/* * Copyright (c) 2024, Arm ltd * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "gtest/gtest.h" #include "nfa/shengcompile.h" #include "nfa/rdfa.h" #include "util/bytecode_ptr.h" #include "util/compile_context.h" #include "util/report_manager.h" extern "C" { #include "hs_compile.h" #include "nfa/nfa_api.h" #include "nfa/nfa_api_queue.h" #include "nfa/nfa_api_util.h" #include "nfa/nfa_internal.h" #include "nfa/rdfa.h" #include "nfa/sheng.h" #include "ue2common.h" } namespace { struct callback_context { unsigned int period; unsigned int match_count; unsigned int pattern_length; }; int dummy_callback(u64a start, u64a end, ReportID id, void *context) { (void) context; printf("callback %llu %llu %u\n", start, end, id); return 1; /* 0 stops matching, !0 continue */ } int periodic_pattern_callback(u64a start, u64a end, ReportID id, void *raw_context) { struct callback_context *context = (struct callback_context*) raw_context; (void) start; (void) id; EXPECT_EQ(context->period * context->match_count, end - context->pattern_length); context->match_count++; return 1; /* 0 stops matching, !0 continue */ } /** * @brief Fill the state matrix with a diagonal pattern: accept the Nth character to go to the N+1 state */ static void fill_straight_regex_sequence(struct ue2::raw_dfa *dfa, int start_state, int end_state, int state_count) { for (int state = start_state; state < end_state; state++) { dfa->states[state].next.assign(state_count ,1); dfa->states[state].next[0] = 2; dfa->states[state].next[1] = 2; dfa->states[state].next[state] = state+1; } } static void init_raw_dfa16(struct ue2::raw_dfa *dfa, const ReportID rID) { dfa->start_anchored = 1; dfa->start_floating = 1; dfa->alpha_size = 8; int nb_state = 8; for(int i = 0; i < nb_state; i++) { struct ue2::dstate state(dfa->alpha_size); state.next = std::vector(nb_state); state.daddy = 0; state.impl_id = i; /* id of the state */ state.reports = ue2::flat_set(); state.reports_eod = ue2::flat_set(); dfa->states.push_back(state); } /* add a report to every accept state */ dfa->states[7].reports.insert(rID); /** * [a,b][c-e]{3}of * (1) -a,b-> (2) -c,d,e-> (3) -c,d,e-> (4) -c,d,e-> (5) -o-> (6) -f-> ((7)) * (0) = dead */ for(int i = 0; i < ue2::ALPHABET_SIZE; i++) { dfa->alpha_remap[i] = 0; } dfa->alpha_remap['a'] = 0; dfa->alpha_remap['b'] = 1; dfa->alpha_remap['c'] = 2; dfa->alpha_remap['d'] = 3; dfa->alpha_remap['e'] = 4; dfa->alpha_remap['o'] = 5; dfa->alpha_remap['f'] = 6; dfa->alpha_remap[256] = 7; /* for some reason there's a check that run on dfa->alpha_size-1 */ /* a b c d e o f */ dfa->states[0].next = {0,0,0,0,0,0,0}; dfa->states[1].next = {2,2,1,1,1,1,1}; /* nothing */ dfa->states[2].next = {2,2,3,3,3,1,1}; /* [a,b] */ dfa->states[3].next = {2,2,4,4,4,1,1}; /* [a,b][c-e]{1} */ dfa->states[4].next = {2,2,5,5,5,1,1}; /* [a,b][c-e]{2} */ fill_straight_regex_sequence(dfa, 5, 7, 7); /* [a,b][c-e]{3}o */ dfa->states[7].next = {2,2,1,1,1,1,1}; /* [a,b][c-e]{3}of */ } #if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) /* We need more than 16 states to run sheng32, so make the graph longer */ static void init_raw_dfa32(struct ue2::raw_dfa *dfa, const ReportID rID) { dfa->start_anchored = 1; dfa->start_floating = 1; dfa->alpha_size = 18; int nb_state = 18; for(int i = 0; i < nb_state; i++) { struct ue2::dstate state(dfa->alpha_size); state.next = std::vector(nb_state); state.daddy = 0; state.impl_id = i; /* id of the state */ state.reports = ue2::flat_set(); state.reports_eod = ue2::flat_set(); dfa->states.push_back(state); } /* add a report to every accept state */ dfa->states[17].reports.insert(rID); /** * [a,b][c-e]{3}of0123456789 * (1) -a,b-> (2) -c,d,e-> (3) -c,d,e-> (4) -c,d,e-> (5) -o-> (6) -f-> (7) --> ((17)) * (0) = dead */ for(int i = 0; i < ue2::ALPHABET_SIZE; i++) { dfa->alpha_remap[i] = 0; } dfa->alpha_remap['a'] = 0; dfa->alpha_remap['b'] = 1; dfa->alpha_remap['c'] = 2; dfa->alpha_remap['d'] = 3; dfa->alpha_remap['e'] = 4; dfa->alpha_remap['o'] = 5; dfa->alpha_remap['f'] = 6; // maps 0 to 9 for (int i = 0; i < 10; i ++) { dfa->alpha_remap[i + '0'] = i + 7; } dfa->alpha_remap[256] = 17; /* for some reason there's a check that run on dfa->alpha_size-1 */ /* a b c d e o f 0 1 2 3 4 5 6 7 8 9 */ dfa->states[0].next = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; dfa->states[1].next = {2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; /* nothing */ dfa->states[2].next = {2,2,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1}; /* [a,b] */ dfa->states[3].next = {2,2,4,4,4,1,1,1,1,1,1,1,1,1,1,1,1}; /* [a,b][c-e]{1} */ dfa->states[4].next = {2,2,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1}; /* [a,b][c-e]{2} */ fill_straight_regex_sequence(dfa, 5, 17, 17); /* [a,b][c-e]{3}of012345678 */ dfa->states[17].next = {2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; /* [a,b][c-e]{3}of0123456789 */ } #endif /* defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) */ typedef ue2::bytecode_ptr (*sheng_compile_ptr)(ue2::raw_dfa&, const ue2::CompileContext&, const ue2::ReportManager&, bool, std::set*); typedef void (*init_raw_dfa_ptr)(struct ue2::raw_dfa*, const ReportID); static inline void init_nfa(struct NFA **out_nfa, sheng_compile_ptr compile_function, init_raw_dfa_ptr init_dfa_function) { ue2::Grey *g = new ue2::Grey(); #if defined(HAVE_AVX512VBMI) hs_platform_info plat_info = {0, HS_CPU_FEATURES_AVX512VBMI, 0, 0}; #else hs_platform_info plat_info = {0, 0, 0, 0}; #endif ue2::CompileContext *cc = new ue2::CompileContext(false, false, ue2::target_t(plat_info), *g); ue2::ReportManager *rm = new ue2::ReportManager(*g); ue2::Report *report = new ue2::Report(ue2::EXTERNAL_CALLBACK, 0); ReportID rID = rm->getInternalId(*report); rm->setProgramOffset(0, 0); struct ue2::raw_dfa *dfa = new ue2::raw_dfa(ue2::NFA_OUTFIX); init_dfa_function(dfa, rID); *out_nfa = (compile_function(*dfa, *cc, *rm, false, nullptr)).release(); ASSERT_NE(nullptr, *out_nfa); delete report; delete rm; delete cc; delete g; } static void init_nfa16(struct NFA **out_nfa) { init_nfa(out_nfa, ue2::shengCompile, init_raw_dfa16); } #if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) static void init_nfa32(struct NFA **out_nfa) { init_nfa(out_nfa, ue2::sheng32Compile, init_raw_dfa32); } #endif /* defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) */ static char state_buffer; static inline void init_sheng_queue(struct mq **out_q, uint8_t *buffer, size_t max_size, void (*init_nfa_func)(struct NFA **out_nfa) ) { struct NFA* nfa; init_nfa_func(&nfa); assert(nfa); struct mq *q = new mq(); memset(q, 0, sizeof(struct mq)); q->nfa = nfa; q->state = &state_buffer; q->cb = dummy_callback; q->buffer = buffer; q->length = max_size; /* setting this as the max length scanable */ if (nfa != q->nfa) { printf("Something went wrong while initializing sheng.\n"); } nfaQueueInitState(nfa, q); pushQueueAt(q, 0, MQE_START, 0); pushQueueAt(q, 1, MQE_END, q->length ); *out_q = q; } static void init_sheng_queue16(struct mq **out_q, uint8_t *buffer ,size_t max_size) { init_sheng_queue(out_q, buffer, max_size, init_nfa16); } #if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) static void init_sheng_queue32(struct mq **out_q, uint8_t *buffer, size_t max_size) { init_sheng_queue(out_q, buffer, max_size, init_nfa32); } #endif /* defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) */ static void fill_pattern(u8* buf, size_t buffer_size, unsigned int start_offset, unsigned int period, const char *pattern, unsigned int pattern_length) { memset(buf, '_', buffer_size); for (unsigned int i = 0; i < buffer_size - 8; i+= 8) { /* filling with some junk, including some character used for a valid state, to prevent the use of shufti */ memcpy(buf + i, "jgohcxbf", 8); } for (unsigned int i = start_offset; i < buffer_size - pattern_length; i += period) { memcpy(buf + i, pattern, pattern_length); } } /* Generate ground truth to compare to */ struct NFA *get_expected_nfa_header(u8 type, unsigned int length, unsigned int nposition) { struct NFA *expected_nfa_header = new struct NFA(); memset(expected_nfa_header, 0, sizeof(struct NFA)); expected_nfa_header->length = length; expected_nfa_header->type = type; expected_nfa_header->nPositions = nposition; expected_nfa_header->scratchStateSize = 1; expected_nfa_header->streamStateSize = 1; return expected_nfa_header; } struct NFA *get_expected_nfa16_header() { return get_expected_nfa_header(SHENG_NFA, 4736, 8); /* size recorded in 04/2024 */ } #if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) struct NFA *get_expected_nfa32_header() { return get_expected_nfa_header(SHENG_NFA_32, 17216, 18); /* size recorded in 04/2024 */ } #endif /* defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) */ void test_nfa_equal(const NFA& l, const NFA& r) { /** * The length is meant to be a sanity test: it's not 0 (we compiled something) and that it roughly fit the * expected size for a given sheng implementation (we don't feed compiled sheng32 into sheng16). * Changes in other nfa algorithms may affect the sheng length, so we accept small variations. */ int relative_difference = std::abs((float)(l.length) - r.length) / ((l.length + r.length) / 2); EXPECT_LE(relative_difference, 0.1); /* same +-10% */ EXPECT_EQ(l.flags, r.flags); EXPECT_EQ(l.type, r.type); EXPECT_EQ(l.rAccelType, r.rAccelType); EXPECT_EQ(l.rAccelOffset, r.rAccelOffset); EXPECT_EQ(l.maxBiAnchoredWidth, r.maxBiAnchoredWidth); EXPECT_EQ(l.rAccelData.dc, r.rAccelData.dc); EXPECT_EQ(l.queueIndex, r.queueIndex); EXPECT_EQ(l.nPositions, r.nPositions); EXPECT_EQ(l.scratchStateSize, r.scratchStateSize); EXPECT_EQ(l.streamStateSize, r.streamStateSize); EXPECT_EQ(l.maxWidth, r.maxWidth); EXPECT_EQ(l.minWidth, r.minWidth); EXPECT_EQ(l.maxOffset, r.maxOffset); } /* Start of actual tests */ /* * Runs shengCompile and compares its outputs to previously recorded outputs. */ TEST(Sheng16, std_compile_header) { ue2::Grey *g = new ue2::Grey(); hs_platform_info plat_info = {0, 0, 0, 0}; ue2::CompileContext *cc = new ue2::CompileContext(false, false, ue2::target_t(plat_info), *g); ue2::ReportManager *rm = new ue2::ReportManager(*g); ue2::Report *report = new ue2::Report(ue2::EXTERNAL_CALLBACK, 0); ReportID rID = rm->getInternalId(*report); rm->setProgramOffset(0, 0); struct ue2::raw_dfa *dfa = new ue2::raw_dfa(ue2::NFA_OUTFIX); init_raw_dfa16(dfa, rID); struct NFA *nfa = (shengCompile(*dfa, *cc, *rm, false)).release(); EXPECT_NE(nullptr, nfa); EXPECT_NE(0, nfa->length); EXPECT_EQ(SHENG_NFA, nfa->type); struct NFA *expected_nfa = get_expected_nfa16_header(); test_nfa_equal(*expected_nfa, *nfa); delete expected_nfa; delete report; delete rm; delete cc; delete g; } /* * nfaExecSheng_B is the most basic of the sheng variants. It simply calls the core of the algorithm. * We test it with a buffer having a few matches at fixed intervals and check that it finds them all. */ TEST(Sheng16, std_run_B) { struct mq *q; unsigned int pattern_length = 6; unsigned int period = 128; const size_t buf_size = 200; unsigned int expected_matches = buf_size/128 + 1; u8 buf[buf_size]; struct callback_context context = {period, 0, pattern_length}; struct NFA* nfa; init_nfa16(&nfa); ASSERT_NE(nullptr, nfa); fill_pattern(buf, buf_size, 0, period, "acecof", pattern_length); char ret_val; unsigned int offset = 0; unsigned int loop_count = 0; for (; loop_count < expected_matches + 1; loop_count++) { ASSERT_LT(offset, buf_size); ret_val = nfaExecSheng_B(nfa, offset, buf + offset, (s64a) buf_size - offset, periodic_pattern_callback, &context); offset = (context.match_count - 1) * context.period + context.pattern_length; if(unlikely(ret_val != MO_ALIVE)) { break; } } /*check normal return*/ EXPECT_EQ(MO_ALIVE, ret_val); /*check that we don't find additional match nor crash when no match are found*/ EXPECT_EQ(expected_matches + 1, loop_count); /*check that we have all the matches*/ EXPECT_EQ(expected_matches, context.match_count); } /* * nfaExecSheng_Q runs like the _B version (callback), but exercises the message queue logic. * We test it with a buffer having a few matches at fixed intervals and check that it finds them all. */ TEST(Sheng16, std_run_Q) { struct mq *q; unsigned int pattern_length = 6; unsigned int period = 128; const size_t buf_size = 200; unsigned int expected_matches = buf_size/128 + 1; u8 buf[buf_size]; struct callback_context context = {period, 0, pattern_length}; init_sheng_queue16(&q, buf, buf_size); fill_pattern(buf, buf_size, 0, period, "acecof", pattern_length); q->cur = 0; q->items[q->cur].location = 0; q->context = &context; q->cb = periodic_pattern_callback; nfaExecSheng_Q(q->nfa, q, (s64a) buf_size); /*check that we have all the matches*/ EXPECT_EQ(expected_matches, context.match_count); delete q; } /* * nfaExecSheng_Q2 uses the message queue, but stops at match instead of using a callback. * We test it with a buffer having a few matches at fixed intervals and check that it finds them all. */ TEST(Sheng16, std_run_Q2) { struct mq *q; unsigned int pattern_length = 6; unsigned int period = 128; const size_t buf_size = 200; unsigned int expected_matches = buf_size/128 + 1; u8 buf[buf_size]; init_sheng_queue16(&q, buf, buf_size); fill_pattern(buf, buf_size, 0, period, "acecof", pattern_length); q->cur = 0; q->items[q->cur].location = 0; char ret_val; int location; unsigned int loop_count = 0; do { ret_val = nfaExecSheng_Q2(q->nfa, q, (s64a) buf_size); location = q->items[q->cur].location; loop_count++; } while(likely((ret_val == MO_MATCHES_PENDING) && (location < (int)buf_size) && ((location % period) == pattern_length))); /*check if it's a spurious match*/ EXPECT_EQ(0, (ret_val == MO_MATCHES_PENDING) && ((location % period) != pattern_length)); /*check that we have all the matches*/ EXPECT_EQ(expected_matches, loop_count-1); delete q; } /* * The message queue can also run on the "history" buffer. We test it the same way as the normal * buffer, expecting the same behavior. * We test it with a buffer having a few matches at fixed intervals and check that it finds them all. */ TEST(Sheng16, history_run_Q2) { struct mq *q; unsigned int pattern_length = 6; unsigned int period = 128; const size_t buf_size = 200; unsigned int expected_matches = buf_size/128 + 1; u8 buf[buf_size]; init_sheng_queue16(&q, buf, buf_size); fill_pattern(buf, buf_size, 0, period, "acecof", pattern_length); q->history = buf; q->hlength = buf_size; q->cur = 0; q->items[q->cur].location = -200; char ret_val; int location; unsigned int loop_count = 0; do { ret_val = nfaExecSheng_Q2(q->nfa, q, 0); location = q->items[q->cur].location; loop_count++; } while(likely((ret_val == MO_MATCHES_PENDING) && (location > -(int)buf_size) && (location < 0) && (((buf_size + location) % period) == pattern_length))); /*check if it's a spurious match*/ EXPECT_EQ(0, (ret_val == MO_MATCHES_PENDING) && (((buf_size + location) % period) != pattern_length)); /*check that we have all the matches*/ EXPECT_EQ(expected_matches, loop_count-1); delete q; } /** * Those tests only covers the basic paths. More tests can cover: * - running for history buffer to current buffer in Q2 * - running while expecting no match * - nfaExecSheng_QR * - run sheng when it should call an accelerator and confirm it call them */ #if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) /* * Runs sheng32Compile and compares its outputs to previously recorded outputs. */ TEST(Sheng32, std_compile_header) { #if defined(HAVE_SVE) if(svcntb()<32) { return; } #endif ue2::Grey *g = new ue2::Grey(); hs_platform_info plat_info = {0, HS_CPU_FEATURES_AVX512VBMI, 0, 0}; ue2::CompileContext *cc = new ue2::CompileContext(false, false, ue2::target_t(plat_info), *g); ue2::ReportManager *rm = new ue2::ReportManager(*g); ue2::Report *report = new ue2::Report(ue2::EXTERNAL_CALLBACK, 0); ReportID rID = rm->getInternalId(*report); rm->setProgramOffset(0, 0); struct ue2::raw_dfa *dfa = new ue2::raw_dfa(ue2::NFA_OUTFIX); init_raw_dfa32(dfa, rID); struct NFA *nfa = (sheng32Compile(*dfa, *cc, *rm, false)).release(); EXPECT_NE(nullptr, nfa); EXPECT_NE(0, nfa->length); EXPECT_EQ(SHENG_NFA_32, nfa->type); struct NFA *expected_nfa = get_expected_nfa32_header(); test_nfa_equal(*expected_nfa, *nfa); delete expected_nfa; delete report; delete rm; delete cc; delete g; } /* * nfaExecSheng32_B is the most basic of the sheng variants. It simply calls the core of the algorithm. * We test it with a buffer having a few matches at fixed intervals and check that it finds them all. */ TEST(Sheng32, std_run_B) { #if defined(HAVE_SVE) if(svcntb()<32) { return; } #endif struct mq *q; unsigned int pattern_length = 16; unsigned int period = 128; const size_t buf_size = 200; unsigned int expected_matches = buf_size/128 + 1; u8 buf[buf_size]; struct callback_context context = {period, 0, pattern_length}; struct NFA* nfa; init_nfa32(&nfa); ASSERT_NE(nullptr, nfa); fill_pattern(buf, buf_size, 0, period, "acecof0123456789", pattern_length); char ret_val; unsigned int offset = 0; unsigned int loop_count = 0; for (; loop_count < expected_matches + 1; loop_count++) { ASSERT_LT(offset, buf_size); ret_val = nfaExecSheng32_B(nfa, offset, buf + offset, (s64a) buf_size - offset, periodic_pattern_callback, &context); offset = (context.match_count - 1) * context.period + context.pattern_length; if(unlikely(ret_val != MO_ALIVE)) { break; } } /*check normal return*/ EXPECT_EQ(MO_ALIVE, ret_val); /*check that we don't find additional match nor crash when no match are found*/ EXPECT_EQ(expected_matches + 1, loop_count); /*check that we have all the matches*/ EXPECT_EQ(expected_matches, context.match_count); } /* * nfaExecSheng32_Q runs like the _B version (callback), but exercises the message queue logic. * We test it with a buffer having a few matches at fixed intervals and check that it finds them all. */ TEST(Sheng32, std_run_Q) { #if defined(HAVE_SVE) if(svcntb()<32) { return; } #endif struct mq *q; unsigned int pattern_length = 16; unsigned int period = 128; const size_t buf_size = 200; unsigned int expected_matches = buf_size/128 + 1; u8 buf[buf_size]; struct callback_context context = {period, 0, pattern_length}; init_sheng_queue32(&q, buf, buf_size); fill_pattern(buf, buf_size, 0, period, "acecof0123456789", pattern_length); q->cur = 0; q->items[q->cur].location = 0; q->context = &context; q->cb = periodic_pattern_callback; nfaExecSheng32_Q(q->nfa, q, (s64a) buf_size); /*check that we have all the matches*/ EXPECT_EQ(expected_matches, context.match_count); delete q; } /* * nfaExecSheng32_Q2 uses the message queue, but stops at match instead of using a callback. * We test it with a buffer having a few matches at fixed intervals and check that it finds them all. */ TEST(Sheng32, std_run_Q2) { #if defined(HAVE_SVE) if(svcntb()<32) { return; } #endif struct mq *q; unsigned int pattern_length = 16; unsigned int period = 128; const size_t buf_size = 200; unsigned int expected_matches = buf_size/128 + 1; u8 buf[buf_size]; init_sheng_queue32(&q, buf, buf_size); fill_pattern(buf, buf_size, 0, period, "acecof0123456789", pattern_length); q->cur = 0; q->items[q->cur].location = 0; char ret_val; int location; unsigned int loop_count = 0; do { ret_val = nfaExecSheng32_Q2(q->nfa, q, (s64a) buf_size); location = q->items[q->cur].location; loop_count++; } while(likely((ret_val == MO_MATCHES_PENDING) && (location < (int)buf_size) && ((location % period) == pattern_length))); /*check if it's a spurious match*/ EXPECT_EQ(0, (ret_val == MO_MATCHES_PENDING) && ((location % period) != pattern_length)); /*check that we have all the matches*/ EXPECT_EQ(expected_matches, loop_count-1); delete q; } /* * The message queue can also runs on the "history" buffer. We test it the same way as the normal * buffer, expecting the same behavior. * We test it with a buffer having a few matches at fixed intervals and check that it finds them all. */ TEST(Sheng32, history_run_Q2) { #if defined(HAVE_SVE) if(svcntb()<32) { return; } #endif struct mq *q; unsigned int pattern_length = 16; unsigned int period = 128; const size_t buf_size = 200; unsigned int expected_matches = buf_size/128 + 1; u8 buf[buf_size]; init_sheng_queue32(&q, buf, buf_size); fill_pattern(buf, buf_size, 0, period, "acecof0123456789", pattern_length); q->history = buf; q->hlength = buf_size; q->cur = 0; q->items[q->cur].location = -200; char ret_val; int location; unsigned int loop_count = 0; do { ret_val = nfaExecSheng32_Q2(q->nfa, q, 0); location = q->items[q->cur].location; loop_count++; } while(likely((ret_val == MO_MATCHES_PENDING) && (location > -(int)buf_size) && (location < 0) && (((buf_size + location) % period) == pattern_length))); /*check if it's a spurious match*/ EXPECT_EQ(0, (ret_val == MO_MATCHES_PENDING) && (((buf_size + location) % period) != pattern_length)); /*check that we have all the matches*/ EXPECT_EQ(expected_matches, loop_count-1); delete q; } #endif /* defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) */ } /* namespace */