/* * Copyright (c) 2016-2017, Intel Corporation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \file * \brief Teddy literal matcher: AVX2 engine runtime. */ #include "fdr_internal.h" #include "flood_runtime.h" #include "teddy.h" #include "teddy_internal.h" #include "teddy_runtime_common.h" #include "util/arch.h" #include "util/simd_utils.h" #if defined(HAVE_AVX2) #ifdef ARCH_64_BIT #define CONFIRM_FAT_TEDDY(var, bucket, offset, reason, conf_fn) \ do { \ if (unlikely(isnonzero256(var))) { \ m256 swap = swap128in256(var); \ m256 r = interleave256lo(var, swap); \ u64a part1 = extractlow64from256(r); \ u64a part2 = extract64from256(r, 1); \ r = interleave256hi(var, swap); \ u64a part3 = extractlow64from256(r); \ u64a part4 = extract64from256(r, 1); \ if (unlikely(part1)) { \ conf_fn(&part1, bucket, offset, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ if (unlikely(part2)) { \ conf_fn(&part2, bucket, offset + 4, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ if (unlikely(part3)) { \ conf_fn(&part3, bucket, offset + 8, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ if (unlikely(part4)) { \ conf_fn(&part4, bucket, offset + 12, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ } \ } while (0); #else #define CONFIRM_FAT_TEDDY(var, bucket, offset, reason, conf_fn) \ do { \ if (unlikely(isnonzero256(var))) { \ m256 swap = swap128in256(var); \ m256 r = interleave256lo(var, swap); \ u32 part1 = extractlow32from256(r); \ u32 part2 = extract32from256(r, 1); \ u32 part3 = extract32from256(r, 2); \ u32 part4 = extract32from256(r, 3); \ r = interleave256hi(var, swap); \ u32 part5 = extractlow32from256(r); \ u32 part6 = extract32from256(r, 1); \ u32 part7 = extract32from256(r, 2); \ u32 part8 = extract32from256(r, 3); \ if (unlikely(part1)) { \ conf_fn(&part1, bucket, offset, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ if (unlikely(part2)) { \ conf_fn(&part2, bucket, offset + 2, confBase, reason, a, ptr, \ &control, &last_match); \ } \ if (unlikely(part3)) { \ conf_fn(&part3, bucket, offset + 4, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ if (unlikely(part4)) { \ conf_fn(&part4, bucket, offset + 6, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ if (unlikely(part5)) { \ conf_fn(&part5, bucket, offset + 8, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ if (unlikely(part6)) { \ conf_fn(&part6, bucket, offset + 10, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ if (unlikely(part7)) { \ conf_fn(&part7, bucket, offset + 12, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ if (unlikely(part8)) { \ conf_fn(&part8, bucket, offset + 14, confBase, reason, a, ptr, \ &control, &last_match); \ CHECK_HWLM_TERMINATE_MATCHING; \ } \ } \ } while (0); #endif static really_inline m256 vectoredLoad2x128(m256 *p_mask, const u8 *ptr, const u8 *lo, const u8 *hi, const u8 *buf_history, size_t len_history, const u32 nMasks) { m128 p_mask128; m256 ret = set2x128(vectoredLoad128(&p_mask128, ptr, lo, hi, buf_history, len_history, nMasks)); *p_mask = set2x128(p_mask128); return ret; } static really_inline m256 prep_conf_fat_teddy_m1(const m256 *maskBase, m256 val) { m256 mask = set32x8(0xf); m256 lo = and256(val, mask); m256 hi = and256(rshift64_m256(val, 4), mask); return and256(pshufb_m256(maskBase[0*2], lo), pshufb_m256(maskBase[0*2+1], hi)); } static really_inline m256 prep_conf_fat_teddy_m2(const m256 *maskBase, m256 *old_1, m256 val) { m256 mask = set32x8(0xf); m256 lo = and256(val, mask); m256 hi = and256(rshift64_m256(val, 4), mask); m256 r = prep_conf_fat_teddy_m1(maskBase, val); m256 res_1 = and256(pshufb_m256(maskBase[1*2], lo), pshufb_m256(maskBase[1*2+1], hi)); m256 res_shifted_1 = vpalignr(res_1, *old_1, 16-1); *old_1 = res_1; return and256(r, res_shifted_1); } static really_inline m256 prep_conf_fat_teddy_m3(const m256 *maskBase, m256 *old_1, m256 *old_2, m256 val) { m256 mask = set32x8(0xf); m256 lo = and256(val, mask); m256 hi = and256(rshift64_m256(val, 4), mask); m256 r = prep_conf_fat_teddy_m2(maskBase, old_1, val); m256 res_2 = and256(pshufb_m256(maskBase[2*2], lo), pshufb_m256(maskBase[2*2+1], hi)); m256 res_shifted_2 = vpalignr(res_2, *old_2, 16-2); *old_2 = res_2; return and256(r, res_shifted_2); } static really_inline m256 prep_conf_fat_teddy_m4(const m256 *maskBase, m256 *old_1, m256 *old_2, m256 *old_3, m256 val) { m256 mask = set32x8(0xf); m256 lo = and256(val, mask); m256 hi = and256(rshift64_m256(val, 4), mask); m256 r = prep_conf_fat_teddy_m3(maskBase, old_1, old_2, val); m256 res_3 = and256(pshufb_m256(maskBase[3*2], lo), pshufb_m256(maskBase[3*2+1], hi)); m256 res_shifted_3 = vpalignr(res_3, *old_3, 16-3); *old_3 = res_3; return and256(r, res_shifted_3); } static really_inline const m256 *getMaskBase_avx2(const struct Teddy *teddy) { return (const m256 *)((const u8 *)teddy + ROUNDUP_CL(sizeof(struct Teddy))); } static really_inline const u32 *getConfBase_avx2(const struct Teddy *teddy, u8 numMask) { return (const u32 *)((const u8 *)teddy + ROUNDUP_CL(sizeof(struct Teddy)) + ROUNDUP_CL((numMask * 32 * 2))); } hwlm_error_t fdr_exec_teddy_avx2_msks1_fat(const struct FDR *fdr, const struct FDR_Runtime_Args *a, hwlm_group_t control) { const u8 *buf_end = a->buf + a->len; const u8 *ptr = a->buf + a->start_offset; u32 floodBackoff = FLOOD_BACKOFF_START; const u8 *tryFloodDetect = a->firstFloodDetect; u32 last_match = (u32)-1; const struct Teddy *teddy = (const struct Teddy *)fdr; const size_t iterBytes = 32; DEBUG_PRINTF("params: buf %p len %zu start_offset %zu\n", a->buf, a->len, a->start_offset); const m256 *maskBase = getMaskBase_avx2(teddy); const u32 *confBase = getConfBase_avx2(teddy, 1); const u8 *mainStart = ROUNDUP_PTR(ptr, 16); DEBUG_PRINTF("derive: ptr: %p mainstart %p\n", ptr, mainStart); if (ptr < mainStart) { ptr = mainStart - 16; m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 1); m256 r_0 = prep_conf_fat_teddy_m1(maskBase, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit1_teddy); ptr += 16; } if (ptr + 16 < buf_end) { m256 r_0 = prep_conf_fat_teddy_m1(maskBase, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit1_teddy); ptr += 16; } for ( ; ptr + iterBytes <= buf_end; ptr += iterBytes) { __builtin_prefetch(ptr + (iterBytes*4)); CHECK_FLOOD; m256 r_0 = prep_conf_fat_teddy_m1(maskBase, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, NOT_CAUTIOUS, do_confWithBit1_teddy); m256 r_1 = prep_conf_fat_teddy_m1(maskBase, load2x128(ptr + 16)); CONFIRM_FAT_TEDDY(r_1, 16, 16, NOT_CAUTIOUS, do_confWithBit1_teddy); } for (; ptr < buf_end; ptr += 16) { m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 1); m256 r_0 = prep_conf_fat_teddy_m1(maskBase, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit1_teddy); } return HWLM_SUCCESS; } hwlm_error_t fdr_exec_teddy_avx2_msks1_pck_fat(const struct FDR *fdr, const struct FDR_Runtime_Args *a, hwlm_group_t control) { const u8 *buf_end = a->buf + a->len; const u8 *ptr = a->buf + a->start_offset; u32 floodBackoff = FLOOD_BACKOFF_START; const u8 *tryFloodDetect = a->firstFloodDetect; u32 last_match = (u32)-1; const struct Teddy *teddy = (const struct Teddy *)fdr; const size_t iterBytes = 32; DEBUG_PRINTF("params: buf %p len %zu start_offset %zu\n", a->buf, a->len, a->start_offset); const m256 *maskBase = getMaskBase_avx2(teddy); const u32 *confBase = getConfBase_avx2(teddy, 1); const u8 *mainStart = ROUNDUP_PTR(ptr, 16); DEBUG_PRINTF("derive: ptr: %p mainstart %p\n", ptr, mainStart); if (ptr < mainStart) { ptr = mainStart - 16; m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 1); m256 r_0 = prep_conf_fat_teddy_m1(maskBase, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); ptr += 16; } if (ptr + 16 < buf_end) { m256 r_0 = prep_conf_fat_teddy_m1(maskBase, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); ptr += 16; } for ( ; ptr + iterBytes <= buf_end; ptr += iterBytes) { __builtin_prefetch(ptr + (iterBytes*4)); CHECK_FLOOD; m256 r_0 = prep_conf_fat_teddy_m1(maskBase, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, NOT_CAUTIOUS, do_confWithBit_teddy); m256 r_1 = prep_conf_fat_teddy_m1(maskBase, load2x128(ptr + 16)); CONFIRM_FAT_TEDDY(r_1, 16, 16, NOT_CAUTIOUS, do_confWithBit_teddy); } for (; ptr < buf_end; ptr += 16) { m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 1); m256 r_0 = prep_conf_fat_teddy_m1(maskBase, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); } return HWLM_SUCCESS; } hwlm_error_t fdr_exec_teddy_avx2_msks2_fat(const struct FDR *fdr, const struct FDR_Runtime_Args *a, hwlm_group_t control) { const u8 *buf_end = a->buf + a->len; const u8 *ptr = a->buf + a->start_offset; u32 floodBackoff = FLOOD_BACKOFF_START; const u8 *tryFloodDetect = a->firstFloodDetect; u32 last_match = (u32)-1; const struct Teddy *teddy = (const struct Teddy *)fdr; const size_t iterBytes = 32; DEBUG_PRINTF("params: buf %p len %zu start_offset %zu\n", a->buf, a->len, a->start_offset); const m256 *maskBase = getMaskBase_avx2(teddy); const u32 *confBase = getConfBase_avx2(teddy, 2); m256 res_old_1 = ones256(); const u8 *mainStart = ROUNDUP_PTR(ptr, 16); DEBUG_PRINTF("derive: ptr: %p mainstart %p\n", ptr, mainStart); if (ptr < mainStart) { ptr = mainStart - 16; m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 2); m256 r_0 = prep_conf_fat_teddy_m2(maskBase, &res_old_1, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBitMany_teddy); ptr += 16; } if (ptr + 16 < buf_end) { m256 r_0 = prep_conf_fat_teddy_m2(maskBase, &res_old_1, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBitMany_teddy); ptr += 16; } for ( ; ptr + iterBytes <= buf_end; ptr += iterBytes) { __builtin_prefetch(ptr + (iterBytes*4)); CHECK_FLOOD; m256 r_0 = prep_conf_fat_teddy_m2(maskBase, &res_old_1, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, NOT_CAUTIOUS, do_confWithBitMany_teddy); m256 r_1 = prep_conf_fat_teddy_m2(maskBase, &res_old_1, load2x128(ptr + 16)); CONFIRM_FAT_TEDDY(r_1, 16, 16, NOT_CAUTIOUS, do_confWithBitMany_teddy); } for (; ptr < buf_end; ptr += 16) { m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 2); m256 r_0 = prep_conf_fat_teddy_m2(maskBase, &res_old_1, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBitMany_teddy); } return HWLM_SUCCESS; } hwlm_error_t fdr_exec_teddy_avx2_msks2_pck_fat(const struct FDR *fdr, const struct FDR_Runtime_Args *a, hwlm_group_t control) { const u8 *buf_end = a->buf + a->len; const u8 *ptr = a->buf + a->start_offset; u32 floodBackoff = FLOOD_BACKOFF_START; const u8 *tryFloodDetect = a->firstFloodDetect; u32 last_match = (u32)-1; const struct Teddy *teddy = (const struct Teddy *)fdr; const size_t iterBytes = 32; DEBUG_PRINTF("params: buf %p len %zu start_offset %zu\n", a->buf, a->len, a->start_offset); const m256 *maskBase = getMaskBase_avx2(teddy); const u32 *confBase = getConfBase_avx2(teddy, 2); m256 res_old_1 = ones256(); const u8 *mainStart = ROUNDUP_PTR(ptr, 16); DEBUG_PRINTF("derive: ptr: %p mainstart %p\n", ptr, mainStart); if (ptr < mainStart) { ptr = mainStart - 16; m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 2); m256 r_0 = prep_conf_fat_teddy_m2(maskBase, &res_old_1, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); ptr += 16; } if (ptr + 16 < buf_end) { m256 r_0 = prep_conf_fat_teddy_m2(maskBase, &res_old_1, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); ptr += 16; } for ( ; ptr + iterBytes <= buf_end; ptr += iterBytes) { __builtin_prefetch(ptr + (iterBytes*4)); CHECK_FLOOD; m256 r_0 = prep_conf_fat_teddy_m2(maskBase, &res_old_1, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, NOT_CAUTIOUS, do_confWithBit_teddy); m256 r_1 = prep_conf_fat_teddy_m2(maskBase, &res_old_1, load2x128(ptr + 16)); CONFIRM_FAT_TEDDY(r_1, 16, 16, NOT_CAUTIOUS, do_confWithBit_teddy); } for (; ptr < buf_end; ptr += 16) { m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 2); m256 r_0 = prep_conf_fat_teddy_m2(maskBase, &res_old_1, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); } return HWLM_SUCCESS; } hwlm_error_t fdr_exec_teddy_avx2_msks3_fat(const struct FDR *fdr, const struct FDR_Runtime_Args *a, hwlm_group_t control) { const u8 *buf_end = a->buf + a->len; const u8 *ptr = a->buf + a->start_offset; u32 floodBackoff = FLOOD_BACKOFF_START; const u8 *tryFloodDetect = a->firstFloodDetect; u32 last_match = (u32)-1; const struct Teddy *teddy = (const struct Teddy *)fdr; const size_t iterBytes = 32; DEBUG_PRINTF("params: buf %p len %zu start_offset %zu\n", a->buf, a->len, a->start_offset); const m256 *maskBase = getMaskBase_avx2(teddy); const u32 *confBase = getConfBase_avx2(teddy, 3); m256 res_old_1 = ones256(); m256 res_old_2 = ones256(); const u8 *mainStart = ROUNDUP_PTR(ptr, 16); DEBUG_PRINTF("derive: ptr: %p mainstart %p\n", ptr, mainStart); if (ptr < mainStart) { ptr = mainStart - 16; m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 3); m256 r_0 = prep_conf_fat_teddy_m3(maskBase, &res_old_1, &res_old_2, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBitMany_teddy); ptr += 16; } if (ptr + 16 < buf_end) { m256 r_0 = prep_conf_fat_teddy_m3(maskBase, &res_old_1, &res_old_2, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBitMany_teddy); ptr += 16; } for ( ; ptr + iterBytes <= buf_end; ptr += iterBytes) { __builtin_prefetch(ptr + (iterBytes*4)); CHECK_FLOOD; m256 r_0 = prep_conf_fat_teddy_m3(maskBase, &res_old_1, &res_old_2, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, NOT_CAUTIOUS, do_confWithBitMany_teddy); m256 r_1 = prep_conf_fat_teddy_m3(maskBase, &res_old_1, &res_old_2, load2x128(ptr + 16)); CONFIRM_FAT_TEDDY(r_1, 16, 16, NOT_CAUTIOUS, do_confWithBitMany_teddy); } for (; ptr < buf_end; ptr += 16) { m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 3); m256 r_0 = prep_conf_fat_teddy_m3(maskBase, &res_old_1, &res_old_2, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBitMany_teddy); } return HWLM_SUCCESS; } hwlm_error_t fdr_exec_teddy_avx2_msks3_pck_fat(const struct FDR *fdr, const struct FDR_Runtime_Args *a, hwlm_group_t control) { const u8 *buf_end = a->buf + a->len; const u8 *ptr = a->buf + a->start_offset; u32 floodBackoff = FLOOD_BACKOFF_START; const u8 *tryFloodDetect = a->firstFloodDetect; u32 last_match = (u32)-1; const struct Teddy *teddy = (const struct Teddy *)fdr; const size_t iterBytes = 32; DEBUG_PRINTF("params: buf %p len %zu start_offset %zu\n", a->buf, a->len, a->start_offset); const m256 *maskBase = getMaskBase_avx2(teddy); const u32 *confBase = getConfBase_avx2(teddy, 3); m256 res_old_1 = ones256(); m256 res_old_2 = ones256(); const u8 *mainStart = ROUNDUP_PTR(ptr, 16); DEBUG_PRINTF("derive: ptr: %p mainstart %p\n", ptr, mainStart); if (ptr < mainStart) { ptr = mainStart - 16; m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 3); m256 r_0 = prep_conf_fat_teddy_m3(maskBase, &res_old_1, &res_old_2, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); ptr += 16; } if (ptr + 16 < buf_end) { m256 r_0 = prep_conf_fat_teddy_m3(maskBase, &res_old_1, &res_old_2, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); ptr += 16; } for ( ; ptr + iterBytes <= buf_end; ptr += iterBytes) { __builtin_prefetch(ptr + (iterBytes*4)); CHECK_FLOOD; m256 r_0 = prep_conf_fat_teddy_m3(maskBase, &res_old_1, &res_old_2, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, NOT_CAUTIOUS, do_confWithBit_teddy); m256 r_1 = prep_conf_fat_teddy_m3(maskBase, &res_old_1, &res_old_2, load2x128(ptr + 16)); CONFIRM_FAT_TEDDY(r_1, 16, 16, NOT_CAUTIOUS, do_confWithBit_teddy); } for (; ptr < buf_end; ptr += 16) { m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 3); m256 r_0 = prep_conf_fat_teddy_m3(maskBase, &res_old_1, &res_old_2, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); } return HWLM_SUCCESS; } hwlm_error_t fdr_exec_teddy_avx2_msks4_fat(const struct FDR *fdr, const struct FDR_Runtime_Args *a, hwlm_group_t control) { const u8 *buf_end = a->buf + a->len; const u8 *ptr = a->buf + a->start_offset; u32 floodBackoff = FLOOD_BACKOFF_START; const u8 *tryFloodDetect = a->firstFloodDetect; u32 last_match = (u32)-1; const struct Teddy *teddy = (const struct Teddy *)fdr; const size_t iterBytes = 32; DEBUG_PRINTF("params: buf %p len %zu start_offset %zu\n", a->buf, a->len, a->start_offset); const m256 *maskBase = getMaskBase_avx2(teddy); const u32 *confBase = getConfBase_avx2(teddy, 4); m256 res_old_1 = ones256(); m256 res_old_2 = ones256(); m256 res_old_3 = ones256(); const u8 *mainStart = ROUNDUP_PTR(ptr, 16); DEBUG_PRINTF("derive: ptr: %p mainstart %p\n", ptr, mainStart); if (ptr < mainStart) { ptr = mainStart - 16; m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 4); m256 r_0 = prep_conf_fat_teddy_m4(maskBase, &res_old_1, &res_old_2, &res_old_3, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBitMany_teddy); ptr += 16; } if (ptr + 16 < buf_end) { m256 r_0 = prep_conf_fat_teddy_m4(maskBase, &res_old_1, &res_old_2, &res_old_3, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBitMany_teddy); ptr += 16; } for ( ; ptr + iterBytes <= buf_end; ptr += iterBytes) { __builtin_prefetch(ptr + (iterBytes*4)); CHECK_FLOOD; m256 r_0 = prep_conf_fat_teddy_m4(maskBase, &res_old_1, &res_old_2, &res_old_3, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, NOT_CAUTIOUS, do_confWithBitMany_teddy); m256 r_1 = prep_conf_fat_teddy_m4(maskBase, &res_old_1, &res_old_2, &res_old_3, load2x128(ptr + 16)); CONFIRM_FAT_TEDDY(r_1, 16, 16, NOT_CAUTIOUS, do_confWithBitMany_teddy); } for (; ptr < buf_end; ptr += 16) { m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 4); m256 r_0 = prep_conf_fat_teddy_m4(maskBase, &res_old_1, &res_old_2, &res_old_3, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBitMany_teddy); } return HWLM_SUCCESS; } hwlm_error_t fdr_exec_teddy_avx2_msks4_pck_fat(const struct FDR *fdr, const struct FDR_Runtime_Args *a, hwlm_group_t control) { const u8 *buf_end = a->buf + a->len; const u8 *ptr = a->buf + a->start_offset; u32 floodBackoff = FLOOD_BACKOFF_START; const u8 *tryFloodDetect = a->firstFloodDetect; u32 last_match = (u32)-1; const struct Teddy *teddy = (const struct Teddy *)fdr; const size_t iterBytes = 32; DEBUG_PRINTF("params: buf %p len %zu start_offset %zu\n", a->buf, a->len, a->start_offset); const m256 *maskBase = getMaskBase_avx2(teddy); const u32 *confBase = getConfBase_avx2(teddy, 4); m256 res_old_1 = ones256(); m256 res_old_2 = ones256(); m256 res_old_3 = ones256(); const u8 *mainStart = ROUNDUP_PTR(ptr, 16); DEBUG_PRINTF("derive: ptr: %p mainstart %p\n", ptr, mainStart); if (ptr < mainStart) { ptr = mainStart - 16; m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 4); m256 r_0 = prep_conf_fat_teddy_m4(maskBase, &res_old_1, &res_old_2, &res_old_3, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); ptr += 16; } if (ptr + 16 < buf_end) { m256 r_0 = prep_conf_fat_teddy_m4(maskBase, &res_old_1, &res_old_2, &res_old_3, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); ptr += 16; } for ( ; ptr + iterBytes <= buf_end; ptr += iterBytes) { __builtin_prefetch(ptr + (iterBytes*4)); CHECK_FLOOD; m256 r_0 = prep_conf_fat_teddy_m4(maskBase, &res_old_1, &res_old_2, &res_old_3, load2x128(ptr)); CONFIRM_FAT_TEDDY(r_0, 16, 0, NOT_CAUTIOUS, do_confWithBit_teddy); m256 r_1 = prep_conf_fat_teddy_m4(maskBase, &res_old_1, &res_old_2, &res_old_3, load2x128(ptr + 16)); CONFIRM_FAT_TEDDY(r_1, 16, 16, NOT_CAUTIOUS, do_confWithBit_teddy); } for (; ptr < buf_end; ptr += 16) { m256 p_mask; m256 val_0 = vectoredLoad2x128(&p_mask, ptr, a->buf, buf_end, a->buf_history, a->len_history, 4); m256 r_0 = prep_conf_fat_teddy_m4(maskBase, &res_old_1, &res_old_2, &res_old_3, val_0); r_0 = and256(r_0, p_mask); CONFIRM_FAT_TEDDY(r_0, 16, 0, VECTORING, do_confWithBit_teddy); } return HWLM_SUCCESS; } #endif // HAVE_AVX2