/* * Copyright (c) 2015-2017, Intel Corporation * Copyright (c) 2020-2021, VectorCamp PC * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef SIMD_IMPL_HPP #define SIMD_IMPL_HPP #include #include #include "ue2common.h" #include "util/arch.h" #include "util/unaligned.h" #include "util/simd/types.hpp" #if !defined(m128) && defined(HAVE_SSE2) typedef __m128i m128; #endif #if !defined(m256) && defined(HAVE_AVX2) typedef __m256i m256; #endif #if !defined(m512) && defined(HAVE_AVX512) typedef __m512i m512; #endif #ifdef DEBUG static inline void print_m128_16x8(const char *label, m128 vector) { uint8_t ALIGN_ATTR(16) data[16]; _mm_store_si128 ((m128 *)data, vector); DEBUG_PRINTF("%s: ", label); for(int i=0; i < 16; i++) printf("%02x ", data[i]); printf("\n"); } #endif // 128-bit SSE implementation template<> really_inline SuperVector<16>::SuperVector(SuperVector const &o) { u.v128[0] = o.u.v128[0]; } template<> really_inline SuperVector<16>::SuperVector(typename base_type::type const v) { u.v128[0] = v; }; template<> template<> really_inline SuperVector<16>::SuperVector(int8_t const o) { u.v128[0] = _mm_set1_epi8(o); } template<> template<> really_inline SuperVector<16>::SuperVector(uint8_t const o) { u.v128[0] = _mm_set1_epi8(static_cast(o)); } template<> template<> really_inline SuperVector<16>::SuperVector(int16_t const o) { u.v128[0] = _mm_set1_epi16(o); } template<> template<> really_inline SuperVector<16>::SuperVector(uint16_t const o) { u.v128[0] = _mm_set1_epi16(static_cast(o)); } template<> template<> really_inline SuperVector<16>::SuperVector(int32_t const o) { u.v128[0] = _mm_set1_epi32(o); } template<> template<> really_inline SuperVector<16>::SuperVector(uint32_t const o) { u.v128[0] = _mm_set1_epi32(static_cast(o)); } template<> template<> really_inline SuperVector<16>::SuperVector(int64_t const o) { u.v128[0] = _mm_set1_epi64x(o); } template<> template<> really_inline SuperVector<16>::SuperVector(uint64_t const o) { u.v128[0] = _mm_set1_epi64x(static_cast(o)); } // Constants template<> really_inline SuperVector<16> SuperVector<16>::Ones(void) { return {_mm_set1_epi8(0xFF)}; } template<> really_inline SuperVector<16> SuperVector<16>::Zeroes(void) { return {_mm_set1_epi8(0)}; } // Methods template <> really_inline void SuperVector<16>::operator=(SuperVector<16> const &o) { u.v128[0] = o.u.v128[0]; } template <> really_inline SuperVector<16> SuperVector<16>::operator&(SuperVector<16> const b) const { return {_mm_and_si128(u.v128[0], b.u.v128[0])}; } template <> really_inline SuperVector<16> SuperVector<16>::mand(SuperVector<16> const b) const { return *this & b; } template <> really_inline SuperVector<16> SuperVector<16>::mandnot(SuperVector<16> const b) const { return {_mm_andnot_si128(u.v128[0], b.u.v128[0])}; } template <> really_inline SuperVector<16> SuperVector<16>::eq(SuperVector<16> const b) const { return {_mm_cmpeq_epi8(u.v128[0], b.u.v128[0])}; } template <> really_inline typename SuperVector<16>::movemask_type SuperVector<16>::movemask(void)const { return _mm_movemask_epi8(u.v128[0]); } template <> really_inline typename SuperVector<16>::movemask_type SuperVector<16>::eqmask(SuperVector<16> const b) const { return eq(b).movemask(); } #ifdef HS_OPTIMIZE template <> really_inline SuperVector<16> SuperVector<16>::operator<<(uint8_t const N) const { return {_mm_slli_si128(u.v128[0], N)}; } #else template <> really_inline SuperVector<16> SuperVector<16>::operator<<(uint8_t const N) const { switch(N) { case 0: return {_mm_slli_si128(u.v128[0], 0)}; break; case 1: return {_mm_slli_si128(u.v128[0], 1)}; break; case 2: return {_mm_slli_si128(u.v128[0], 2)}; break; case 3: return {_mm_slli_si128(u.v128[0], 3)}; break; case 4: return {_mm_slli_si128(u.v128[0], 4)}; break; case 5: return {_mm_slli_si128(u.v128[0], 5)}; break; case 6: return {_mm_slli_si128(u.v128[0], 6)}; break; case 7: return {_mm_slli_si128(u.v128[0], 7)}; break; case 8: return {_mm_slli_si128(u.v128[0], 8)}; break; case 9: return {_mm_slli_si128(u.v128[0], 9)}; break; case 10: return {_mm_slli_si128(u.v128[0], 10)}; break; case 11: return {_mm_slli_si128(u.v128[0], 11)}; break; case 12: return {_mm_slli_si128(u.v128[0], 12)}; break; case 13: return {_mm_slli_si128(u.v128[0], 13)}; break; case 14: return {_mm_slli_si128(u.v128[0], 14)}; break; case 15: return {_mm_slli_si128(u.v128[0], 15)}; break; default: break; } return *this; } #endif #ifdef HS_OPTIMIZE template <> really_inline SuperVector<16> SuperVector<16>::operator>>(uint8_t const N) const { return {_mm_srli_si128(u.v128[0], N)}; } #else template <> really_inline SuperVector<16> SuperVector<16>::operator>>(uint8_t const N) const { switch(N) { case 0: return {_mm_srli_si128(u.v128[0], 0)}; break; case 1: return {_mm_srli_si128(u.v128[0], 1)}; break; case 2: return {_mm_srli_si128(u.v128[0], 2)}; break; case 3: return {_mm_srli_si128(u.v128[0], 3)}; break; case 4: return {_mm_srli_si128(u.v128[0], 4)}; break; case 5: return {_mm_srli_si128(u.v128[0], 5)}; break; case 6: return {_mm_srli_si128(u.v128[0], 6)}; break; case 7: return {_mm_srli_si128(u.v128[0], 7)}; break; case 8: return {_mm_srli_si128(u.v128[0], 8)}; break; case 9: return {_mm_srli_si128(u.v128[0], 9)}; break; case 10: return {_mm_srli_si128(u.v128[0], 10)}; break; case 11: return {_mm_srli_si128(u.v128[0], 11)}; break; case 12: return {_mm_srli_si128(u.v128[0], 12)}; break; case 13: return {_mm_srli_si128(u.v128[0], 13)}; break; case 14: return {_mm_srli_si128(u.v128[0], 14)}; break; case 15: return {_mm_srli_si128(u.v128[0], 15)}; break; default: break; } return *this; } #endif template <> really_inline SuperVector<16> SuperVector<16>::loadu(void const *ptr) { return _mm_loadu_si128((const m128 *)ptr); } template <> really_inline SuperVector<16> SuperVector<16>::load(void const *ptr) { assert(ISALIGNED_N(ptr, alignof(SuperVector::size))); ptr = assume_aligned(ptr, SuperVector::size); return _mm_load_si128((const m128 *)ptr); } template <> really_inline SuperVector<16> SuperVector<16>::loadu_maskz(void const *ptr, uint8_t const len) { uint8_t alignment = (uintptr_t)(ptr) & 15; printf("alignment = %d\n", alignment); SuperVector<16> maskb = Ones() << alignment; SuperVector<16> maske = Ones() >> (16 -len - alignment); print_m128_16x8("maskb", maskb.u.v128[0]); print_m128_16x8("maske", maske.u.v128[0]); SuperVector<16> v = _mm_loadu_si128((const m128 *)ptr); print_m128_16x8("v", v.u.v128[0]); return {maskb.u.v128[0] & maske.u.v128[0] & v.u.v128[0]}; } #ifdef HS_OPTIMIZE template<> really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> l, int8_t offset) { return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], offset)}; } #else template<> really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> l, int8_t offset) { switch(offset) { case 0: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 0)};; break; case 1: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 1)}; break; case 2: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 2)}; break; case 3: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 3)}; break; case 4: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 4)}; break; case 5: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 5)}; break; case 6: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 6)}; break; case 7: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 7)}; break; case 8: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 8)}; break; case 9: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 9)}; break; case 10: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 10)}; break; case 11: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 11)}; break; case 12: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 12)}; break; case 13: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 13)}; break; case 14: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 14)}; break; case 15: return {_mm_alignr_epi8(u.v128[0], l.u.v128[0], 15)}; break; default: break; } return *this; } #endif template<> really_inline SuperVector<16> SuperVector<16>::pshufb(SuperVector<16> b) { return {_mm_shuffle_epi8(u.v128[0], b.u.v128[0])}; } #ifdef HS_HS_OPTIMIZE template<> really_inline SuperVector<16> SuperVector<16>::lshift64(uint8_t const l) { return {_mm_slli_epi64(u.v128[0], l)}; } #else template<> really_inline SuperVector<16> SuperVector<16>::lshift64(uint8_t const l) { switch(l) { case 0: return {_mm_slli_epi64(u.v128[0], 0)}; break; case 1: return {_mm_slli_epi64(u.v128[0], 1)}; break; case 2: return {_mm_slli_epi64(u.v128[0], 2)}; break; case 3: return {_mm_slli_epi64(u.v128[0], 3)}; break; case 4: return {_mm_slli_epi64(u.v128[0], 4)}; break; case 5: return {_mm_slli_epi64(u.v128[0], 5)}; break; case 6: return {_mm_slli_epi64(u.v128[0], 6)}; break; case 7: return {_mm_slli_epi64(u.v128[0], 7)}; break; case 8: return {_mm_slli_epi64(u.v128[0], 8)}; break; case 9: return {_mm_slli_epi64(u.v128[0], 9)}; break; case 10: return {_mm_slli_epi64(u.v128[0], 10)}; break; case 11: return {_mm_slli_epi64(u.v128[0], 11)}; break; case 12: return {_mm_slli_epi64(u.v128[0], 12)}; break; case 13: return {_mm_slli_epi64(u.v128[0], 13)}; break; case 14: return {_mm_slli_epi64(u.v128[0], 14)}; break; case 15: return {_mm_slli_epi64(u.v128[0], 15)}; break; default: break; } return *this; } #endif #ifdef HS_HS_OPTIMIZE template<> really_inline SuperVector<16> SuperVector<16>::rshift64(uint8_t const l) { return {_mm_srli_epi64(u.v128[0], l)}; } #else template<> really_inline SuperVector<16> SuperVector<16>::rshift64(uint8_t const l) { switch(l) { case 0: return {_mm_srli_epi64(u.v128[0], 0)}; break; case 1: return {_mm_srli_epi64(u.v128[0], 1)}; break; case 2: return {_mm_srli_epi64(u.v128[0], 2)}; break; case 3: return {_mm_srli_epi64(u.v128[0], 3)}; break; case 4: return {_mm_srli_epi64(u.v128[0], 4)}; break; case 5: return {_mm_srli_epi64(u.v128[0], 5)}; break; case 6: return {_mm_srli_epi64(u.v128[0], 6)}; break; case 7: return {_mm_srli_epi64(u.v128[0], 7)}; break; case 8: return {_mm_srli_epi64(u.v128[0], 8)}; break; case 9: return {_mm_srli_epi64(u.v128[0], 9)}; break; case 10: return {_mm_srli_epi64(u.v128[0], 10)}; break; case 11: return {_mm_srli_epi64(u.v128[0], 11)}; break; case 12: return {_mm_srli_epi64(u.v128[0], 12)}; break; case 13: return {_mm_srli_epi64(u.v128[0], 13)}; break; case 14: return {_mm_srli_epi64(u.v128[0], 14)}; break; case 15: return {_mm_srli_epi64(u.v128[0], 15)}; break; default: break; } return *this; } #endif // 256-bit AVX2 implementation #if defined(HAVE_AVX2) template<> really_inline SuperVector<32>::SuperVector(SuperVector const &o) { u.v256[0] = o.u.v256[0]; } template<> really_inline SuperVector<32>::SuperVector(typename base_type::type const v) { u.v256[0] = v; }; template<> template<> really_inline SuperVector<32>::SuperVector(int8_t const o) { u.v256[0] = _mm256_set1_epi8(o); } template<> template<> really_inline SuperVector<32>::SuperVector(uint8_t const o) { u.v256[0] = _mm256_set1_epi8(static_cast(o)); } template<> template<> really_inline SuperVector<32>::SuperVector(int16_t const o) { u.v256[0] = _mm256_set1_epi16(o); } template<> template<> really_inline SuperVector<32>::SuperVector(uint16_t const o) { u.v256[0] = _mm256_set1_epi16(static_cast(o)); } template<> template<> really_inline SuperVector<32>::SuperVector(int32_t const o) { u.v256[0] = _mm256_set1_epi32(o); } template<> template<> really_inline SuperVector<32>::SuperVector(uint32_t const o) { u.v256[0] = _mm256_set1_epi32(static_cast(o)); } template<> template<> really_inline SuperVector<32>::SuperVector(int64_t const o) { u.v256[0] = _mm256_set1_epi64x(o); } template<> template<> really_inline SuperVector<32>::SuperVector(uint64_t const o) { u.v256[0] = _mm256_set1_epi64x(static_cast(o)); } template <> really_inline void SuperVector<32>::operator=(SuperVector<32> const &o) { u.v256[0] = o.u.v256[0]; } template <> really_inline SuperVector<32> SuperVector<32>::operator&(SuperVector<32> const b) const { return {_mm256_and_si256(u.v256[0], b.u.v256[0])}; } template <> really_inline SuperVector<32> SuperVector<32>::eq(SuperVector<32> const b) const { return {_mm256_cmpeq_epi8(u.v256[0], b.u.v256[0])}; } template <> really_inline typename SuperVector<32>::movemask_type SuperVector<32>::movemask(void)const { return _mm256_movemask_epi8(u.v256[0]); } template <> really_inline typename SuperVector<32>::movemask_type SuperVector<32>::eqmask(SuperVector<32> const b) const { return eq(b).movemask(); } #ifndef DEBUG template <> really_inline SuperVector<32> SuperVector<32>::operator<<(uint8_t const N) const { return {_mm256_slli_si256(u.v256[0], N)}; } #else template <> really_inline SuperVector<32> SuperVector<32>::operator<<(uint8_t const N) const { switch(N) { case 0: return {_mm256_slli_si256(u.v256[0], 0)}; break; case 1: return {_mm256_slli_si256(u.v256[0], 1)}; break; case 2: return {_mm256_slli_si256(u.v256[0], 2)}; break; case 3: return {_mm256_slli_si256(u.v256[0], 3)}; break; case 4: return {_mm256_slli_si256(u.v256[0], 4)}; break; case 5: return {_mm256_slli_si256(u.v256[0], 5)}; break; case 6: return {_mm256_slli_si256(u.v256[0], 6)}; break; case 7: return {_mm256_slli_si256(u.v256[0], 7)}; break; case 8: return {_mm256_slli_si256(u.v256[0], 8)}; break; case 9: return {_mm256_slli_si256(u.v256[0], 9)}; break; case 10: return {_mm256_slli_si256(u.v256[0], 10)}; break; case 11: return {_mm256_slli_si256(u.v256[0], 11)}; break; case 12: return {_mm256_slli_si256(u.v256[0], 12)}; break; case 13: return {_mm256_slli_si256(u.v256[0], 13)}; break; case 14: return {_mm256_slli_si256(u.v256[0], 14)}; break; case 15: return {_mm256_slli_si256(u.v256[0], 15)}; break; default: break; } return *this; } #endif template <> really_inline SuperVector<32> SuperVector<32>::loadu(void const *ptr) { return {_mm256_loadu_si256((const m256 *)ptr)}; } template <> really_inline SuperVector<32> SuperVector<32>::load(void const *ptr) { assert(ISALIGNED_N(ptr, alignof(SuperVector::size))); ptr = assume_aligned(ptr, SuperVector::size); return {_mm256_load_si256((const m256 *)ptr)}; } template <> really_inline SuperVector<32> SuperVector<32>::loadu_mask(void const *ptr, size_t const len) { return {_mm256_loadu_si256((const m256 *)ptr)}; } #ifndef DEBUG template<> really_inline SuperVector<32> SuperVector<32>::alignr(SuperVector<32> l, int8_t offset) { return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], offset)}; } #else template<> really_inline SuperVector<32> SuperVector<32>::alignr(SuperVector<32> l, int8_t offset) { switch(offset) { case 0: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 0)};; break; case 1: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 1)}; break; case 2: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 2)}; break; case 3: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 3)}; break; case 4: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 4)}; break; case 5: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 5)}; break; case 6: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 6)}; break; case 7: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 7)}; break; case 8: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 8)}; break; case 9: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 9)}; break; case 10: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 10)}; break; case 11: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 11)}; break; case 12: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 12)}; break; case 13: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 13)}; break; case 14: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 14)}; break; case 15: return {_mm256_alignr_epi8(u.v256[0], l.u.v256[0], 15)}; break; default: break; } return *this; } #endif /* template<> really_inline SuperVector<32> SuperVector<32>::alignr(SuperVector<32> l, int8_t offset) { printf("offset = %d\n", offset); //u.v256[0] = _mm256_set_epi8(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32); //l.u.v256[0] = _mm256_set_epi8(101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132); print_m256_32x8("this", u.v256[0]); print_m256_32x8("l", l.u.v256[0]); __m128i v1 = _mm256_extracti128_si256(u.v256[0], 0); print1_m128_16x8("v1", v1); __m128i v2 = _mm256_extracti128_si256(u.v256[0], 1); print1_m128_16x8("v2", v2); __m128i l1 = _mm256_extracti128_si256(l.u.v256[0], 0); print1_m128_16x8("l1", l1); __m128i y1 = _mm_alignr_epi8(v2, l1, 16 - offset); print1_m128_16x8("y1", y1); __m128i y2 = _mm_alignr_epi8(v2, v1, 16 - offset); print1_m128_16x8("y2", y2); print_m256_32x8("this", _mm256_set_m128i(y1, y2)); return {_mm256_set_m128i(y1, y2)}; }*/ // Constants template<> really_inline SuperVector<32> SuperVector<32>::Ones(void) { return {_mm256_set1_epi8(0xFF)}; } template<> really_inline SuperVector<32> SuperVector<32>::Zeroes(void) { return {_mm256_set1_epi8(0)}; } #endif // HAVE_AVX2 // 512-bit AVX512 implementation #if defined(HAVE_AVX512) template<> really_inline SuperVector<64>::SuperVector(SuperVector const &o) { u.v512[0] = o.u.v512[0]; } template<> really_inline SuperVector<64>::SuperVector(typename base_type::type const v) { u.v512[0] = v; }; template<> template<> really_inline SuperVector<64>::SuperVector(int8_t const o) { u.v512[0] = _mm512_set1_epi8(o); } template<> template<> really_inline SuperVector<64>::SuperVector(uint8_t const o) { u.v512[0] = _mm512_set1_epi8(static_cast(o)); } template<> template<> really_inline SuperVector<64>::SuperVector(int16_t const o) { u.v512[0] = _mm512_set1_epi16(o); } template<> template<> really_inline SuperVector<64>::SuperVector(uint16_t const o) { u.v512[0] = _mm512_set1_epi16(static_cast(o)); } template<> template<> really_inline SuperVector<64>::SuperVector(int32_t const o) { u.v512[0] = _mm512_set1_epi32(o); } template<> template<> really_inline SuperVector<64>::SuperVector(uint32_t const o) { u.v512[0] = _mm512_set1_epi32(static_cast(o)); } template<> template<> really_inline SuperVector<64>::SuperVector(int64_t const o) { u.v512[0] = _mm512_set1_epi64(o); } template<> template<> really_inline SuperVector<64>::SuperVector(uint64_t const o) { u.v512[0] = _mm512_set1_epi64(static_cast(o)); } template <> really_inline void SuperVector<64>::operator=(SuperVector<64> const &o) { u.v512[0] = o.u.v512[0]; } template <> really_inline SuperVector<64> SuperVector<64>::operator&(SuperVector<64> const b) const { return {_mm512_and_si512(u.v512[0], b.u.v512[0])}; } template <> really_inline typename SuperVector<64>::movemask_type SuperVector<64>::eqmask(SuperVector<64> const b) const { return _mm512_cmpeq_epi8_mask(u.v512[0], b.u.v512[0]); } // template <> // really_inline SuperVector<64> SuperVector<64>::operator<<(uint8_t const N) const // { // return {_mm512_slli_si512(u.v512[0], N)}; // } template <> really_inline SuperVector<64> SuperVector<64>::loadu(void const *ptr) { return {_mm512_loadu_si512((const m512 *)ptr)}; } template <> really_inline SuperVector<64> SuperVector<64>::load(void const *ptr) { assert(ISALIGNED_N(ptr, alignof(SuperVector::size))); ptr = assume_aligned(ptr, SuperVector::size); return {_mm512_load_si512((const m512 *)ptr)}; } #ifndef DEBUG template<> really_inline SuperVector<64> SuperVector<64>::alignr(SuperVector<64> l, int8_t offset) { return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], offset)}; } #else template<> really_inline SuperVector<64> SuperVector<64>::alignr(SuperVector<64> l, int8_t offset) { switch(offset) { case 0: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 0)};; break; case 1: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 1)}; break; case 2: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 2)}; break; case 3: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 3)}; break; case 4: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 4)}; break; case 5: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 5)}; break; case 6: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 6)}; break; case 7: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 7)}; break; case 8: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 8)}; break; case 9: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 9)}; break; case 10: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 10)}; break; case 11: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 11)}; break; case 12: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 12)}; break; case 13: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 13)}; break; case 14: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 14)}; break; case 15: return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], 15)}; break; default: break; } return *this; } #endif // Constants template<> really_inline SuperVector<64> SuperVector<64>::Ones(void) { return {_mm512_set1_epi8(0xFF)}; } template<> really_inline SuperVector<64> SuperVector<64>::Zeroes(void) { return {_mm512_set1_epi8(0)}; } #endif // HAVE_AVX512 #endif // SIMD_IMPL_HPP