/* * Copyright (c) 2015-2020, Intel Corporation * Copyright (c) 2020-2021, VectorCamp PC * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \file * \brief SIMD types and primitive operations. */ #ifndef ARCH_PPC64EL_SIMD_UTILS_H #define ARCH_PPC64EL_SIMD_UTILS_H #include #include "ue2common.h" #include "util/simd_types.h" #include "util/unaligned.h" #include "util/intrinsics.h" #include // for memcpy #if defined(__clang__) && (__clang_major__ == 15) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wdeprecate-lax-vec-conv-all" #endif // defined(__clang__) && (__clang_major__ == 15) typedef __vector unsigned long long int uint64x2_t; typedef __vector signed long long int int64x2_t; typedef __vector unsigned int uint32x4_t; typedef __vector signed int int32x4_t; typedef __vector unsigned short int uint16x8_t; typedef __vector signed short int int16x8_t; typedef __vector unsigned char uint8x16_t; typedef __vector signed char int8x16_t; typedef unsigned long long int ulong64_t; typedef signed long long int long64_t; static really_inline m128 ones128(void) { return (m128) vec_splat_u8(-1); } static really_inline m128 zeroes128(void) { return (m128) vec_splat_s32(0); } /** \brief Bitwise not for m128*/ static really_inline m128 not128(m128 a) { //return (m128)vec_xor(a, a); return (m128) vec_xor(a,ones128()); } /** \brief Return 1 if a and b are different otherwise 0 */ static really_inline int diff128(m128 a, m128 b) { return vec_any_ne(a, b); } static really_inline int isnonzero128(m128 a) { return !!diff128(a, zeroes128()); } /** * "Rich" version of diff128(). Takes two vectors a and b and returns a 4-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich128(m128 a, m128 b) { static const m128 movemask = { 1, 2, 4, 8 }; m128 mask = (m128) vec_cmpeq(a, b); // _mm_cmpeq_epi32 (a, b); mask = vec_and(not128(mask), movemask); m128 sum = vec_sums(mask, zeroes128()); return sum[3]; } /** * "Rich" version of diff128(), 64-bit variant. Takes two vectors a and b and * returns a 4-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_128(m128 a, m128 b) { static const uint64x2_t movemask = { 1, 4 }; uint64x2_t mask = (uint64x2_t) vec_cmpeq((uint64x2_t)a, (uint64x2_t)b); mask = (uint64x2_t) vec_and((uint64x2_t)not128((m128)mask), movemask); m128 sum = vec_sums((m128)mask, zeroes128()); return sum[3]; } static really_really_inline m128 add_2x64(m128 a, m128 b) { return (m128) vec_add((uint64x2_t)a, (uint64x2_t)b); } static really_really_inline m128 sub_2x64(m128 a, m128 b) { return (m128) vec_sub((uint64x2_t)a, (uint64x2_t)b); } static really_really_inline m128 lshift_m128(m128 a, unsigned b) { if (b == 0) return a; m128 sl = (m128) vec_splats((uint8_t) b << 3); m128 result = (m128) vec_slo((uint8x16_t) a, (uint8x16_t) sl); return result; } static really_really_inline m128 rshift_m128(m128 a, unsigned b) { if (b == 0) return a; m128 sl = (m128) vec_splats((uint8_t) b << 3); uint8x16_t result = vec_sro((uint8x16_t) a, (uint8x16_t) sl); return (m128) result; } static really_really_inline m128 lshift64_m128(m128 a, unsigned b) { uint64x2_t shift_indices = vec_splats((ulong64_t)b); return (m128) vec_sl((int64x2_t)a, shift_indices); } static really_really_inline m128 rshift64_m128(m128 a, unsigned b) { uint64x2_t shift_indices = vec_splats((ulong64_t)b); return (m128) vec_sr((int64x2_t)a, shift_indices); } static really_inline m128 eq128(m128 a, m128 b) { return (m128) vec_cmpeq((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 eq64_m128(m128 a, m128 b) { return (m128) vec_cmpeq((uint64x2_t)a, (uint64x2_t)b); } static really_inline u32 movemask128(m128 a) { static uint8x16_t perm = { 16, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; uint8x16_t bitmask = vec_gb((uint8x16_t) a); bitmask = (uint8x16_t) vec_perm(vec_splat_u8(0), bitmask, perm); u32 ALIGN_ATTR(16) movemask; vec_ste((uint32x4_t) bitmask, 0, &movemask); return movemask; } static really_inline m128 set1_16x8(u8 c) { return (m128) vec_splats(c); } static really_inline m128 set1_4x32(u32 c) { return (m128) vec_splats(c); } static really_inline m128 set1_2x64(u64a c) { return (m128) vec_splats(c); } static really_inline u32 movd(const m128 in) { return (u32) vec_extract((uint32x4_t)in, 0); } static really_inline u64a movq(const m128 in) { u64a ALIGN_ATTR(16) a[2]; vec_xst((uint64x2_t) in, 0, a); return a[0]; } /* another form of movq */ static really_inline m128 load_m128_from_u64a(const u64a *p) { m128 vec =(m128) vec_splats(*p); return rshift_m128(vec,8); } static really_inline u32 extract32from128(const m128 in, unsigned imm) { u32 ALIGN_ATTR(16) a[4]; vec_xst((uint32x4_t) in, 0, a); switch (imm) { case 0: return a[0];break; case 1: return a[1];break; case 2: return a[2];break; case 3: return a[3];break; default: return 0;break; } } static really_inline u64a extract64from128(const m128 in, unsigned imm) { u64a ALIGN_ATTR(16) a[2]; vec_xst((uint64x2_t) in, 0, a); switch (imm) { case 0: return a[0];break; case 1: return a[1];break; default: return 0; break; } } static really_inline m128 low64from128(const m128 in) { return rshift_m128(in,8); } static really_inline m128 high64from128(const m128 in) { return lshift_m128(in,8); } static really_inline m128 add128(m128 a, m128 b) { return (m128) vec_add((uint64x2_t)a, (uint64x2_t)b); } static really_inline m128 and128(m128 a, m128 b) { return (m128) vec_and((int8x16_t)a, (int8x16_t)b); } static really_inline m128 xor128(m128 a, m128 b) { return (m128) vec_xor((int8x16_t)a, (int8x16_t)b); } static really_inline m128 or128(m128 a, m128 b) { return (m128) vec_or((int8x16_t)a, (int8x16_t)b); } static really_inline m128 andnot128(m128 a, m128 b) { return (m128) and128(not128(a),b); } // aligned load static really_inline m128 load128(const void *ptr) { assert(ISALIGNED_N(ptr, alignof(m128))); // cppcheck-suppress cstyleCast return (m128) vec_xl(0, (const int32_t*)ptr); } // aligned store static really_inline void store128(void *ptr, m128 a) { assert(ISALIGNED_N(ptr, alignof(m128))); // cppcheck-suppress cstyleCast vec_st(a, 0, (int32_t*)ptr); } // unaligned load static really_inline m128 loadu128(const void *ptr) { // cppcheck-suppress cstyleCast return (m128) vec_xl(0, (const int32_t*)ptr); } // unaligned store static really_inline void storeu128(void *ptr, m128 a) { // cppcheck-suppress cstyleCast vec_xst(a, 0, (int32_t*)ptr); } // packed unaligned store of first N bytes static really_inline void storebytes128(void *ptr, m128 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m128 loadbytes128(const void *ptr, unsigned int n) { m128 a = zeroes128(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } #define CASE_ALIGN_VECTORS(a, b, offset) case offset: return (m128)vec_sld((int8x16_t)(a), (int8x16_t)(b), (16 - offset)); break; static really_really_inline m128 palignr_imm(m128 r, m128 l, int offset) { switch (offset) { case 0: return l; break; CASE_ALIGN_VECTORS(r, l, 1); CASE_ALIGN_VECTORS(r, l, 2); CASE_ALIGN_VECTORS(r, l, 3); CASE_ALIGN_VECTORS(r, l, 4); CASE_ALIGN_VECTORS(r, l, 5); CASE_ALIGN_VECTORS(r, l, 6); CASE_ALIGN_VECTORS(r, l, 7); CASE_ALIGN_VECTORS(r, l, 8); CASE_ALIGN_VECTORS(r, l, 9); CASE_ALIGN_VECTORS(r, l, 10); CASE_ALIGN_VECTORS(r, l, 11); CASE_ALIGN_VECTORS(r, l, 12); CASE_ALIGN_VECTORS(r, l, 13); CASE_ALIGN_VECTORS(r, l, 14); CASE_ALIGN_VECTORS(r, l, 15); case 16: return r; break; default: return zeroes128(); break; } } static really_really_inline m128 palignr(m128 r, m128 l, int offset) { if (offset == 0) return l; if (offset == 16) return r; #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(offset)) { return (m128)vec_sld((int8x16_t)(r), (int8x16_t)(l), 16 - offset); } #endif m128 sl = (m128) vec_splats((uint8_t) (offset << 3)); m128 sr = (m128) vec_splats((uint8_t) ((16 - offset) << 3)); m128 rhs = (m128) vec_slo((uint8x16_t) r, (uint8x16_t) sr); m128 lhs = (m128) vec_sro((uint8x16_t) l, (uint8x16_t) sl); return or128(lhs, rhs); } #undef CASE_ALIGN_VECTORS static really_really_inline m128 rshiftbyte_m128(m128 a, unsigned b) { return palignr_imm(zeroes128(), a, b); } static really_really_inline m128 lshiftbyte_m128(m128 a, unsigned b) { return palignr_imm(a, zeroes128(), 16 - b); } static really_inline m128 variable_byte_shift_m128(m128 in, s32 amount) { assert(amount >= -16 && amount <= 16); if (amount < 0) { return rshiftbyte_m128(in, -amount); } else { return lshiftbyte_m128(in, amount); } } static really_inline m128 mask1bit128(unsigned int n) { assert(n < sizeof(m128) * 8); static uint64x2_t onebit = { 1, 0 }; m128 octets = (m128) vec_splats((uint8_t) ((n / 8) << 3)); m128 bits = (m128) vec_splats((uint8_t) ((n % 8))); m128 mask = (m128) vec_slo((uint8x16_t) onebit, (uint8x16_t) octets); return (m128) vec_sll((uint8x16_t) mask, (uint8x16_t) bits); } // switches on bit N in the given vector. static really_inline void setbit128(m128 *ptr, unsigned int n) { *ptr = or128(mask1bit128(n), *ptr); } // switches off bit N in the given vector. static really_inline void clearbit128(m128 *ptr, unsigned int n) { *ptr = andnot128(mask1bit128(n), *ptr); } // tests bit N in the given vector. static really_inline char testbit128(m128 val, unsigned int n) { const m128 mask = mask1bit128(n); return isnonzero128(and128(mask, val)); } static really_inline m128 pshufb_m128(m128 a, m128 b) { /* On Intel, if bit 0x80 is set, then result is zero, otherwise which the lane it is &0xf. In NEON or PPC, if >=16, then the result is zero, otherwise it is that lane. below is the version that is converted from Intel to PPC. */ uint8x16_t mask =(uint8x16_t)vec_cmpge((uint8x16_t)b, (uint8x16_t)vec_splats((uint8_t)0x80)); uint8x16_t res = vec_perm ((uint8x16_t)a, (uint8x16_t)a, (uint8x16_t)b); return (m128) vec_sel((uint8x16_t)res, (uint8x16_t)zeroes128(), (uint8x16_t)mask); } static really_inline m128 max_u8_m128(m128 a, m128 b) { return (m128) vec_max((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 min_u8_m128(m128 a, m128 b) { return (m128) vec_min((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 sadd_u8_m128(m128 a, m128 b) { return (m128) vec_adds((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 sub_u8_m128(m128 a, m128 b) { return (m128) vec_sub((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 set4x32(u32 x3, u32 x2, u32 x1, u32 x0) { uint32x4_t v = { x0, x1, x2, x3 }; return (m128) v; } static really_inline m128 set2x64(u64a hi, u64a lo) { uint64x2_t v = { lo, hi }; return (m128) v; } #if defined(__clang__) && (__clang_major__ == 15) #pragma clang diagnostic pop #endif // defined(__clang__) && (__clang_major__ == 15) #endif // ARCH_PPC64EL_SIMD_UTILS_H