/* * Copyright (c) 2016-2017, Intel Corporation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \file * \brief Rose build: code for analysing literal groups. */ #include "rose_build_groups.h" #include "util/boundary_reports.h" #include "util/compile_context.h" #include "util/report_manager.h" #include #include #include #include #include using namespace std; using boost::adaptors::map_keys; namespace ue2 { #define ROSE_LONG_LITERAL_LEN 8 static bool superStrong(const rose_literal_id &lit) { if (lit.s.length() < ROSE_LONG_LITERAL_LEN) { return false; } const u32 EXPECTED_FDR_BUCKET_LENGTH = 8; assert(lit.s.length() >= EXPECTED_FDR_BUCKET_LENGTH); size_t len = lit.s.length(); const string &s = lit.s.get_string(); for (size_t i = 1; i < EXPECTED_FDR_BUCKET_LENGTH; i++) { if (s[len - 1 - i] != s[len - 1]) { return true; /* we have at least some variation in the tail */ } } DEBUG_PRINTF("lit '%s' is not superstrong due to tail\n", escapeString(s).c_str()); return false; } static bool eligibleForAlwaysOnGroup(const RoseBuildImpl &build, u32 id) { auto eligble = [&](RoseVertex v) { return build.isRootSuccessor(v) && (!build.g[v].left || !isAnchored(build.g[v].left)); }; if (any_of_in(build.literal_info[id].vertices, eligble)) { return true; } for (u32 delayed_id : build.literal_info[id].delayed_ids) { if (any_of_in(build.literal_info[delayed_id].vertices, eligble)) { return true; } } return false; } static bool requires_group_assignment(const rose_literal_id &lit, const rose_literal_info &info) { if (lit.delay) { /* we will check the shadow's master */ return false; } if (lit.table == ROSE_ANCHORED || lit.table == ROSE_EVENT) { return false; } // If we already have a group applied, skip. if (info.group_mask) { return false; } if (info.vertices.empty() && info.delayed_ids.empty()) { DEBUG_PRINTF("literal is good for nothing\n"); return false; } return true; } static rose_group calcLocalGroup(const RoseVertex v, const RoseGraph &g, const deque &literal_info, const bool small_literal_count) { rose_group local_group = 0; for (auto u : inv_adjacent_vertices_range(v, g)) { /* In small cases, ensure that siblings have the same rose parentage to * allow rose squashing. In larger cases, don't do this as groups are * probably too scarce. */ for (auto w : adjacent_vertices_range(u, g)) { if (!small_literal_count || g[v].left == g[w].left) { for (u32 lit_id : g[w].literals) { local_group |= literal_info[lit_id].group_mask; } } else { DEBUG_PRINTF("not sibling different mother %zu %zu\n", g[v].index, g[w].index); } } } return local_group; } /* group constants */ #define MAX_LIGHT_LITERAL_CASE 200 /* allow rose to affect group decisions below * this */ static flat_set getAssociatedVertices(const RoseBuildImpl &build, u32 id) { flat_set out; const auto &info = build.literal_info[id]; insert(&out, info.vertices); for (const auto &delayed : info.delayed_ids) { insert(&out, build.literal_info[delayed].vertices); } return out; } static u32 next_available_group(u32 counter, u32 min_start_group) { counter++; if (counter == ROSE_GROUPS_MAX) { DEBUG_PRINTF("resetting groups\n"); counter = min_start_group; } return counter; } static void allocateGroupForBoundary(RoseBuildImpl &build, u32 group_always_on, map &groupCount) { /* Boundary reports at zero will always fired and forgotten, no need to * worry about preventing the stream being marked as exhausted */ if (build.boundary.report_at_eod.empty()) { return; } /* Group based stream exhaustion is only done at stream boundaries */ if (!build.cc.streaming) { return; } DEBUG_PRINTF("allocating %u as boundary group id\n", group_always_on); build.boundary_group_mask = 1ULL << group_always_on; groupCount[group_always_on]++; } static void allocateGroupForEvent(RoseBuildImpl &build, u32 group_always_on, map &groupCount, u32 *counter) { if (build.eod_event_literal_id == MO_INVALID_IDX) { return; } /* Group based stream exhaustion is only done at stream boundaries */ if (!build.cc.streaming) { return; } rose_literal_info &info = build.literal_info[build.eod_event_literal_id]; if (info.vertices.empty()) { return; } bool new_group = !groupCount[group_always_on]; for (RoseVertex v : info.vertices) { if (build.g[v].left && !isAnchored(build.g[v].left)) { new_group = false; } } u32 group; if (!new_group) { group = group_always_on; } else { group = *counter; *counter += 1; } DEBUG_PRINTF("allocating %u as eod event group id\n", *counter); info.group_mask = 1ULL << group; groupCount[group]++; } void assignGroupsToLiterals(RoseBuildImpl &build) { auto &literals = build.literals; auto &literal_info = build.literal_info; bool small_literal_count = literal_info.size() <= MAX_LIGHT_LITERAL_CASE; map groupCount; /* group index to number of members */ u32 counter = 0; u32 group_always_on = 0; // First pass: handle always on literals. for (const auto &e : literals.right) { u32 id = e.first; const rose_literal_id &lit = e.second; rose_literal_info &info = literal_info[id]; if (!requires_group_assignment(lit, info)) { continue; } // If this literal has a root role, we always have to search for it // anyway, so it goes in the always-on group. /* We could end up squashing it if it is followed by a .* */ if (eligibleForAlwaysOnGroup(build, id)) { info.group_mask = 1ULL << group_always_on; groupCount[group_always_on]++; continue; } } u32 group_long_lit; if (groupCount[group_always_on]) { DEBUG_PRINTF("%u always on literals\n", groupCount[group_always_on]); group_long_lit = group_always_on; counter++; } else { group_long_lit = counter; counter++; } allocateGroupForBoundary(build, group_always_on, groupCount); allocateGroupForEvent(build, group_always_on, groupCount, &counter); u32 min_start_group = counter; priority_queue> pq; // Second pass: the other literals. for (const auto &e : literals.right) { u32 id = e.first; const rose_literal_id &lit = e.second; rose_literal_info &info = literal_info[id]; if (!requires_group_assignment(lit, info)) { continue; } assert(!eligibleForAlwaysOnGroup(build, id)); pq.emplace(-(s32)info.vertices.size(), -(s32)lit.s.length(), id); } vector long_lits; while (!pq.empty()) { u32 id = get<2>(pq.top()); pq.pop(); UNUSED const rose_literal_id &lit = literals.right.at(id); DEBUG_PRINTF("assigning groups to lit %u (v %zu l %zu)\n", id, literal_info[id].vertices.size(), lit.s.length()); u8 group_id = 0; rose_group group = ~0ULL; for (auto v : getAssociatedVertices(build, id)) { rose_group local_group = calcLocalGroup(v, build.g, literal_info, small_literal_count); group &= local_group; if (!group) { break; } } if (group == ~0ULL) { goto boring; } group &= ~((1ULL << min_start_group) - 1); /* ensure the purity of the * always_on groups */ if (!group) { goto boring; } group_id = ctz64(group); /* TODO: fairness */ DEBUG_PRINTF("picking sibling group %hhd\n", group_id); literal_info[id].group_mask = 1ULL << group_id; groupCount[group_id]++; continue; boring: /* long literals will either be stuck in a mega group or spread around * depending on availability */ if (superStrong(lit)) { long_lits.push_back(id); continue; } // Other literals are assigned to our remaining groups round-robin. group_id = counter; DEBUG_PRINTF("picking boring group %hhd\n", group_id); literal_info[id].group_mask = 1ULL << group_id; groupCount[group_id]++; counter = next_available_group(counter, min_start_group); } /* spread long literals out amongst unused groups if any, otherwise stick * them in the always on the group */ if (groupCount[counter]) { DEBUG_PRINTF("sticking long literals in the image of the always on\n"); for (u32 lit_id : long_lits) { literal_info[lit_id].group_mask = 1ULL << group_long_lit; groupCount[group_long_lit]++; } } else { u32 min_long_counter = counter; DEBUG_PRINTF("base long lit group = %u\n", min_long_counter); for (u32 lit_id : long_lits) { u8 group_id = counter; literal_info[lit_id].group_mask = 1ULL << group_id; groupCount[group_id]++; counter = next_available_group(counter, min_long_counter); } } /* assign delayed literals to the same group as their parent */ for (const auto &e : literals.right) { u32 id = e.first; const rose_literal_id &lit = e.second; if (!lit.delay) { continue; } u32 parent = literal_info[id].undelayed_id; DEBUG_PRINTF("%u is shadow picking up groups from %u\n", id, parent); assert(literal_info[parent].undelayed_id == parent); assert(literal_info[parent].group_mask); literal_info[id].group_mask = literal_info[parent].group_mask; /* don't increment the group count - these don't really exist */ } DEBUG_PRINTF("populate group to literal mapping\n"); for (const u32 id : literals.right | map_keys) { rose_group groups = literal_info[id].group_mask; while (groups) { u32 group_id = findAndClearLSB_64(&groups); build.group_to_literal[group_id].insert(id); } } /* find how many groups we allocated */ for (u32 i = 0; i < ROSE_GROUPS_MAX; i++) { if (groupCount[i]) { build.group_end = max(build.group_end, i + 1); } } } rose_group RoseBuildImpl::getGroups(RoseVertex v) const { rose_group groups = 0; for (u32 id : g[v].literals) { u32 lit_id = literal_info.at(id).undelayed_id; rose_group mygroups = literal_info[lit_id].group_mask; groups |= mygroups; } return groups; } /** \brief Get the groups of the successor literals of a given vertex. */ rose_group RoseBuildImpl::getSuccGroups(RoseVertex start) const { rose_group initialGroups = 0; for (auto v : adjacent_vertices_range(start, g)) { initialGroups |= getGroups(v); } return initialGroups; } /** * The groups that a role sets are determined by the union of its successor * literals. Requires the literals already have had groups assigned. */ void assignGroupsToRoles(RoseBuildImpl &build) { auto &g = build.g; /* Note: if there is a succ literal in the sidematcher, its successors * literals must be added instead */ for (auto v : vertices_range(g)) { if (build.isAnyStart(v)) { continue; } const rose_group succ_groups = build.getSuccGroups(v); g[v].groups |= succ_groups; auto ghost_it = build.ghost.find(v); if (ghost_it != end(build.ghost)) { /* delayed roles need to supply their groups to the ghost role */ g[ghost_it->second].groups |= succ_groups; } DEBUG_PRINTF("vertex %zu: groups=%llx\n", g[v].index, g[v].groups); } } /** * \brief Returns a mapping from each graph vertex v to the intersection of the * groups switched on by all of the paths leading up to (and including) v from * the start vertexes. */ unordered_map getVertexGroupMap(const RoseBuildImpl &build) { const RoseGraph &g = build.g; vector v_order; v_order.reserve(num_vertices(g)); boost::topological_sort(g, back_inserter(v_order)); unordered_map vertex_group_map; vertex_group_map.reserve(num_vertices(g)); const rose_group initial_groups = build.getInitialGroups(); for (const auto &v : boost::adaptors::reverse(v_order)) { DEBUG_PRINTF("vertex %zu\n", g[v].index); if (build.isAnyStart(v)) { DEBUG_PRINTF("start vertex, groups=0x%llx\n", initial_groups); vertex_group_map.emplace(v, initial_groups); continue; } // To get to this vertex, we must have come through a predecessor, and // everyone who isn't a start vertex has one. assert(in_degree(v, g) > 0); rose_group pred_groups = ~rose_group{0}; for (auto u : inv_adjacent_vertices_range(v, g)) { DEBUG_PRINTF("pred %zu\n", g[u].index); assert(contains(vertex_group_map, u)); pred_groups &= vertex_group_map.at(u); } DEBUG_PRINTF("pred_groups=0x%llx\n", pred_groups); DEBUG_PRINTF("g[v].groups=0x%llx\n", g[v].groups); rose_group v_groups = pred_groups | g[v].groups; DEBUG_PRINTF("v_groups=0x%llx\n", v_groups); vertex_group_map.emplace(v, v_groups); } return vertex_group_map; } /** * \brief Find the set of groups that can be squashed anywhere in the graph, * either by a literal or by a leftfix. */ rose_group getSquashableGroups(const RoseBuildImpl &build) { rose_group squashable_groups = 0; for (const auto &info : build.literal_info) { if (info.squash_group) { DEBUG_PRINTF("lit squash mask 0x%llx\n", info.group_mask); squashable_groups |= info.group_mask; } } for (const auto &m : build.rose_squash_masks) { DEBUG_PRINTF("left squash mask 0x%llx\n", ~m.second); squashable_groups |= ~m.second; } DEBUG_PRINTF("squashable groups=0x%llx\n", squashable_groups); assert(!(squashable_groups & build.boundary_group_mask)); return squashable_groups; } /** * \brief True if every vertex associated with a group also belongs to * lit_info. */ static bool coversGroup(const RoseBuildImpl &build, const rose_literal_info &lit_info) { if (lit_info.vertices.empty()) { DEBUG_PRINTF("no vertices - does not cover\n"); return false; } if (!lit_info.group_mask) { DEBUG_PRINTF("no group - does not cover\n"); return false; /* no group (not a floating lit?) */ } assert(popcount64(lit_info.group_mask) == 1); /* for each lit in group, ensure that vertices are a subset of lit_info's */ rose_group groups = lit_info.group_mask; while (groups) { u32 group_id = findAndClearLSB_64(&groups); for (u32 id : build.group_to_literal.at(group_id)) { DEBUG_PRINTF(" checking against friend %u\n", id); if (!is_subset_of(build.literal_info[id].vertices, lit_info.vertices)) { DEBUG_PRINTF("fail\n"); return false; } } } DEBUG_PRINTF("ok\n"); return true; } static bool isGroupSquasher(const RoseBuildImpl &build, const u32 id /* literal id */, rose_group forbidden_squash_group) { const RoseGraph &g = build.g; const rose_literal_info &lit_info = build.literal_info.at(id); DEBUG_PRINTF("checking if %u '%s' is a group squasher %016llx\n", id, dumpString(build.literals.right.at(id).s).c_str(), lit_info.group_mask); if (build.literals.right.at(id).table == ROSE_EVENT) { DEBUG_PRINTF("event literal\n"); return false; } if (!coversGroup(build, lit_info)) { DEBUG_PRINTF("does not cover group\n"); return false; } if (lit_info.group_mask & forbidden_squash_group) { /* probably a delayed lit */ DEBUG_PRINTF("skipping as involves a forbidden group\n"); return false; } // Single-vertex, less constrained case than the multiple-vertex one below. if (lit_info.vertices.size() == 1) { const RoseVertex &v = *lit_info.vertices.begin(); if (build.hasDelayPred(v)) { /* due to rebuild issues */ return false; } /* there are two ways to be a group squasher: * 1) only care about the first accepted match * 2) can only match once after a pred match * * (2) requires analysis of the infix before v and is not implemented, * TODO */ /* Case 1 */ // Can't squash cases with accepts unless they are all // simple-exhaustible. if (any_of_in(g[v].reports, [&](ReportID report) { return !isSimpleExhaustible(build.rm.getReport(report)); })) { DEBUG_PRINTF("can't squash reporter\n"); return false; } /* Can't squash cases with a suffix without analysis of the suffix. * TODO: look at suffixes */ if (g[v].suffix) { return false; } // Out-edges must have inf max bound, + no other shenanigans */ for (const auto &e : out_edges_range(v, g)) { if (g[e].maxBound != ROSE_BOUND_INF) { return false; } if (g[target(e, g)].left) { return false; /* is an infix rose trigger, TODO: analysis */ } } DEBUG_PRINTF("%u is a path 1 group squasher\n", id); return true; /* note: we could also squash the groups of its preds (if nobody else is * using them. TODO. */ } // Multiple-vertex case for (auto v : lit_info.vertices) { assert(!build.isAnyStart(v)); // Can't squash cases with accepts if (!g[v].reports.empty()) { return false; } // Suffixes and leftfixes are out too as first literal may not match // for everyone. if (!g[v].isBoring()) { return false; } /* TODO: checks are solid but we should explain */ if (build.hasDelayPred(v) || build.hasAnchoredTablePred(v)) { return false; } // Out-edges must have inf max bound and not directly lead to another // vertex with this group, e.g. 'foobar.*foobar'. for (const auto &e : out_edges_range(v, g)) { if (g[e].maxBound != ROSE_BOUND_INF) { return false; } RoseVertex t = target(e, g); if (g[t].left) { return false; /* is an infix rose trigger */ } for (u32 lit_id : g[t].literals) { if (build.literal_info[lit_id].group_mask & lit_info.group_mask) { return false; } } } // In-edges must all be dot-stars with no overlap at all, as overlap // also causes history to be used. /* Different tables are already forbidden by previous checks */ for (const auto &e : in_edges_range(v, g)) { if (!(g[e].minBound == 0 && g[e].maxBound == ROSE_BOUND_INF)) { return false; } // Check overlap, if source was a literal. RoseVertex u = source(e, g); if (build.maxLiteralOverlap(u, v)) { return false; } } } DEBUG_PRINTF("literal %u is a multi-vertex group squasher\n", id); return true; } void findGroupSquashers(RoseBuildImpl &build) { rose_group forbidden_squash_group = build.boundary_group_mask; for (const auto &e : build.literals.right) { if (e.second.delay) { forbidden_squash_group |= build.literal_info[e.first].group_mask; } } for (u32 id = 0; id < build.literal_info.size(); id++) { if (isGroupSquasher(build, id, forbidden_squash_group)) { build.literal_info[id].squash_group = true; } } } } // namespace ue2