vectorscan/chimera/ch_compile.cpp

878 lines
29 KiB
C++

/*
* Copyright (c) 2018, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Compiler front-end, including public API calls for compilation.
*/
#include "ch_compile.h"
#include "ch_alloc.h"
#include "ch_internal.h"
#include "ch_database.h"
#include "grey.h"
#include "hs_common.h"
#include "hs_internal.h"
#include "ue2common.h"
#include "util/compile_error.h"
#include "util/multibit_build.h"
#include "util/target_info.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <memory>
#include <ostream>
#include <sstream>
#include <limits.h>
#include <string>
#include <vector>
#include <boost/core/noncopyable.hpp>
#define PCRE_ERROR_MSG "Internal error building PCRE pattern."
using namespace std;
using namespace ue2;
static const char failureNoMemory[] = "Unable to allocate memory.";
static const char failureInternal[] = "Internal error.";
static const char failureBadAlloc[] = "Allocator returned misaligned memory.";
static const ch_compile_error_t ch_enomem
= { const_cast<char *>(failureNoMemory), 0 };
static const ch_compile_error_t ch_einternal
= { const_cast<char *>(failureInternal), 0 };
static const ch_compile_error_t ch_badalloc
= { const_cast<char *>(failureBadAlloc), 0 };
static
ch_compile_error_t *generateChimeraCompileError(const string &err,
int expression) {
ch_compile_error_t *ret =
(struct ch_compile_error *)ch_misc_alloc(sizeof(ch_compile_error_t));
if (ret) {
ch_error_t e = ch_check_alloc(ret);
if (e != CH_SUCCESS) {
ch_misc_free(ret);
return const_cast<ch_compile_error_t *>(&ch_badalloc);
}
char *msg = (char *)ch_misc_alloc(err.size() + 1);
if (msg) {
e = ch_check_alloc(msg);
if (e != HS_SUCCESS) {
ch_misc_free(msg);
return const_cast<ch_compile_error_t *>(&ch_badalloc);
}
memcpy(msg, err.c_str(), err.size() + 1);
ret->message = msg;
} else {
ch_misc_free(ret);
ret = nullptr;
}
}
if (!ret || !ret->message) {
return const_cast<ch_compile_error_t *>(&ch_enomem);
}
ret->expression = expression;
return ret;
}
static
void freeChimeraCompileError(ch_compile_error_t *error) {
if (!error) {
return;
}
if (error == &ch_enomem || error == &ch_einternal ||
error == &ch_badalloc) {
// These are not allocated.
return;
}
ch_misc_free(error->message);
ch_misc_free(error);
}
static
bool checkMode(unsigned int mode, ch_compile_error_t **comp_error) {
static const unsigned int supported = CH_MODE_GROUPS;
if (mode & ~supported) {
*comp_error =
generateChimeraCompileError("Invalid mode flag supplied.", -1);
return false;
}
return true;
}
/** \brief Throw a compile error if we're passed some unsupported flags. */
static
void checkFlags(const unsigned int flags) {
static const unsigned int supported = HS_FLAG_DOTALL
| HS_FLAG_MULTILINE
| HS_FLAG_CASELESS
| HS_FLAG_SINGLEMATCH
| HS_FLAG_UCP
| HS_FLAG_UTF8;
if (flags & ~supported) {
throw CompileError("Unrecognized flag used.");
}
}
static
bool isHyperscanSupported(const char *expression, unsigned int flags,
const hs_platform_info *platform) {
hs_database_t *db = nullptr;
hs_compile_error *comp_error = nullptr;
unsigned int id = 0;
hs_error_t err = hs_compile_multi(&expression, &flags, &id,
1, HS_MODE_BLOCK, platform, &db,
&comp_error);
if (err != HS_SUCCESS) {
assert(!db);
assert(comp_error);
DEBUG_PRINTF("unsupported: %s\n", comp_error->message);
hs_free_compile_error(comp_error);
return false;
}
assert(db);
assert(!comp_error);
hs_free_database(db);
return true;
}
static
bool writeHyperscanDatabase(char *ptr, hs_database_t *db) {
// Note: we must use our serialization calls to re-home the database.
char *serialized = nullptr;
size_t slen = 0;
hs_error_t err = hs_serialize_database(db, &serialized, &slen);
if (err != HS_SUCCESS) {
DEBUG_PRINTF("hs_serialize_database returned %d\n", err);
assert(0);
return false;
}
DEBUG_PRINTF("writing database to ptr %p\n", ptr);
// deserialize_at without the platform tests.
err = hs_deserialize_database_at(serialized, slen, (hs_database_t *)ptr);
if (err != HS_SUCCESS) {
DEBUG_PRINTF("hs_deserialize_database_at returned %d\n", err);
assert(0);
ch_misc_free(serialized);
return false;
}
ch_misc_free(serialized);
return true;
}
static
bool writeHyperscanDatabase(ch_bytecode *db, hs_database_t *hs_db) {
db->databaseOffset = ROUNDUP_CL(sizeof(*db));
char *ptr = (char *)db + db->databaseOffset;
return writeHyperscanDatabase(ptr, hs_db);
}
static
int convertFlagsToPcreOptions(unsigned int flags) {
int options = 0;
if (flags & HS_FLAG_CASELESS) {
options |= PCRE_CASELESS;
}
if (flags & HS_FLAG_DOTALL) {
options |= PCRE_DOTALL;
}
if (flags & HS_FLAG_MULTILINE) {
options |= PCRE_MULTILINE;
}
if (flags & HS_FLAG_UTF8) {
options |= PCRE_UTF8;
}
if (flags & HS_FLAG_UCP) {
options |= PCRE_UCP;
}
// All other flags are meaningless to PCRE.
return options;
}
namespace {
/** \brief Data about a single pattern. */
struct PatternData : boost::noncopyable {
PatternData(const char *pattern, u32 flags, u32 idx, u32 id_in,
unsigned mode, unsigned long int match_limit,
unsigned long int match_limit_recursion,
const hs_platform_info *platform);
~PatternData() {
pcre_free(compiled);
pcre_free(extra);
}
void buildPcre(const char *pattern, u32 flags);
size_t patternSize() const;
void writePattern(ch_pattern *pattern) const;
pcre *compiled; //!< pcre_compile output
pcre_extra *extra; //!< pcre_study output
size_t compiled_size;
int study_size;
int capture_cnt;
bool utf8;
u32 id; //!< ID from the user
u32 expr_index; //!< index in the expression array
bool singlematch; //!< pattern is in highlander mode
bool guard; //!< this pattern should be guarded by the multimatcher
u32 minWidth; //!< min match width
u32 maxWidth; //!< max match width
u32 fixedWidth; //!< fixed pattern width
unsigned long int matchLimit; //! pcre match limit
unsigned long int matchLimitRecursion; //! pcre match_limit_recursion
};
PatternData::PatternData(const char *pattern, u32 flags, u32 idx, u32 id_in,
unsigned mode, unsigned long int match_limit,
unsigned long int match_limit_recursion,
const hs_platform_info *platform)
: compiled(nullptr), extra(nullptr), id(id_in), expr_index(idx),
singlematch(flags & HS_FLAG_SINGLEMATCH),
guard(false), minWidth(0), maxWidth(UINT_MAX),
fixedWidth(UINT_MAX), matchLimit(match_limit),
matchLimitRecursion(match_limit_recursion) {
assert(pattern);
flags |= HS_FLAG_ALLOWEMPTY; /* don't hand things off to pcre for no
reason */
buildPcre(pattern, flags);
// Fetch the expression info for a prefiltering, non-singlematch version of
// this pattern, if possible.
hs_expr_info *info = nullptr;
hs_compile_error_t *error = nullptr;
u32 infoflags = (flags | HS_FLAG_PREFILTER) & ~HS_FLAG_SINGLEMATCH;
u32 rawflags = (flags | HS_FLAG_SOM_LEFTMOST) & ~HS_FLAG_SINGLEMATCH;
hs_error_t err = hs_expression_info(pattern, infoflags, &info, &error);
if (err == HS_SUCCESS) {
assert(info);
hs_expr_info *i = (hs_expr_info *)info;
minWidth = i->min_width;
maxWidth = i->max_width;
bool ordered = i->unordered_matches ? false : true;
// Only enable capturing if required
u32 captureCnt = 0;
if (mode & CH_MODE_GROUPS) {
captureCnt = capture_cnt;
}
// No need to confirm with PCRE if:
// 1) pattern is fixed width
// 2) pattern isn't vacuous as it can't combine with start of match
// 3) no capturing in this pattern
// 4) no offset adjust in this pattern as hyperscan match callback
// will arrive without order, i.e. [^a]\z has offset adjust
// 5) hyperscan compile succeeds without prefiltering
if (minWidth == maxWidth && minWidth && maxWidth != UINT_MAX &&
!captureCnt && ordered &&
isHyperscanSupported(pattern, rawflags, platform)) {
fixedWidth = maxWidth;
}
DEBUG_PRINTF("gathered info: widths=[%u,%u]\n", minWidth, maxWidth);
ch_misc_free(info);
u32 guardflags;
guardflags = flags | HS_FLAG_PREFILTER;
guard = isHyperscanSupported(pattern, guardflags, platform);
} else {
// We can't even prefilter this pattern, so we're dependent on Big Dumb
// Pcre Scans.
DEBUG_PRINTF("hs_expression_info failed, falling back to pcre\n");
hs_free_compile_error(error);
}
}
void PatternData::buildPcre(const char *pattern, u32 flags) {
int options = convertFlagsToPcreOptions(flags);
const char *errptr = nullptr;
int erroffset = 0;
compiled = pcre_compile(pattern, options, &errptr, &erroffset, nullptr);
if (!compiled) {
DEBUG_PRINTF("PCRE failed to compile: %s\n", pattern);
string err("PCRE compilation failed: ");
err += string(errptr);
err += ".";
throw CompileError(expr_index, err);
}
extra = pcre_study(compiled, PCRE_STUDY_JIT_COMPILE, &errptr);
// Note that it's OK for pcre_study to return NULL if there's nothing
// to be found, but a non-NULL error is always bad.
if (errptr) {
DEBUG_PRINTF("PCRE could not be studied: %s\n", errptr);
string err("PCRE compilation failed: ");
err += string(errptr);
err += ".";
throw CompileError(expr_index, err);
}
if (pcre_fullinfo(compiled, extra, PCRE_INFO_SIZE, &compiled_size)) {
throw CompileError(PCRE_ERROR_MSG);
}
if (!extra) {
study_size = 0;
} else {
if (pcre_fullinfo(compiled, extra, PCRE_INFO_STUDYSIZE, &study_size)) {
throw CompileError(PCRE_ERROR_MSG);
}
}
if (pcre_fullinfo(compiled, extra, PCRE_INFO_CAPTURECOUNT, &capture_cnt)) {
throw CompileError(PCRE_ERROR_MSG);
}
/* We use the pcre rather than hs to get this information as we may need it
* even in the pure unguarded pcre mode where there is no hs available. We
* can not use the compile flags due to (*UTF8) verb */
unsigned long int opts = 0; // PCRE_INFO_OPTIONS demands an unsigned long
if (pcre_fullinfo(compiled, extra, PCRE_INFO_OPTIONS, &opts)) {
throw CompileError(PCRE_ERROR_MSG);
}
utf8 = opts & PCRE_UTF8;
}
size_t PatternData::patternSize() const {
size_t len = 0;
// ch_pattern header.
len += sizeof(ch_pattern);
len = ROUNDUP_N(len, 8);
DEBUG_PRINTF("compiled pcre at %zu\n", len);
len += compiled_size;
// PCRE study data, which may be zero.
if (study_size) {
len = ROUNDUP_N(len, 8);
DEBUG_PRINTF("study at %zu\n", len);
len += (size_t)study_size;
}
DEBUG_PRINTF("pattern size %zu\n", len);
return len;
}
/** \brief Write out an ch_pattern structure, which should already be sized
* correctly according to PatternData::patternSize. */
void PatternData::writePattern(ch_pattern *pattern) const {
assert(pattern);
assert(ISALIGNED_CL(pattern));
pattern->id = id;
u32 flags = 0;
if (singlematch) {
flags |= CHIMERA_PATTERN_FLAG_SINGLEMATCH;
}
if (utf8) {
flags |= CHIMERA_PATTERN_FLAG_UTF8;
}
pattern->flags = flags;
pattern->maxWidth = maxWidth;
pattern->minWidth = minWidth == UINT_MAX ? 0 : minWidth;
pattern->fixedWidth = fixedWidth;
// Compiled PCRE pattern.
char *ptr = (char *)pattern;
ptr += ROUNDUP_N(sizeof(*pattern), 8);
DEBUG_PRINTF("compiled pcre at %zu\n", (size_t)(ptr - (char *)pattern));
memcpy(ptr, compiled, compiled_size);
ptr += compiled_size;
// PCRE match limits
pattern->extra.flags = PCRE_EXTRA_MATCH_LIMIT |
PCRE_EXTRA_MATCH_LIMIT_RECURSION;
pattern->extra.match_limit = matchLimit ? matchLimit : 10000000;
// Set to avoid segment fault
pattern->extra.match_limit_recursion =
matchLimitRecursion ? matchLimitRecursion : 1500;
// PCRE study_data.
u32 studyOffset = 0;
if (extra) {
assert(extra->study_data);
ptr = ROUNDUP_PTR(ptr, 8);
DEBUG_PRINTF("study at %zu\n", (size_t)(ptr - (char *)pattern));
memcpy(ptr, extra->study_data, study_size);
studyOffset = (size_t)(ptr - (char *)pattern);
pattern->extra.flags |= PCRE_EXTRA_STUDY_DATA;
pattern->extra.study_data = ptr;
ptr += study_size;
} else {
pattern->extra.flags &= ~PCRE_EXTRA_STUDY_DATA;
}
pattern->studyOffset = studyOffset;
size_t pcreLen = (ptr - (char *)pattern);
assert(pcreLen <= patternSize());
pattern->length = (u32)pcreLen;
// We shouldn't overrun the space we've allocated for this pattern.
assert(patternSize() >= (size_t)(ptr - (char *)pattern));
}
} // namespace
namespace ch {
static
void ch_compile_multi_int(const char *const *expressions, const unsigned *flags,
const unsigned *ids, unsigned elements,
unsigned mode, unsigned long int match_limit,
unsigned long int match_limit_recursion,
const hs_platform_info_t *platform,
ch_database_t **out) {
vector<unique_ptr<PatternData>> pcres;
pcres.reserve(elements);
vector<u32> unguarded; // indices of unguarded PCREs.
vector<const char *> multiExpr;
vector<unsigned int> multiFlags;
vector<unsigned int> multiIds;
bool allConfirm = true;
bool allSingleMatch = true;
for (unsigned int i = 0; i < elements; i++) {
const char *myExpr = expressions[i];
unsigned int myFlags = flags ? flags[i] : 0;
unsigned int myId = ids ? ids[i] : 0;
checkFlags(myFlags);
// First, build with libpcre. A build failure from libpcre will throw
// an exception up to the caller.
auto patternData =
std::make_unique<PatternData>(myExpr, myFlags, i, myId, mode, match_limit,
match_limit_recursion, platform);
pcres.push_back(move(patternData));
PatternData &curr = *pcres.back();
if (!(myFlags & HS_FLAG_SINGLEMATCH)) {
allSingleMatch = false;
}
// in the multimatch, we always run in prefilter mode and accept vacuous
// patterns.
myFlags |=
HS_FLAG_ALLOWEMPTY | HS_FLAG_PREFILTER;
if (curr.fixedWidth != UINT_MAX) {
myFlags |= HS_FLAG_SOM_LEFTMOST;
DEBUG_PRINTF("fixed width, turn off prefiltering\n");
myFlags &= ~HS_FLAG_PREFILTER;
allConfirm = false;
// Single match can't coexist with SOM.
myFlags &= ~HS_FLAG_SINGLEMATCH;
}
if (curr.guard) {
// We use the index into the PCREs array as the Hyperscan idx.
multiExpr.push_back(myExpr);
multiFlags.push_back(myFlags);
multiIds.push_back(i);
} else {
// No Hyperscan support, PCRE is unguarded.
unguarded.push_back(i);
}
}
DEBUG_PRINTF("built %zu PCREs, %zu of which are unguarded\n",
pcres.size(), unguarded.size());
// Work out our sizing for the output database.
size_t patternSize = 0;
for (unsigned int i = 0; i < elements; i++) {
size_t len = pcres[i]->patternSize();
patternSize += ROUNDUP_CL(len);
}
DEBUG_PRINTF("pcre bytecode takes %zu bytes\n", patternSize);
bool noMulti = multiExpr.empty();
size_t multiSize = 0;
hs_database *multidb = nullptr;
if (!noMulti) {
hs_compile_error_t *hs_comp_error = nullptr;
hs_error_t err = hs_compile_multi(&multiExpr[0], &multiFlags[0],
&multiIds[0], multiExpr.size(),
HS_MODE_BLOCK, platform, &multidb,
&hs_comp_error);
if (err != HS_SUCCESS) {
assert(hs_comp_error);
DEBUG_PRINTF("hs_compile_multi returned error: %s\n",
hs_comp_error->message);
assert(0);
hs_free_compile_error(hs_comp_error);
throw CompileError("Internal error.");
}
assert(multidb);
err = hs_database_size(multidb, &multiSize);
if (err != HS_SUCCESS) {
assert(0);
throw CompileError("Internal error.");
}
DEBUG_PRINTF("built hyperscan database with len %zu bytes\n", multiSize);
}
size_t bytecodeLen = sizeof(ch_bytecode) +
multiSize + alignof(u32) +
(sizeof(u32) * unguarded.size()) +
(sizeof(u32) * elements) +
patternSize +
128; // padding for alignment
size_t totalSize = sizeof(ch_database) + bytecodeLen;
DEBUG_PRINTF("allocating %zu bytes for database\n", totalSize);
char *ptr = (char *)ch_database_alloc(totalSize);
if (ch_check_alloc(ptr) != CH_SUCCESS) {
ch_database_free(ptr);
throw std::bad_alloc();
}
memset(ptr, 0, totalSize);
// First, the header.
ch_database *hydb = (ch_database *)ptr;
hydb->magic = CH_DB_MAGIC;
hydb->version = HS_VERSION_32BIT;
hydb->length = bytecodeLen;
// Then, the bytecode.
size_t shift = (size_t)hydb->bytes & 0x3f;
hydb->bytecode = offsetof(struct ch_database, bytes) - shift;
ch_bytecode *db = (ch_bytecode *)((char *)hydb + hydb->bytecode);
db->patternCount = elements;
db->activeSize = mmbit_size(elements);
db->flags = 0;
db->length = bytecodeLen;
if (noMulti) {
db->flags |= CHIMERA_FLAG_NO_MULTIMATCH;
}
if (mode & CH_MODE_GROUPS) {
db->flags |= CHIMERA_FLAG_GROUPS;
}
if (allConfirm) {
db->flags |= CHIMERA_FLAG_ALL_CONFIRM;
}
if (allSingleMatch) {
db->flags |= CHIMERA_FLAG_ALL_SINGLE;
}
// Find and set the max ovector size by looking at the capture count for
// each pcre.
u32 maxCaptureGroups = 0;
for (unsigned int i = 0; i < elements; i++) {
maxCaptureGroups = max(maxCaptureGroups, (u32)pcres[i]->capture_cnt);
}
db->maxCaptureGroups = maxCaptureGroups;
DEBUG_PRINTF("max capture groups is %u\n", maxCaptureGroups);
if (!noMulti) {
DEBUG_PRINTF("write hyperscan database\n");
// Write Hyperscan database directly after the header struct, then free it.
if (!writeHyperscanDatabase(db, multidb)) {
ch_database_free(hydb);
hs_free_database(multidb);
throw CompileError("Internal error.");
}
hs_free_database(multidb);
} else {
db->databaseOffset = ROUNDUP_CL(sizeof(*db));
}
// Then, write our unguarded PCRE list.
db->unguardedCount = unguarded.size();
db->unguardedOffset = ROUNDUP_N(db->databaseOffset + multiSize, 4);
ptr = (char *)db + db->unguardedOffset;
copy(unguarded.begin(), unguarded.end(), (u32 *)ptr);
// Then, write all our compiled PCRE patterns and the lookup table for
// them.
db->patternOffset = db->unguardedOffset + unguarded.size() * sizeof(u32);
u32 *patternOffset = (u32 *)((char *)db + db->patternOffset);
u32 offset = ROUNDUP_CL(db->patternOffset + elements * sizeof(u32));
for (unsigned int i = 0; i < elements; i++) {
*patternOffset = offset;
size_t len = pcres[i]->patternSize();
ptr = (char *)db + offset;
struct ch_pattern *pattern = (struct ch_pattern *)ptr;
pcres[i]->writePattern(pattern);
DEBUG_PRINTF("wrote pcre %u into offset %u, len %zu\n", i, offset, len);
offset += ROUNDUP_CL(len);
patternOffset++;
}
assert(offset <= totalSize);
assert(hydb->magic == CH_DB_MAGIC);
DEBUG_PRINTF("built hybrid database, size %zu bytes\n", totalSize);
DEBUG_PRINTF("offset=%u\n", offset);
*out = hydb;
}
} // namespace ch
extern "C" HS_PUBLIC_API
ch_error_t HS_CDECL ch_compile(const char *expression, unsigned flags,
unsigned mode,
const hs_platform_info_t *platform,
ch_database_t **db,
ch_compile_error_t **comp_error) {
if (!comp_error) {
if (db) {
db = nullptr;
}
// nowhere to write the string, but we can still report an error code
return CH_COMPILER_ERROR;
}
if (!db) {
*comp_error =
generateChimeraCompileError("Invalid parameter: db is NULL", -1);
return CH_COMPILER_ERROR;
}
if (!expression) {
*db = nullptr;
*comp_error =
generateChimeraCompileError("Invalid parameter: expressions is\
NULL", -1);
return CH_COMPILER_ERROR;
}
if (!checkMode(mode, comp_error)) {
*db = nullptr;
assert(*comp_error); // set by checkMode
return CH_COMPILER_ERROR;
}
try {
unsigned id = 0; // single expressions get zero as an ID
// Internal function to do all the work, now that we've handled all the
// argument checking.
ch::ch_compile_multi_int(&expression, &flags, &id, 1, mode, 0, 0,
platform, db);
}
catch (const CompileError &e) {
// Compiler error occurred
*db = nullptr;
*comp_error = generateChimeraCompileError(e.reason, e.hasIndex ?
(int)e.index : -1);
return CH_COMPILER_ERROR;
}
catch (std::bad_alloc &) {
*db = nullptr;
*comp_error = const_cast<ch_compile_error_t *>(&ch_enomem);
return CH_COMPILER_ERROR;
}
catch (...) {
assert(!"Internal error, unexpected exception");
*db = nullptr;
*comp_error = const_cast<ch_compile_error_t *>(&ch_einternal);
return CH_COMPILER_ERROR;
}
DEBUG_PRINTF("success!\n");
return CH_SUCCESS;
}
extern "C" HS_PUBLIC_API
ch_error_t HS_CDECL ch_compile_multi(const char *const *expressions,
const unsigned *flags, const unsigned *ids,
unsigned elements, unsigned mode,
const hs_platform_info_t *platform,
ch_database_t **db,
ch_compile_error_t **comp_error) {
if (!comp_error) {
if (db) {
db = nullptr;
}
// nowhere to write the string, but we can still report an error code
return CH_COMPILER_ERROR;
}
if (!db) {
*comp_error =
generateChimeraCompileError("Invalid parameter: db is NULL", -1);
return CH_COMPILER_ERROR;
}
if (!expressions) {
*db = nullptr;
*comp_error =
generateChimeraCompileError("Invalid parameter: expressions is\
NULL", -1);
return CH_COMPILER_ERROR;
}
if (!elements) {
*db = nullptr;
*comp_error = generateChimeraCompileError("Invalid parameter:\
elements is zero", -1);
return CH_COMPILER_ERROR;
}
if (!checkMode(mode, comp_error)) {
*db = nullptr;
assert(*comp_error); // set by checkMode
return CH_COMPILER_ERROR;
}
try {
// Internal function to do all the work, now that we've handled all the
// argument checking.
ch::ch_compile_multi_int(expressions, flags, ids, elements, mode, 0, 0,
platform, db);
}
catch (const CompileError &e) {
// Compiler error occurred
*db = nullptr;
*comp_error = generateChimeraCompileError(e.reason, e.hasIndex ?
(int)e.index : -1);
return CH_COMPILER_ERROR;
}
catch (std::bad_alloc &) {
*db = nullptr;
*comp_error = const_cast<ch_compile_error_t *>(&ch_enomem);
return CH_COMPILER_ERROR;
}
catch (...) {
assert(!"Internal error, unexpected exception");
*db = nullptr;
*comp_error = const_cast<ch_compile_error_t *>(&ch_einternal);
return CH_COMPILER_ERROR;
}
DEBUG_PRINTF("success!\n");
return CH_SUCCESS;
}
extern "C" HS_PUBLIC_API
ch_error_t HS_CDECL ch_compile_ext_multi(
const char *const *expressions,
const unsigned *flags,
const unsigned *ids,
unsigned elements, unsigned mode,
unsigned long int match_limit,
unsigned long int match_limit_recursion,
const hs_platform_info_t *platform,
ch_database_t **db,
ch_compile_error_t **comp_error) {
if (!comp_error) {
if (db) {
db = nullptr;
}
// nowhere to write the string, but we can still report an error code
return CH_COMPILER_ERROR;
}
if (!db) {
*comp_error =
generateChimeraCompileError("Invalid parameter: db is NULL", -1);
return CH_COMPILER_ERROR;
}
if (!expressions) {
*db = nullptr;
*comp_error =
generateChimeraCompileError("Invalid parameter: expressions is\
NULL", -1);
return CH_COMPILER_ERROR;
}
if (!elements) {
*db = nullptr;
*comp_error = generateChimeraCompileError("Invalid parameter:\
elements is zero", -1);
return CH_COMPILER_ERROR;
}
if (!checkMode(mode, comp_error)) {
*db = nullptr;
assert(*comp_error); // set by checkMode
return CH_COMPILER_ERROR;
}
try {
// Internal function to do all the work, now that we've handled all the
// argument checking.
ch::ch_compile_multi_int(expressions, flags, ids, elements, mode,
match_limit, match_limit_recursion, platform,
db);
}
catch (const CompileError &e) {
// Compiler error occurred
*db = nullptr;
*comp_error = generateChimeraCompileError(e.reason, e.hasIndex ?
(int)e.index : -1);
return CH_COMPILER_ERROR;
}
catch (std::bad_alloc &) {
*db = nullptr;
*comp_error = const_cast<ch_compile_error_t *>(&ch_enomem);
return CH_COMPILER_ERROR;
}
catch (...) {
assert(!"Internal error, unexpected exception");
*db = nullptr;
*comp_error = const_cast<ch_compile_error_t *>(&ch_einternal);
return CH_COMPILER_ERROR;
}
DEBUG_PRINTF("success!\n");
return CH_SUCCESS;
}
extern "C" HS_PUBLIC_API
ch_error_t HS_CDECL ch_free_compile_error(ch_compile_error_t *error) {
freeChimeraCompileError(error);
return CH_SUCCESS;
}