoseBuildImpl &tbi, build_context &bc,
u32 leftfixBeginQueue, u32 leftfixCount,
vector<LeftNfaInfo> &leftTable, u32 *laggedRoseCount,
size_t *history) {
const RoseGraph &g = tbi.g;
const CompileContext &cc = tbi.cc;
ue2::unordered_set<u32> done_core;
leftTable.resize(leftfixCount);
u32 lagIndex = 0;
for (RoseVertex v : vertices_range(g)) {
if (!g[v].left) {
continue;
}
assert(contains(bc.leftfix_info, v));
const left_build_info &lbi = bc.leftfix_info.at(v);
if (lbi.has_lookaround) {
continue;
}
assert(lbi.queue >= leftfixBeginQueue);
u32 left_index = lbi.queue - leftfixBeginQueue;
assert(left_index < leftfixCount);
/* seedy hack to make miracles more effective.
*
* TODO: make miracle seeking not depend on history length and have
* runt scans */
if (hasUsefulStops(lbi)) {
ENSURE_AT_LEAST(history,
(size_t)MIN(cc.grey.maxHistoryAvailable,
g[v].left.lag + 1
+ cc.grey.miracleHistoryBonus));
}
LeftNfaInfo &left = leftTable[left_index];
if (!contains(done_core, left_index)) {
done_core.insert(left_index);
memset(&left, 0, sizeof(left));
left.squash_mask = ~0ULL;
DEBUG_PRINTF("populating info for %u\n", left_index);
left.maxQueueLen = lbi.max_queuelen;
if (hasUsefulStops(lbi)) {
assert(lbi.stopAlphabet.size() == N_CHARS);
left.stopTable = add_to_engine_blob(bc, lbi.stopAlphabet.begin(),
lbi.stopAlphabet.end());
}
assert(lbi.countingMiracleOffset || !lbi.countingMiracleCount);
left.countingMiracleOffset = lbi.countingMiracleOffset;
DEBUG_PRINTF("mw = %u\n", lbi.transient);
left.transient = verify_u8(lbi.transient);
left.infix = tbi.isNonRootSuccessor(v);
// A rose has a lagIndex if it's non-transient and we are
// streaming.
if (!lbi.transient && cc.streaming) {
assert(lagIndex < ROSE_OFFSET_INVALID);
left.lagIndex = lagIndex++;
} else {
left.lagIndex = ROSE_OFFSET_INVALID;
}
DEBUG_PRINTF("rose %u is %s\n", left_index,
left.infix ? "infix" : "prefix");
}
// Update squash mask.
left.squash_mask &= lbi.squash_mask;
// Update the max delay.
ENSURE_AT_LEAST(&left.maxLag, lbi.lag);
if (contains(g[v].literals, tbi.eod_event_literal_id)) {
left.eod_check = 1;
}
}
DEBUG_PRINTF("built %u roses with lag indices\n", lagIndex);
*laggedRoseCount = lagIndex;
}
static
void makeRoleCheckNotHandled(build_context &bc, RoseVertex v,
vector<RoseInstruction> &program) {
auto ri = RoseInstruction(ROSE_INSTR_CHECK_NOT_HANDLED,
JumpTarget::NEXT_BLOCK);
u32 handled_key;
if (contains(bc.handledKeys, v)) {
handled_key = bc.handledKeys.at(v);
} else {
handled_key = verify_u32(bc.handledKeys.size());
bc.handledKeys.emplace(v, handled_key);
}
ri.u.checkNotHandled.key = handled_key;
// This program may be triggered by different predecessors, with different
// offset bounds. We must ensure we put this check/set operation after the
// bounds check to deal with this case.
auto it =
find_if(begin(program), end(program), [](const RoseInstruction &ri) {
return ri.code() > ROSE_INSTR_CHECK_BOUNDS;
});
program.insert(it, ri);
}
static
vector<RoseInstruction> makePredProgram(RoseBuildImpl &build, build_context &bc,
const RoseEdge &e) {
const RoseGraph &g = build.g;
const RoseVertex v = target(e, g);
auto program = makeProgram(build, bc, e);
if (hasGreaterInDegree(1, v, g)) {
// Only necessary when there is more than one pred.
makeRoleCheckNotHandled(bc, v, program);
}
return program;
}
static
u32 addPredBlocksSingle(
map<u32, vector<vector<RoseInstruction>>> &predProgramLists,
vector<RoseInstruction> &program) {
vector<vector<RoseInstruction>> prog_blocks;
for (const auto &m : predProgramLists) {
const u32 &pred_state = m.first;
auto subprog = flattenProgram(m.second);
// Check our pred state.
auto ri = RoseInstruction(ROSE_INSTR_CHECK_STATE,
JumpTarget::NEXT_BLOCK);
ri.u.checkState.index = pred_state;
subprog.insert(begin(subprog), ri);
assert(subprog.back().code() == ROSE_INSTR_END);
subprog.pop_back();
prog_blocks.push_back(move(subprog));
}
auto prog = flattenProgram(prog_blocks);
program.insert(end(program), begin(prog), end(prog));
return 0; // No iterator.
}
static
u32 programLength(const vector<RoseInstruction> &program) {
u32 len = 0;
for (const auto &ri : program) {
len += ROUNDUP_N(ri.length(), ROSE_INSTR_MIN_ALIGN);
}
return len;
}
static
u32 addPredBlocksMulti(build_context &bc,
map<u32, vector<vector<RoseInstruction>>> &predProgramLists,
vector<RoseInstruction> &program) {
assert(!predProgramLists.empty());
// First, add the iterator itself.
vector<u32> keys;
for (const auto &elem : predProgramLists) {
keys.push_back(elem.first);
}
DEBUG_PRINTF("%zu keys: %s\n", keys.size(), as_string_list(keys).c_str());
vector<mmbit_sparse_iter> iter;
mmbBuildSparseIterator(iter, keys, bc.numStates);
assert(!iter.empty());
u32 iter_offset = addIteratorToTable(bc, iter);
// Construct our program, starting with the SPARSE_ITER_BEGIN
// instruction, keeping track of the jump offset for each sub-program.
vector<RoseInstruction> sparse_program;
vector<u32> jump_table;
sparse_program.push_back(RoseInstruction(ROSE_INSTR_SPARSE_ITER_BEGIN,
JumpTarget::PROGRAM_END));
u32 curr_offset = programLength(program) + programLength(sparse_program);
for (const auto &e : predProgramLists) {
DEBUG_PRINTF("subprogram %zu has offset %u\n", jump_table.size(),
curr_offset);
jump_table.push_back(curr_offset);
auto subprog = flattenProgram(e.second);
if (e.first != keys.back()) {
// For all but the last subprogram, replace the END instruction
// with a SPARSE_ITER_NEXT.
assert(!subprog.empty());
assert(subprog.back().code() == ROSE_INSTR_END);
subprog.back() = RoseInstruction(ROSE_INSTR_SPARSE_ITER_NEXT,
JumpTarget::PROGRAM_END);
}
curr_offset += programLength(subprog);
insert(&sparse_program, end(sparse_program), subprog);
}
// Strip the END instruction from the last block.
assert(sparse_program.back().code() == ROSE_INSTR_END);
sparse_program.pop_back();
sparse_program = flattenProgram({sparse_program});
// Write the jump table into the bytecode.
const u32 jump_table_offset =
add_to_engine_blob(bc, begin(jump_table), end(jump_table));
// Write jump table and iterator offset into sparse iter instructions.
auto keys_it = begin(keys);
for (auto &ri : sparse_program) {
switch (ri.code()) {
case ROSE_INSTR_SPARSE_ITER_BEGIN:
ri.u.sparseIterBegin.iter_offset = iter_offset;
ri.u.sparseIterBegin.jump_table = jump_table_offset;
break;
case ROSE_INSTR_SPARSE_ITER_NEXT:
ri.u.sparseIterNext.iter_offset = iter_offset;
ri.u.sparseIterNext.jump_table = jump_table_offset;
assert(keys_it != end(keys));
ri.u.sparseIterNext.state = *keys_it++;
break;
default:
break;
}
}
program.insert(end(program), begin(sparse_program), end(sparse_program));
return iter_offset;
}
static
u32 addPredBlocks(build_context &bc,
map<u32, vector<vector<RoseInstruction>>> &predProgramLists,
vector<RoseInstruction> &program,
bool force_sparse_iter) {
const size_t num_preds = predProgramLists.size();
if (num_preds == 0) {
program = flattenProgram({program});
return 0; // No iterator.
} else if (!force_sparse_iter && num_preds == 1) {
return addPredBlocksSingle(predProgramLists, program);
} else {
return addPredBlocksMulti(bc, predProgramLists, program);
}
}
/**
* Returns the pair (program offset, sparse iter offset).
*/
static
pair<u32, u32> makeSparseIterProgram(build_context &bc,
map<u32, vector<vector<RoseInstruction>>> &predProgramLists,
const vector<RoseInstruction> &root_program,
const vector<RoseInstruction> &pre_program) {
vector<RoseInstruction> program;
u32 curr_offset = 0;
// Add pre-program first.
for (const auto &ri : pre_program) {
program.push_back(ri);
curr_offset += ROUNDUP_N(ri.length(), ROSE_INSTR_MIN_ALIGN);
}
// Add blocks to deal with non-root edges (triggered by sparse iterator or
// mmbit_isset checks). This operation will flatten the program up to this
// point.
u32 iter_offset = addPredBlocks(bc, predProgramLists, program, false);
// If we have a root program, replace the END instruction with it. Note
// that the root program has already been flattened.
assert(!program.empty());
assert(program.back().code() == ROSE_INSTR_END);
if (!root_program.empty()) {
program.pop_back();
program.insert(end(program), begin(root_program), end(root_program));
}
return {writeProgram(bc, program), iter_offset};
}
static
void makePushDelayedInstructions(const RoseBuildImpl &build, u32 final_id,
vector<RoseInstruction> &program) {
const auto &lit_infos = getLiteralInfoByFinalId(build, final_id);
const auto &arb_lit_info = **lit_infos.begin();
if (arb_lit_info.delayed_ids.empty()) {
return;
}
for (const auto &int_id : arb_lit_info.delayed_ids) {
const auto &child_literal = build.literals.right.at(int_id);
u32 child_id = build.literal_info[int_id].final_id;
u32 delay_index = child_id - build.delay_base_id;
DEBUG_PRINTF("final_id=%u delay=%u child_id=%u\n", final_id,
child_literal.delay, child_id);
auto ri = RoseInstruction(ROSE_INSTR_PUSH_DELAYED);
ri.u.pushDelayed.delay = verify_u8(child_literal.delay);
ri.u.pushDelayed.index = delay_index;
program.push_back(move(ri));
}
}
static
void makeGroupCheckInstruction(const RoseBuildImpl &build, u32 final_id,
vector<RoseInstruction> &program) {
assert(contains(build.final_id_to_literal, final_id));
const auto &lit_infos = getLiteralInfoByFinalId(build, final_id);
rose_group groups = 0;
for (const auto &li : lit_infos) {
groups |= li->group_mask;
}
if (!groups) {
return;
}
auto ri = RoseInstruction(ROSE_INSTR_CHECK_GROUPS);
ri.u.checkGroups.groups = groups;
program.push_back(move(ri));
}
static
void makeCheckLitMaskInstruction(const RoseBuildImpl &build, u32 final_id,
vector<RoseInstruction> &program) {
assert(contains(build.final_id_to_literal, final_id));
const auto &lit_infos = getLiteralInfoByFinalId(build, final_id);
assert(!lit_infos.empty());
if (!lit_infos.front()->requires_benefits) {
return;
}
auto ri = RoseInstruction(ROSE_INSTR_CHECK_LIT_MASK);
assert(build.final_id_to_literal.at(final_id).size() == 1);
u32 lit_id = *build.final_id_to_literal.at(final_id).begin();
const ue2_literal &s = build.literals.right.at(lit_id).s;
DEBUG_PRINTF("building mask for lit %u (final id %u) %s\n", lit_id,
final_id, dumpString(s).c_str());
assert(s.length() <= MAX_MASK2_WIDTH);
u32 i = 0;
for (const auto &e : s) {
ri.u.checkLitMask.and_mask.a8[i] = e.nocase ? 0 : CASE_BIT;
ri.u.checkLitMask.cmp_mask.a8[i] = e.nocase ? 0 : (CASE_BIT & e.c);
i++;
}
program.push_back(move(ri));
}
static
void makeGroupSquashInstruction(const RoseBuildImpl &build, u32 final_id,
vector<RoseInstruction> &program) {
assert(contains(build.final_id_to_literal, final_id));
const auto &lit_infos = getLiteralInfoByFinalId(build, final_id);
if (!lit_infos.front()->squash_group) {
return;
}
rose_group groups = 0;
for (const auto &li : lit_infos) {
groups |= li->group_mask;
}
if (!groups) {
return;
}
DEBUG_PRINTF("final_id %u squashes 0x%llx\n", final_id, groups);
auto ri = RoseInstruction(ROSE_INSTR_SQUASH_GROUPS);
ri.u.squashGroups.groups = ~groups; // Negated, so we can just AND it in.
program.push_back(move(ri));
}
static
void makeCheckLitEarlyInstruction(const RoseBuildImpl &build, build_context &bc,
u32 final_id,
const vector<RoseEdge> &lit_edges,
vector<RoseInstruction> &program) {
if (lit_edges.empty()) {
return;
}
if (bc.floatingMinLiteralMatchOffset == 0) {
return;
}
RoseVertex v = target(lit_edges.front(), build.g);
if (!build.isFloating(v)) {
return;
}
const auto &lit_ids = build.final_id_to_literal.at(final_id);
if (lit_ids.empty()) {
return;
}
size_t min_offset = SIZE_MAX;
for (u32 lit_id : lit_ids) {
const auto &lit = build.literals.right.at(lit_id);
min_offset = min(min_offset, lit.elength());
}
DEBUG_PRINTF("%zu lits, min_offset=%zu\n", lit_ids.size(), min_offset);
// If we can't match before the min offset, we don't need the check.
if (min_offset >= bc.floatingMinLiteralMatchOffset) {
DEBUG_PRINTF("no need for check, min is %u\n",
bc.floatingMinLiteralMatchOffset);
return;
}
program.push_back(RoseInstruction(ROSE_INSTR_CHECK_LIT_EARLY));
}
static
vector<RoseInstruction> buildLitInitialProgram(RoseBuildImpl &build,
build_context &bc, u32 final_id,
const vector<RoseEdge> &lit_edges) {
vector<RoseInstruction> pre_program;
// No initial program for EOD.
if (final_id == MO_INVALID_IDX) {
return pre_program;
}
DEBUG_PRINTF("final_id %u\n", final_id);
// Check lit mask.
makeCheckLitMaskInstruction(build, final_id, pre_program);
// Check literal groups.
makeGroupCheckInstruction(build, final_id, pre_program);
// Add instructions for pushing delayed matches, if there are any.
makePushDelayedInstructions(build, final_id, pre_program);
// Add pre-check for early literals in the floating table.
makeCheckLitEarlyInstruction(build, bc, final_id, lit_edges, pre_program);
return pre_program;
}
static
u32 buildLiteralProgram(RoseBuildImpl &build, build_context &bc, u32 final_id,
const vector<RoseEdge> &lit_edges) {
const auto &g = build.g;
DEBUG_PRINTF("final id %u, %zu lit edges\n", final_id, lit_edges.size());
// pred state id -> list of programs
map<u32, vector<vector<RoseInstruction>>> predProgramLists;
// Construct sparse iter sub-programs.
for (const auto &e : lit_edges) {
const auto &u = source(e, g);
if (build.isAnyStart(u)) {
continue; // Root roles are not handled with sparse iterator.
}
DEBUG_PRINTF("sparse iter edge (%zu,%zu)\n", g[u].idx,
g[target(e, g)].idx);
assert(contains(bc.roleStateIndices, u));
u32 pred_state = bc.roleStateIndices.at(u);
auto program = makePredProgram(build, bc, e);
predProgramLists[pred_state].push_back(program);
}
// Construct sub-program for handling root roles.
vector<vector<RoseInstruction>> root_programs;
for (const auto &e : lit_edges) {
const auto &u = source(e, g);
if (!build.isAnyStart(u)) {
continue;
}
DEBUG_PRINTF("root edge (%zu,%zu)\n", g[u].idx, g[target(e, g)].idx);
auto role_prog = makeProgram(build, bc, e);
if (role_prog.empty()) {
continue;
}
root_programs.push_back(role_prog);
}
// Literal may squash groups.
if (final_id != MO_INVALID_IDX) {
root_programs.push_back({});
makeGroupSquashInstruction(build, final_id, root_programs.back());
}
vector<RoseInstruction> root_program;
if (!root_programs.empty()) {
root_program = flattenProgram(root_programs);
}
auto pre_program = buildLitInitialProgram(build, bc, final_id, lit_edges);
// Put it all together.
return makeSparseIterProgram(bc, predProgramLists, root_program,
pre_program).first;
}
static
u32 buildDelayRebuildProgram(RoseBuildImpl &build, build_context &bc,
u32 final_id) {
const auto &lit_infos = getLiteralInfoByFinalId(build, final_id);
const auto &arb_lit_info = **lit_infos.begin();
if (arb_lit_info.delayed_ids.empty()) {
return 0; // No delayed IDs, no work to do.
}
vector<RoseInstruction> program;
makeCheckLitMaskInstruction(build, final_id, program);
makePushDelayedInstructions(build, final_id, program);
assert(!program.empty());
program = flattenProgram({program});
return writeProgram(bc, program);
}
static
map<u32, vector<RoseEdge>> findEdgesByLiteral(const RoseBuildImpl &build) {
// Use a set of edges while building the map to cull duplicates.
map<u32, flat_set<RoseEdge>> unique_lit_edge_map;
const auto &g = build.g;
for (const auto &e : edges_range(g)) {
const auto &v = target(e, g);
if (build.hasDirectFinalId(v)) {
// Skip direct reports, which do not have RoseLiteral entries.
continue;
}
for (const auto &lit_id : g[v].literals) {
assert(lit_id < build.literal_info.size());
u32 final_id = build.literal_info.at(lit_id).final_id;
if (final_id != MO_INVALID_IDX) {
unique_lit_edge_map[final_id].insert(e);
}
}
}
// Build output map, sorting edges by (source, target) vertex index.
map<u32, vector<RoseEdge>> lit_edge_map;
for (const auto &m : unique_lit_edge_map) {
auto edge_list = vector<RoseEdge>(begin(m.second), end(m.second));
sort(begin(edge_list), end(edge_list),
[&g](const RoseEdge &a, const RoseEdge &b) {
return tie(g[source(a, g)].idx, g[target(a, g)].idx) <
tie(g[source(b, g)].idx, g[target(b, g)].idx);
});
lit_edge_map.emplace(m.first, edge_list);
}
return lit_edge_map;
}
/**
* \brief Build the interpreter programs for each literal.
*
* Returns the base of the literal program list and the base of the delay
* rebuild program list.
*/
static
pair<u32, u32> buildLiteralPrograms(RoseBuildImpl &build, build_context &bc) {
const u32 num_literals = build.final_id_to_literal.size();
auto lit_edge_map = findEdgesByLiteral(build);
vector<u32> litPrograms(num_literals);
vector<u32> delayRebuildPrograms(num_literals);
for (u32 finalId = 0; finalId != num_literals; ++finalId) {
const auto &lit_edges = lit_edge_map[finalId];
litPrograms[finalId] =
buildLiteralProgram(build, bc, finalId, lit_edges);
delayRebuildPrograms[finalId] =
buildDelayRebuildProgram(build, bc, finalId);
}
u32 litProgramsOffset =
add_to_engine_blob(bc, begin(litPrograms), end(litPrograms));
u32 delayRebuildProgramsOffset = add_to_engine_blob(
bc, begin(delayRebuildPrograms), end(delayRebuildPrograms));
return {litProgramsOffset, delayRebuildProgramsOffset};
}
static
vector<RoseInstruction> makeEodAnchorProgram(RoseBuildImpl &build,
build_context &bc,
const RoseEdge &e) {
const RoseGraph &g = build.g;
const RoseVertex v = target(e, g);
vector<RoseInstruction> program;
if (g[e].history == ROSE_ROLE_HISTORY_ANCH) {
makeRoleCheckBounds(build, v, e, program);
}
if (hasGreaterInDegree(1, v, g)) {
// Only necessary when there is more than one pred.
makeRoleCheckNotHandled(bc, v, program);
}
for (const auto &id : g[v].reports) {
makeReport(build, id, false, program);
}
return program;
}
/**
* Returns the pair (program offset, sparse iter offset).
*/
static
pair<u32, u32> buildEodAnchorProgram(RoseBuildImpl &build, build_context &bc) {
const RoseGraph &g = build.g;
// pred state id -> list of programs
map<u32, vector<vector<RoseInstruction>>> predProgramLists;
for (auto v : vertices_range(g)) {
if (!g[v].eod_accept) {
continue;
}
DEBUG_PRINTF("vertex %zu (with %zu preds) fires on EOD\n", g[v].idx,
in_degree(v, g));
for (const auto &e : in_edges_range(v, g)) {
RoseVertex u = source(e, g);
assert(contains(bc.roleStateIndices, u));
u32 predStateIdx = bc.roleStateIndices.at(u);
auto program = makeEodAnchorProgram(build, bc, e);
predProgramLists[predStateIdx].push_back(program);
}
}
if (predProgramLists.empty()) {
DEBUG_PRINTF("no eod anchored roles\n");
return {0, 0};
}
vector<RoseInstruction> program;
// Note: we force the use of a sparse iterator for the EOD program so we
// can easily guard EOD execution at runtime.
u32 iter_offset = addPredBlocks(bc, predProgramLists, program, true);
assert(program.size() > 1);
return {writeProgram(bc, program), iter_offset};
}
static
u32 writeEodProgram(RoseBuildImpl &build, build_context &bc) {
if (build.eod_event_literal_id == MO_INVALID_IDX) {
return 0;
}
const RoseGraph &g = build.g;
const auto &lit_info = build.literal_info.at(build.eod_event_literal_id);
assert(lit_info.delayed_ids.empty());
assert(!lit_info.squash_group);
assert(!lit_info.requires_benefits);
// Collect all edges leading into EOD event literal vertices.
vector<RoseEdge> edge_list;
for (const auto &v : lit_info.vertices) {
for (const auto &e : in_edges_range(v, g)) {
edge_list.push_back(e);
}
}
// Sort edge list for determinism, prettiness.
sort(begin(edge_list), end(edge_list),
[&g](const RoseEdge &a, const RoseEdge &b) {
return tie(g[source(a, g)].idx, g[target(a, g)].idx) <
tie(g[source(b, g)].idx, g[target(b, g)].idx);
});
return buildLiteralProgram(build, bc, MO_INVALID_IDX, edge_list);
}
static
void calcAnchoredMatches(const RoseBuildImpl &build, vector<ReportID> &art,
vector<u32> &arit) {
const RoseGraph &g = build.g;
u32 max_report = 0;
for (RoseVertex v : vertices_range(g)) {
if (!build.isAnchored(v)) {
continue;
}
for (ReportID r : g[v].reports) {
art.push_back(r);
max_report = max(max_report, r);
}
}
assert(max_report < MO_INVALID_IDX);
arit.resize(max_report + 1, MO_INVALID_IDX);
for (u32 i = 0; i < art.size(); i++) {
DEBUG_PRINTF("art[%u] = %u\n", i, art[i]);
arit[art[i]] = i;
DEBUG_PRINTF("arit[%u] = %u\n", art[i], arit[art[i]]);
}
}
static
u32 history_required(const rose_literal_id &key) {
if (key.msk.size() < key.s.length()) {
return key.elength() - 1;
} else {
return key.msk.size() + key.delay - 1;
}
}
static
void fillMatcherDistances(const RoseBuildImpl &build, RoseEngine *engine) {
const RoseGraph &g = build.g;
engine->floatingDistance = 0;
engine->floatingMinDistance = ROSE_BOUND_INF;
engine->anchoredDistance = 0;
engine->maxFloatingDelayedMatch = 0;
u32 delayRebuildLength = 0;
engine->smallBlockDistance = 0;
for (auto v : vertices_range(g)) {
if (g[v].literals.empty()) {
continue;
}
assert(g[v].min_offset < ROSE_BOUND_INF); // cannot == ROSE_BOUND_INF
assert(g[v].min_offset <= g[v].max_offset);
for (u32 lit_id : g[v].literals) {
const rose_literal_id &key = build.literals.right.at(lit_id);
u32 max_d = g[v].max_offset;
u32 min_d = g[v].min_offset;
if (build.literal_info[lit_id].undelayed_id != lit_id) {
/* this is a delayed match; need to update delay properties */
/* TODO: can delayed literals ever be in another table ? */
if (key.table == ROSE_FLOATING) {
ENSURE_AT_LEAST(&engine->maxFloatingDelayedMatch, max_d);
ENSURE_AT_LEAST(&delayRebuildLength, history_required(key));
}
}
/* for the FloatingDistances we need the true max depth of the
string */
if (max_d != ROSE_BOUND_INF && key.table != ROSE_ANCHORED) {
assert(max_d >= key.delay);
max_d -= key.delay;
}
switch (key.table) {
case ROSE_FLOATING:
ENSURE_AT_LEAST(&engine->floatingDistance, max_d);
if (min_d >= key.elength()) {
LIMIT_TO_AT_MOST(&engine->floatingMinDistance,
min_d - (u32)key.elength());
} else {
/* overlapped literals from rose + anchored table can
* cause us to underflow due to sloppiness in
* estimates */
engine->floatingMinDistance = 0;
}
break;
case ROSE_ANCHORED_SMALL_BLOCK:
ENSURE_AT_LEAST(&engine->smallBlockDistance, max_d);
break;
case ROSE_ANCHORED:
ENSURE_AT_LEAST(&engine->anchoredDistance, max_d);
break;
case ROSE_EOD_ANCHORED:
// EOD anchored literals are in another table, so they
// don't contribute to these calculations.
break;
case ROSE_EVENT:
break; // Not a real literal.
}
}
}
// Floating literals go in the small block table too.
ENSURE_AT_LEAST(&engine->smallBlockDistance, engine->floatingDistance);
// Clipped by its very nature.
LIMIT_TO_AT_MOST(&engine->smallBlockDistance, 32U);
engine->delayRebuildLength = delayRebuildLength;
DEBUG_PRINTF("anchoredDistance = %u\n", engine->anchoredDistance);
DEBUG_PRINTF("floatingDistance = %u\n", engine->floatingDistance);
DEBUG_PRINTF("smallBlockDistance = %u\n", engine->smallBlockDistance);
assert(engine->anchoredDistance <= build.cc.grey.maxAnchoredRegion);
/* anchored->floating squash literals may lower floating min distance */
/* TODO: find actual value */
if (!engine->anchoredDistance) {
return;
}
}
aligned_unique_ptr<RoseEngine> RoseBuildImpl::buildFinalEngine(u32 minWidth) {
DerivedBoundaryReports dboundary(boundary);
// Build literal matchers
size_t asize = 0, fsize = 0, esize = 0, sbsize = 0;
size_t floatingStreamStateRequired = 0;
size_t historyRequired = calcHistoryRequired(); // Updated by HWLM.
aligned_unique_ptr<anchored_matcher_info> atable =
buildAnchoredAutomataMatcher(*this, &asize);
aligned_unique_ptr<HWLM> ftable = buildFloatingMatcher(
*this, &fsize, &historyRequired, &floatingStreamStateRequired);
aligned_unique_ptr<HWLM> etable = buildEodAnchoredMatcher(*this, &esize);
aligned_unique_ptr<HWLM> sbtable = buildSmallBlockMatcher(*this, &sbsize);
build_context bc;
bc.floatingMinLiteralMatchOffset =
findMinFloatingLiteralMatch(*this, atable.get());
// Build NFAs
set<u32> no_retrigger_queues;
bool mpv_as_outfix;
prepMpv(*this, bc, &historyRequired, &mpv_as_outfix);
u32 outfixBeginQueue = qif.allocated_count();
if (!prepOutfixes(*this, bc, &historyRequired)) {
return nullptr;
}
u32 outfixEndQueue = qif.allocated_count();
u32 leftfixBeginQueue = outfixEndQueue;
if (!buildNfas(*this, bc, qif, &no_retrigger_queues,
&leftfixBeginQueue)) {
return nullptr;
}
u32 eodNfaIterOffset = buildEodNfaIterator(bc, leftfixBeginQueue);
buildCountingMiracles(*this, bc);
u32 queue_count = qif.allocated_count(); /* excludes anchored matcher q;
* som rev nfas */
if (queue_count > cc.grey.limitRoseEngineCount) {
throw ResourceLimitError();
}
vector<u32> suffixEkeyLists;
buildSuffixEkeyLists(*this, bc, qif, &suffixEkeyLists);
assignStateIndices(*this, bc);
u32 laggedRoseCount = 0;
vector<LeftNfaInfo> leftInfoTable;
buildLeftInfoTable(*this, bc, leftfixBeginQueue,
queue_count - leftfixBeginQueue, leftInfoTable,
&laggedRoseCount, &historyRequired);
u32 litProgramOffset;
u32 litDelayRebuildProgramOffset;
tie(litProgramOffset, litDelayRebuildProgramOffset) =
buildLiteralPrograms(*this, bc);
u32 eodProgramOffset = writeEodProgram(*this, bc);
u32 eodIterProgramOffset;
u32 eodIterOffset;
tie(eodIterProgramOffset, eodIterOffset) = buildEodAnchorProgram(*this, bc);
vector<mmbit_sparse_iter> activeLeftIter;
buildActiveLeftIter(leftInfoTable, activeLeftIter);
u32 lastByteOffset = buildLastByteIter(g, bc);
// Enforce role table resource limit.
if (num_vertices(g) > cc.grey.limitRoseRoleCount) {
throw ResourceLimitError();
}
u32 amatcherOffset = 0;
u32 fmatcherOffset = 0;
u32 ematcherOffset = 0;
u32 sbmatcherOffset = 0;
u32 currOffset; /* relative to base of RoseEngine */
if (!bc.engine_blob.empty()) {
currOffset = bc.engine_blob_base + byte_length(bc.engine_blob);
} else {
currOffset = sizeof(RoseEngine);
}
UNUSED const size_t engineBlobSize =
byte_length(bc.engine_blob); // test later
currOffset = ROUNDUP_CL(currOffset);
DEBUG_PRINTF("currOffset %u\n", currOffset);
if (atable) {
currOffset = ROUNDUP_CL(currOffset);
amatcherOffset = currOffset;
currOffset += (u32)asize;
}
if (ftable) {
currOffset = ROUNDUP_CL(currOffset);
fmatcherOffset = currOffset;
currOffset += (u32)fsize;
}
if (etable) {
currOffset = ROUNDUP_CL(currOffset);
ematcherOffset = currOffset;
currOffset += (u32)esize;
}
if (sbtable) {
currOffset = ROUNDUP_CL(currOffset);
sbmatcherOffset = currOffset;
currOffset += (u32)sbsize;
}
const vector<Report> &int_reports = rm.reports();
currOffset = ROUNDUP_CL(currOffset);
u32 intReportOffset = currOffset;
currOffset += sizeof(internal_report) * int_reports.size();
u32 leftOffset = ROUNDUP_N(currOffset, alignof(LeftNfaInfo));
u32 roseLen = sizeof(LeftNfaInfo) * leftInfoTable.size();
currOffset = leftOffset + roseLen;
u32 lookaroundReachOffset = currOffset;
u32 lookaroundReachLen = REACH_BITVECTOR_LEN * bc.lookaround.size();
currOffset = lookaroundReachOffset + lookaroundReachLen;
u32 lookaroundTableOffset = currOffset;
u32 lookaroundTableLen = sizeof(s8) * bc.lookaround.size();
currOffset = lookaroundTableOffset + lookaroundTableLen;
u32 nfaInfoOffset = ROUNDUP_N(currOffset, sizeof(u32));
u32 nfaInfoLen = sizeof(NfaInfo) * queue_count;
currOffset = nfaInfoOffset + nfaInfoLen;
vector<ReportID> art; // Reports raised by anchored roles
vector<u32> arit; // inverse reportID -> position in art
calcAnchoredMatches(*this, art, arit);
currOffset = ROUNDUP_N(currOffset, sizeof(ReportID));
u32 anchoredReportMapOffset = currOffset;
currOffset += art.size() * sizeof(ReportID);
currOffset = ROUNDUP_N(currOffset, sizeof(u32));
u32 anchoredReportInverseMapOffset = currOffset;
currOffset += arit.size() * sizeof(u32);
currOffset = ROUNDUP_N(currOffset, alignof(ReportID));
u32 multidirectOffset = currOffset;
currOffset += mdr_reports.size() * sizeof(ReportID);
currOffset = ROUNDUP_N(currOffset, alignof(mmbit_sparse_iter));
u32 activeLeftIterOffset = currOffset;
currOffset += activeLeftIter.size() * sizeof(mmbit_sparse_iter);
u32 activeArrayCount = leftfixBeginQueue;
u32 activeLeftCount = leftInfoTable.size();
u32 rosePrefixCount = countRosePrefixes(leftInfoTable);
RoseBoundaryReports boundary_out;
reserveBoundaryReports(boundary, dboundary, &boundary_out, &currOffset);
u32 rev_nfa_table_offset;
vector<u32> rev_nfa_offsets;
prepSomRevNfas(ssm, &rev_nfa_table_offset, &rev_nfa_offsets, &currOffset);
// Build engine header and copy tables into place.
u32 anchorStateSize = atable ? anchoredStateSize(*atable) : 0;
DEBUG_PRINTF("rose history required %zu\n", historyRequired);
assert(!cc.streaming || historyRequired <= cc.grey.maxHistoryAvailable);
// Some SOM schemes (reverse NFAs, for example) may require more history.
historyRequired = max(historyRequired, (size_t)ssm.somHistoryRequired());
assert(!cc.streaming || historyRequired <=
max(cc.grey.maxHistoryAvailable, cc.grey.somMaxRevNfaLength));
RoseStateOffsets stateOffsets;
memset(&stateOffsets, 0, sizeof(stateOffsets));
fillStateOffsets(*this, bc.numStates, anchorStateSize,
activeArrayCount, activeLeftCount, laggedRoseCount,
floatingStreamStateRequired, historyRequired,
&stateOffsets);
scatter_plan_raw state_scatter;
buildStateScatterPlan(sizeof(RoseRuntimeState), bc.numStates,
activeLeftCount, rosePrefixCount, stateOffsets,
cc.streaming, activeArrayCount, outfixBeginQueue,
outfixEndQueue, &state_scatter);
currOffset = ROUNDUP_N(currOffset, alignof(scatter_unit_u64a));
u32 state_scatter_aux_offset = currOffset;
currOffset += aux_size(state_scatter);
currOffset = ROUNDUP_N(currOffset, alignof(ReportID));
u32 dkeyOffset = currOffset;
currOffset += rm.numDkeys() * sizeof(ReportID);
aligned_unique_ptr<RoseEngine> engine
= aligned_zmalloc_unique<RoseEngine>(currOffset);
assert(engine); // will have thrown bad_alloc otherwise.
char *ptr = (char *)engine.get();
assert(ISALIGNED_CL(ptr));
if (atable) {
assert(amatcherOffset);
memcpy(ptr + amatcherOffset, atable.get(), asize);
}
if (ftable) {
assert(fmatcherOffset);
memcpy(ptr + fmatcherOffset, ftable.get(), fsize);
}
if (etable) {
assert(ematcherOffset);
memcpy(ptr + ematcherOffset, etable.get(), esize);
}
if (sbtable) {
assert(sbmatcherOffset);
memcpy(ptr + sbmatcherOffset, sbtable.get(), sbsize);
}
memcpy(&engine->stateOffsets, &stateOffsets, sizeof(stateOffsets));
engine->historyRequired = verify_u32(historyRequired);
engine->ekeyCount = rm.numEkeys();
engine->dkeyCount = rm.numDkeys();
engine->invDkeyOffset = dkeyOffset;
copy_bytes(ptr + dkeyOffset, rm.getDkeyToReportTable());
engine->somHorizon = ssm.somPrecision();
engine->somLocationCount = ssm.numSomSlots();
engine->simpleCallback = !rm.numEkeys() && hasSimpleReports(rm.reports());
fillInReportInfo(engine.get(), intReportOffset, rm, int_reports);
engine->literalCount = verify_u32(final_id_to_literal.size());
engine->litProgramOffset = litProgramOffset;
engine->litDelayRebuildProgramOffset = litDelayRebuildProgramOffset;
engine->runtimeImpl = pickRuntimeImpl(*this, outfixEndQueue);
engine->mpvTriggeredByLeaf = anyEndfixMpvTriggers(*this);
engine->activeArrayCount = activeArrayCount;
engine->activeLeftCount = activeLeftCount;
engine->queueCount = queue_count;
engine->handledKeyCount = bc.handledKeys.size();
engine->group_weak_end = group_weak_end;
engine->rolesWithStateCount = bc.numStates;
engine->leftOffset = leftOffset;
engine->roseCount = verify_u32(leftInfoTable.size());
engine->lookaroundTableOffset = lookaroundTableOffset;
engine->lookaroundReachOffset = lookaroundReachOffset;
engine->outfixBeginQueue = outfixBeginQueue;
engine->outfixEndQueue = outfixEndQueue;
engine->leftfixBeginQueue = leftfixBeginQueue;
engine->initMpvNfa = mpv_as_outfix ? 0 : MO_INVALID_IDX;
engine->stateSize = mmbit_size(bc.numStates);
engine->anchorStateSize = anchorStateSize;
engine->nfaInfoOffset = nfaInfoOffset;
engine->anchoredReportMapOffset = anchoredReportMapOffset;
engine->anchoredReportInverseMapOffset
= anchoredReportInverseMapOffset;
engine->multidirectOffset = multidirectOffset;
engine->eodProgramOffset = eodProgramOffset;
engine->eodIterProgramOffset = eodIterProgramOffset;
engine->eodIterOffset = eodIterOffset;
engine->eodNfaIterOffset = eodNfaIterOffset;
engine->lastByteHistoryIterOffset = lastByteOffset;
u32 delay_count = verify_u32(final_id_to_literal.size() - delay_base_id);
engine->delay_count = delay_count;
engine->delay_base_id = delay_base_id;
engine->anchored_base_id = anchored_base_id;
engine->anchored_count = delay_base_id - anchored_base_id;
engine->rosePrefixCount = rosePrefixCount;
engine->activeLeftIterOffset
= activeLeftIter.empty() ? 0 : activeLeftIterOffset;
// Set scanning mode.
if (!cc.streaming) {
engine->mode = HS_MODE_BLOCK;
} else if (cc.vectored) {
engine->mode = HS_MODE_VECTORED;
} else {
engine->mode = HS_MODE_STREAM;
}
// The Small Write matcher is (conditionally) added to the RoseEngine in
// another pass by the caller. Set to zero (meaning no SMWR engine) for
// now.
engine->smallWriteOffset = 0;
engine->amatcherOffset = amatcherOffset;
engine->ematcherOffset = ematcherOffset;
engine->sbmatcherOffset = sbmatcherOffset;
engine->fmatcherOffset = fmatcherOffset;
engine->amatcherMinWidth = findMinWidth(*this, ROSE_ANCHORED);
engine->fmatcherMinWidth = findMinWidth(*this, ROSE_FLOATING);
engine->eodmatcherMinWidth = findMinWidth(*this, ROSE_EOD_ANCHORED);
engine->amatcherMaxBiAnchoredWidth = findMaxBAWidth(*this, ROSE_ANCHORED);
engine->fmatcherMaxBiAnchoredWidth = findMaxBAWidth(*this, ROSE_FLOATING);
engine->size = currOffset;
engine->minWidth = hasBoundaryReports(boundary) ? 0 : minWidth;
engine->minWidthExcludingBoundaries = minWidth;
engine->maxSafeAnchoredDROffset = findMinWidth(*this, ROSE_FLOATING);
engine->floatingMinLiteralMatchOffset = bc.floatingMinLiteralMatchOffset;
engine->maxBiAnchoredWidth = findMaxBAWidth(*this);
engine->noFloatingRoots = hasNoFloatingRoots();
engine->hasFloatingDirectReports = floating_direct_report;
engine->requiresEodCheck = hasEodAnchors(*this, bc, outfixEndQueue);
engine->hasOutfixesInSmallBlock = hasNonSmallBlockOutfix(outfixes);
engine->canExhaust = rm.patternSetCanExhaust();
engine->hasSom = hasSom;
engine->anchoredMatches = verify_u32(art.size());
/* populate anchoredDistance, floatingDistance, floatingMinDistance, etc */
fillMatcherDistances(*this, engine.get());
engine->initialGroups = getInitialGroups();
engine->totalNumLiterals = verify_u32(literal_info.size());
engine->asize = verify_u32(asize);
engine->ematcherRegionSize = ematcher_region_size;
engine->floatingStreamState = verify_u32(floatingStreamStateRequired);
populateBoundaryReports(engine.get(), boundary, dboundary, boundary_out);
write_out(&engine->state_init, (char *)engine.get(), state_scatter,
state_scatter_aux_offset);
if (atable && anchoredIsMulti(*atable)) {
engine->maxSafeAnchoredDROffset = 1;
} else {
/* overly conservative, really need the min offset of non dr anchored
matches */
engine->maxSafeAnchoredDROffset = MIN(engine->maxSafeAnchoredDROffset,
engine->floatingMinLiteralMatchOffset);
}
NfaInfo *nfa_infos = (NfaInfo *)(ptr + nfaInfoOffset);
populateNfaInfoBasics(*this, bc, outfixes, suffixEkeyLists,
no_retrigger_queues, nfa_infos);
updateNfaState(bc, &engine->stateOffsets, nfa_infos,
&engine->scratchStateSize, &engine->nfaStateSize,
&engine->tStateSize);
// Copy in other tables
copy_bytes(ptr + bc.engine_blob_base, bc.engine_blob);
copy_bytes(ptr + engine->leftOffset, leftInfoTable);
fillLookaroundTables(ptr + lookaroundTableOffset,
ptr + lookaroundReachOffset, bc.lookaround);
fillInSomRevNfas(engine.get(), ssm, rev_nfa_table_offset, rev_nfa_offsets);
copy_bytes(ptr + engine->anchoredReportMapOffset, art);
copy_bytes(ptr + engine->anchoredReportInverseMapOffset, arit);
copy_bytes(ptr + engine->multidirectOffset, mdr_reports);
copy_bytes(ptr + engine->activeLeftIterOffset, activeLeftIter);
// Safety check: we shouldn't have written anything to the engine blob
// after we copied it into the engine bytecode.
assert(byte_length(bc.engine_blob) == engineBlobSize);
DEBUG_PRINTF("rose done %p\n", engine.get());
return engine;
}
} // namespace ue2