/* * Copyright (c) 2015-2020, Intel Corporation * Copyright (c) 2020-2021, VectorCamp PC * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \file * \brief SIMD types and primitive operations. */ #ifndef ARCH_X86_SIMD_UTILS_H #define ARCH_X86_SIMD_UTILS_H #include "x86.h" #include "ue2common.h" #include "util/simd_types.h" #include "util/unaligned.h" #include "util/intrinsics.h" #include // for memcpy #define ZEROES_8 0, 0, 0, 0, 0, 0, 0, 0 #define ZEROES_31 ZEROES_8, ZEROES_8, ZEROES_8, 0, 0, 0, 0, 0, 0, 0 #define ZEROES_32 ZEROES_8, ZEROES_8, ZEROES_8, ZEROES_8 /** \brief LUT for the mask1bit functions. */ ALIGN_CL_DIRECTIVE static const u8 simd_onebit_masks[] = { ZEROES_32, ZEROES_32, ZEROES_31, 0x01, ZEROES_32, ZEROES_31, 0x02, ZEROES_32, ZEROES_31, 0x04, ZEROES_32, ZEROES_31, 0x08, ZEROES_32, ZEROES_31, 0x10, ZEROES_32, ZEROES_31, 0x20, ZEROES_32, ZEROES_31, 0x40, ZEROES_32, ZEROES_31, 0x80, ZEROES_32, ZEROES_32, ZEROES_32, }; static really_inline m128 ones128(void) { #if defined(__GNUC__) || defined(__INTEL_COMPILER) /* gcc gets this right */ return (m128) _mm_set1_epi8(0xFF); #else /* trick from Intel's optimization guide to generate all-ones. * ICC converts this to the single cmpeq instruction */ return _mm_cmpeq_epi8(_mm_setzero_si128(), _mm_setzero_si128()); #endif } static really_inline m128 zeroes128(void) { return (m128) _mm_setzero_si128(); } /** \brief Bitwise not for m128*/ static really_inline m128 not128(m128 a) { return (m128) _mm_xor_si128(a, ones128()); } /** \brief Return 1 if a and b are different otherwise 0 */ static really_inline int diff128(m128 a, m128 b) { return (_mm_movemask_epi8(_mm_cmpeq_epi8(a, b)) ^ 0xffff); } static really_inline int isnonzero128(m128 a) { return !!diff128(a, zeroes128()); } /** * "Rich" version of diff128(). Takes two vectors a and b and returns a 4-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich128(m128 a, m128 b) { a = _mm_cmpeq_epi32(a, b); return ~(_mm_movemask_ps(_mm_castsi128_ps(a))) & 0xf; } /** * "Rich" version of diff128(), 64-bit variant. Takes two vectors a and b and * returns a 4-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_128(m128 a, m128 b) { #if defined(HAVE_SSE41) a = _mm_cmpeq_epi64(a, b); return ~(_mm_movemask_ps(_mm_castsi128_ps(a))) & 0x5; #else u32 d = diffrich128(a, b); return (d | (d >> 1)) & 0x5; #endif } static really_really_inline m128 add_2x64(m128 a, m128 b) { return (m128) _mm_add_epi64(a, b); } static really_really_inline m128 sub_2x64(m128 a, m128 b) { return (m128) _mm_sub_epi64(a, b); } static really_really_inline m128 lshift64_m128(m128 a, unsigned b) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(b)) { return _mm_slli_epi64(a, b); } #endif m128 x = _mm_cvtsi32_si128(b); return _mm_sll_epi64(a, x); } #define rshift64_m128(a, b) _mm_srli_epi64((a), (b)) #define eq128(a, b) _mm_cmpeq_epi8((a), (b)) #define eq64_m128(a, b) _mm_cmpeq_epi64((a), (b)) #define movemask128(a) ((u32)_mm_movemask_epi8((a))) #if defined(HAVE_AVX512) static really_inline m128 cast512to128(const m512 in) { return _mm512_castsi512_si128(in); } #endif static really_inline m128 set1_16x8(u8 c) { return _mm_set1_epi8(c); } static really_inline m128 set1_4x32(u32 c) { return _mm_set1_epi32(c); } static really_inline m128 set1_2x64(u64a c) { return _mm_set1_epi64x(c); } static really_inline u32 movd(const m128 in) { return _mm_cvtsi128_si32(in); } static really_inline u64a movq(const m128 in) { #if defined(ARCH_X86_64) return _mm_cvtsi128_si64(in); #else // 32-bit - this is horrific u32 lo = movd(in); u32 hi = movd(_mm_srli_epi64(in, 32)); return (u64a)hi << 32 | lo; #endif } /* another form of movq */ static really_inline m128 load_m128_from_u64a(const u64a *p) { return _mm_set_epi64x(0LL, *p); } #define CASE_RSHIFT_VECTOR(a, count) case count: return _mm_srli_si128((m128)(a), (count)); break; static really_inline m128 rshiftbyte_m128(const m128 a, int count_immed) { #if defined(HAVE__BUILTIN_CONSTANT_P) && !defined(VS_SIMDE_BACKEND) if (__builtin_constant_p(count_immed)) { return _mm_srli_si128(a, count_immed); } #endif switch (count_immed) { case 0: return a; break; CASE_RSHIFT_VECTOR(a, 1); CASE_RSHIFT_VECTOR(a, 2); CASE_RSHIFT_VECTOR(a, 3); CASE_RSHIFT_VECTOR(a, 4); CASE_RSHIFT_VECTOR(a, 5); CASE_RSHIFT_VECTOR(a, 6); CASE_RSHIFT_VECTOR(a, 7); CASE_RSHIFT_VECTOR(a, 8); CASE_RSHIFT_VECTOR(a, 9); CASE_RSHIFT_VECTOR(a, 10); CASE_RSHIFT_VECTOR(a, 11); CASE_RSHIFT_VECTOR(a, 12); CASE_RSHIFT_VECTOR(a, 13); CASE_RSHIFT_VECTOR(a, 14); CASE_RSHIFT_VECTOR(a, 15); default: return zeroes128(); break; } } #undef CASE_RSHIFT_VECTOR #define CASE_LSHIFT_VECTOR(a, count) case count: return _mm_slli_si128((m128)(a), (count)); break; static really_inline m128 lshiftbyte_m128(const m128 a, int count_immed) { #if defined(HAVE__BUILTIN_CONSTANT_P) && !defined(VS_SIMDE_BACKEND) if (__builtin_constant_p(count_immed)) { return _mm_slli_si128(a, count_immed); } #endif switch (count_immed) { case 0: return a; break; CASE_LSHIFT_VECTOR(a, 1); CASE_LSHIFT_VECTOR(a, 2); CASE_LSHIFT_VECTOR(a, 3); CASE_LSHIFT_VECTOR(a, 4); CASE_LSHIFT_VECTOR(a, 5); CASE_LSHIFT_VECTOR(a, 6); CASE_LSHIFT_VECTOR(a, 7); CASE_LSHIFT_VECTOR(a, 8); CASE_LSHIFT_VECTOR(a, 9); CASE_LSHIFT_VECTOR(a, 10); CASE_LSHIFT_VECTOR(a, 11); CASE_LSHIFT_VECTOR(a, 12); CASE_LSHIFT_VECTOR(a, 13); CASE_LSHIFT_VECTOR(a, 14); CASE_LSHIFT_VECTOR(a, 15); default: return zeroes128(); break; } } #undef CASE_LSHIFT_VECTOR #if defined(HAVE_SSE41) #define extract32from128(a, imm) _mm_extract_epi32(a, imm) #define extract64from128(a, imm) _mm_extract_epi64(a, imm) #else #define extract32from128(a, imm) movd(_mm_srli_si128(a, imm << 2)) #define extract64from128(a, imm) movq(_mm_srli_si128(a, imm << 3)) #endif #if !defined(HAVE_AVX2) // TODO: this entire file needs restructuring - this carveout is awful #define extractlow64from256(a) movq(a.lo) #define extractlow32from256(a) movd(a.lo) #if defined(HAVE_SSE41) #define extract32from256(a, imm) _mm_extract_epi32((imm >> 2) ? a.hi : a.lo, imm % 4) #define extract64from256(a, imm) _mm_extract_epi64((imm >> 1) ? a.hi : a.lo, imm % 2) #else #define extract32from256(a, imm) movd(_mm_srli_si128((imm >> 2) ? a.hi : a.lo, (imm % 4) * 4)) #define extract64from256(a, imm) movq(_mm_srli_si128((imm >> 1) ? a.hi : a.lo, (imm % 2) * 8)) #endif #endif // !AVX2 static really_inline m128 add128(m128 a, m128 b) { return _mm_add_epi64(a, b); } static really_inline m128 and128(m128 a, m128 b) { return _mm_and_si128(a,b); } static really_inline m128 xor128(m128 a, m128 b) { return _mm_xor_si128(a,b); } static really_inline m128 or128(m128 a, m128 b) { return _mm_or_si128(a,b); } #if defined(HAVE_AVX512VBMI) static really_inline m512 broadcast128(m128 a) { return _mm512_broadcast_i32x4(a); } #endif static really_inline m128 andnot128(m128 a, m128 b) { return _mm_andnot_si128(a, b); } // aligned load static really_inline m128 load128(const void *ptr) { assert(ISALIGNED_N(ptr, alignof(m128))); ptr = vectorscan_assume_aligned(ptr, 16); return _mm_load_si128((const m128 *)ptr); } // aligned store static really_inline void store128(void *ptr, m128 a) { assert(ISALIGNED_N(ptr, alignof(m128))); ptr = vectorscan_assume_aligned(ptr, 16); *(m128 *)ptr = a; } // unaligned load static really_inline m128 loadu128(const void *ptr) { return _mm_loadu_si128((const m128 *)ptr); } // unaligned store static really_inline void storeu128(void *ptr, m128 a) { _mm_storeu_si128 ((m128 *)ptr, a); } // packed unaligned store of first N bytes static really_inline void storebytes128(void *ptr, m128 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m128 loadbytes128(const void *ptr, unsigned int n) { m128 a = zeroes128(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } static really_inline m128 mask1bit128(unsigned int n) { assert(n < sizeof(m128) * 8); u32 mask_idx = ((n % 8) * 64) + 95; mask_idx -= n / 8; return loadu128(&simd_onebit_masks[mask_idx]); } // switches on bit N in the given vector. static really_inline void setbit128(m128 *ptr, unsigned int n) { *ptr = or128(mask1bit128(n), *ptr); } // switches off bit N in the given vector. static really_inline void clearbit128(m128 *ptr, unsigned int n) { *ptr = andnot128(mask1bit128(n), *ptr); } // tests bit N in the given vector. static really_inline char testbit128(m128 val, unsigned int n) { const m128 mask = mask1bit128(n); #if defined(HAVE_SSE41) return !_mm_testz_si128(mask, val); #else return isnonzero128(and128(mask, val)); #endif } // offset must be an immediate #define palignr_imm(r, l, offset) _mm_alignr_epi8(r, l, offset) static really_inline m128 pshufb_m128(m128 a, m128 b) { return _mm_shuffle_epi8(a, b); } #define CASE_ALIGN_VECTORS(a, b, offset) case offset: return palignr_imm((m128)(a), (m128)(b), (offset)); break; static really_really_inline m128 palignr_sw(m128 r, m128 l, int offset) { switch (offset) { case 0: return l; break; CASE_ALIGN_VECTORS(r, l, 1); CASE_ALIGN_VECTORS(r, l, 2); CASE_ALIGN_VECTORS(r, l, 3); CASE_ALIGN_VECTORS(r, l, 4); CASE_ALIGN_VECTORS(r, l, 5); CASE_ALIGN_VECTORS(r, l, 6); CASE_ALIGN_VECTORS(r, l, 7); CASE_ALIGN_VECTORS(r, l, 8); CASE_ALIGN_VECTORS(r, l, 9); CASE_ALIGN_VECTORS(r, l, 10); CASE_ALIGN_VECTORS(r, l, 11); CASE_ALIGN_VECTORS(r, l, 12); CASE_ALIGN_VECTORS(r, l, 13); CASE_ALIGN_VECTORS(r, l, 14); CASE_ALIGN_VECTORS(r, l, 15); case 16: return r; break; default: return zeroes128(); break; } } #undef CASE_ALIGN_VECTORS static really_really_inline m128 palignr(m128 r, m128 l, int offset) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(offset)) { return palignr_imm(r, l, offset); } #endif return palignr_sw(r, l, offset); } static really_inline m128 variable_byte_shift_m128(m128 in, s32 amount) { assert(amount >= -16 && amount <= 16); if (amount < 0) { return palignr(zeroes128(), in, -amount); } else { return palignr(in, zeroes128(), 16 - amount); } } /* static really_inline m128 variable_byte_shift_m128(m128 in, s32 amount) { assert(amount >= -16 && amount <= 16); m128 shift_mask = loadu128(vbs_mask_data + 16 - amount); return pshufb_m128(in, shift_mask); }*/ static really_inline m128 max_u8_m128(m128 a, m128 b) { return _mm_max_epu8(a, b); } static really_inline m128 min_u8_m128(m128 a, m128 b) { return _mm_min_epu8(a, b); } static really_inline m128 sadd_u8_m128(m128 a, m128 b) { return _mm_adds_epu8(a, b); } static really_inline m128 sub_u8_m128(m128 a, m128 b) { return _mm_sub_epi8(a, b); } static really_inline m128 set4x32(u32 x3, u32 x2, u32 x1, u32 x0) { return _mm_set_epi32(x3, x2, x1, x0); } static really_inline m128 set2x64(u64a hi, u64a lo) { return _mm_set_epi64x(hi, lo); } /**** **** 256-bit Primitives ****/ #if defined(HAVE_SIMD_256_BITS) && defined(HAVE_AVX2) static really_inline m256 pshufb_m256(m256 a, m256 b) { return _mm256_shuffle_epi8(a, b); } static really_really_inline m256 lshift64_m256(m256 a, unsigned b) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(b)) { return _mm256_slli_epi64(a, b); } #endif m128 x = _mm_cvtsi32_si128(b); return _mm256_sll_epi64(a, x); } #define rshift64_m256(a, b) _mm256_srli_epi64((a), (b)) static really_inline m256 set1_4x64(u64a c) { return _mm256_set1_epi64x(c); } #define eq256(a, b) _mm256_cmpeq_epi8((a), (b)) #define movemask256(a) ((u32)_mm256_movemask_epi8((a))) static really_inline m256 set1_2x128(m128 a) { return _mm256_broadcastsi128_si256(a); } static really_inline m256 zeroes256(void) { return _mm256_setzero_si256(); } static really_inline m256 ones256(void) { m256 rv = _mm256_set1_epi8(0xFF); return rv; } static really_inline m256 add256(m256 a, m256 b) { return _mm256_add_epi64(a, b); } static really_inline m256 and256(m256 a, m256 b) { return _mm256_and_si256(a, b); } static really_inline m256 or256(m256 a, m256 b) { return _mm256_or_si256(a, b); } #if defined(HAVE_AVX512VBMI) static really_inline m512 broadcast256(m256 a) { return _mm512_broadcast_i64x4(a); } #endif static really_inline m256 xor256(m256 a, m256 b) { return _mm256_xor_si256(a, b); } static really_inline m256 not256(m256 a) { return _mm256_xor_si256(a, ones256()); } static really_inline m256 andnot256(m256 a, m256 b) { return _mm256_andnot_si256(a, b); } static really_inline int diff256(m256 a, m256 b) { return !!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(a, b)) ^ (int)-1); } static really_inline int isnonzero256(m256 a) { return !!diff256(a, zeroes256()); } /** * "Rich" version of diff256(). Takes two vectors a and b and returns an 8-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich256(m256 a, m256 b) { a = _mm256_cmpeq_epi32(a, b); return ~(_mm256_movemask_ps(_mm256_castsi256_ps(a))) & 0xFF; } /** * "Rich" version of diff256(), 64-bit variant. Takes two vectors a and b and * returns an 8-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_256(m256 a, m256 b) { u32 d = diffrich256(a, b); return (d | (d >> 1)) & 0x55555555; } // aligned load static really_inline m256 load256(const void *ptr) { assert(ISALIGNED_N(ptr, alignof(m256))); return _mm256_load_si256((const m256 *)ptr); } // aligned load of 128-bit value to low and high part of 256-bit value static really_inline m256 load2x128(const void *ptr) { return set1_2x128(load128(ptr)); } static really_inline m256 loadu2x128(const void *ptr) { return set1_2x128(loadu128(ptr)); } // aligned store static really_inline void store256(void *ptr, m256 a) { assert(ISALIGNED_N(ptr, alignof(m256))); _mm256_store_si256((m256 *)ptr, a); } // unaligned load static really_inline m256 loadu256(const void *ptr) { return _mm256_loadu_si256((const m256 *)ptr); } static really_really_inline m256 loadu_maskz_m256(__mmask32 k, const void *ptr) { return _mm256_maskz_loadu_epi8(k, ptr); } // unaligned store static really_inline void storeu256(void *ptr, m256 a) { _mm256_storeu_si256((m256 *)ptr, a); } // packed unaligned store of first N bytes static really_inline void storebytes256(void *ptr, m256 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m256 loadbytes256(const void *ptr, unsigned int n) { m256 a = zeroes256(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } static really_inline m256 mask1bit256(unsigned int n) { assert(n < sizeof(m256) * 8); u32 mask_idx = ((n % 8) * 64) + 95; mask_idx -= n / 8; return loadu256(&simd_onebit_masks[mask_idx]); } static really_inline m256 set1_32x8(u32 in) { return _mm256_set1_epi8(in); } static really_inline m256 set8x32(u32 hi_3, u32 hi_2, u32 hi_1, u32 hi_0, u32 lo_3, u32 lo_2, u32 lo_1, u32 lo_0) { return _mm256_set_epi32(hi_3, hi_2, hi_1, hi_0, lo_3, lo_2, lo_1, lo_0); } static really_inline m256 set4x64(u64a hi_1, u64a hi_0, u64a lo_1, u64a lo_0) { return _mm256_set_epi64x(hi_1, hi_0, lo_1, lo_0); } // switches on bit N in the given vector. static really_inline void setbit256(m256 *ptr, unsigned int n) { *ptr = or256(mask1bit256(n), *ptr); } static really_inline void clearbit256(m256 *ptr, unsigned int n) { *ptr = andnot256(mask1bit256(n), *ptr); } // tests bit N in the given vector. static really_inline char testbit256(m256 val, unsigned int n) { const m256 mask = mask1bit256(n); return !_mm256_testz_si256(mask, val); } static really_really_inline m128 movdq_hi(m256 x) { return _mm256_extracti128_si256(x, 1); } static really_really_inline m128 movdq_lo(m256 x) { return _mm256_extracti128_si256(x, 0); } #define cast256to128(a) _mm256_castsi256_si128(a) #define cast128to256(a) _mm256_castsi128_si256(a) #define swap128in256(a) _mm256_permute4x64_epi64(a, 0x4E) #define insert128to256(a, b, imm) _mm256_inserti128_si256(a, b, imm) #define rshift128_m256(a, count_immed) _mm256_srli_si256(a, count_immed) #define lshift128_m256(a, count_immed) _mm256_slli_si256(a, count_immed) #define extract64from256(a, imm) _mm_extract_epi64(_mm256_extracti128_si256(a, imm >> 1), imm % 2) #define extract32from256(a, imm) _mm_extract_epi32(_mm256_extracti128_si256(a, imm >> 2), imm % 4) #define extractlow64from256(a) movq(cast256to128(a)) #define extractlow32from256(a) movd(cast256to128(a)) #define interleave256hi(a, b) _mm256_unpackhi_epi8(a, b) #define interleave256lo(a, b) _mm256_unpacklo_epi8(a, b) #define vpalignr(r, l, offset) _mm256_alignr_epi8(r, l, offset) static really_inline m256 combine2x128(m128 hi, m128 lo) { #if defined(_mm256_set_m128i) return _mm256_set_m128i(hi, lo); #else return insert128to256(cast128to256(lo), hi, 1); #endif } #endif //AVX2 /**** **** 512-bit Primitives ****/ #if defined(HAVE_SIMD_512_BITS) #define extract128from512(a, imm) _mm512_extracti32x4_epi32(a, imm) #define interleave512hi(a, b) _mm512_unpackhi_epi8(a, b) #define interleave512lo(a, b) _mm512_unpacklo_epi8(a, b) #define set2x256(a) _mm512_broadcast_i64x4(a) #define mask_set2x256(src, k, a) _mm512_mask_broadcast_i64x4(src, k, a) #define vpermq512(idx, a) _mm512_permutexvar_epi64(idx, a) static really_inline u32 movd512(const m512 in) { // NOTE: seems gcc doesn't support _mm512_cvtsi512_si32(in), // so we use 2-step convertions to work around. return _mm_cvtsi128_si32(_mm512_castsi512_si128(in)); } static really_inline u64a movq512(const m512 in) { // NOTE: seems AVX512 doesn't support _mm512_cvtsi512_si64(in), // so we use 2-step convertions to work around. return movq(_mm512_castsi512_si128(in)); } static really_inline m512 pshufb_m512(m512 a, m512 b) { return _mm512_shuffle_epi8(a, b); } static really_inline m512 maskz_pshufb_m512(__mmask64 k, m512 a, m512 b) { return _mm512_maskz_shuffle_epi8(k, a, b); } #if defined(HAVE_AVX512VBMI) #define vpermb512(idx, a) _mm512_permutexvar_epi8(idx, a) #define maskz_vpermb512(k, idx, a) _mm512_maskz_permutexvar_epi8(k, idx, a) #endif #define eq512mask(a, b) _mm512_cmpeq_epi8_mask((a), (b)) #define masked_eq512mask(k, a, b) _mm512_mask_cmpeq_epi8_mask((k), (a), (b)) static really_inline m512 zeroes512(void) { #if defined(HAVE_AVX512) return _mm512_setzero_si512(); #else m512 rv = {zeroes256(), zeroes256()}; return rv; #endif } static really_inline m512 ones512(void) { return _mm512_set1_epi8(0xFF); //return _mm512_xor_si512(_mm512_setzero_si512(), _mm512_setzero_si512()); } static really_inline m512 set1_64x8(u8 a) { return _mm512_set1_epi8(a); } static really_inline m512 set1_8x64(u64a a) { return _mm512_set1_epi64(a); } static really_inline m512 set1_16x32(u32 a) { return _mm512_set1_epi32(a); } static really_inline m512 set8x64(u64a hi_3, u64a hi_2, u64a hi_1, u64a hi_0, u64a lo_3, u64a lo_2, u64a lo_1, u64a lo_0) { return _mm512_set_epi64(hi_3, hi_2, hi_1, hi_0, lo_3, lo_2, lo_1, lo_0); } static really_inline m512 swap256in512(m512 a) { m512 idx = set8x64(3ULL, 2ULL, 1ULL, 0ULL, 7ULL, 6ULL, 5ULL, 4ULL); return vpermq512(idx, a); } static really_inline m512 set1_4x128(m128 a) { return _mm512_broadcast_i32x4(a); } static really_inline m512 sadd_u8_m512(m512 a, m512 b) { return _mm512_adds_epu8(a, b); } static really_inline m512 max_u8_m512(m512 a, m512 b) { return _mm512_max_epu8(a, b); } static really_inline m512 min_u8_m512(m512 a, m512 b) { return _mm512_min_epu8(a, b); } static really_inline m512 sub_u8_m512(m512 a, m512 b) { return _mm512_sub_epi8(a, b); } static really_inline m512 add512(m512 a, m512 b) { return _mm512_add_epi64(a, b); } static really_inline m512 and512(m512 a, m512 b) { return _mm512_and_si512(a, b); } static really_inline m512 or512(m512 a, m512 b) { return _mm512_or_si512(a, b); } #if defined(HAVE_AVX512VBMI) static really_inline m512 broadcast384(m384 a) { u64a *lo = (u64a*)&a.lo; u64a *mid = (u64a*)&a.mid; u64a *hi = (u64a*)&a.hi; return _mm512_set_epi64(0ULL, 0ULL, hi[1], hi[0], mid[1], mid[0], lo[1], lo[0]); } #endif static really_inline m512 xor512(m512 a, m512 b) { return _mm512_xor_si512(a, b); } static really_inline m512 not512(m512 a) { return _mm512_xor_si512(a, ones512()); } static really_inline m512 andnot512(m512 a, m512 b) { return _mm512_andnot_si512(a, b); } static really_really_inline m512 lshift64_m512(m512 a, unsigned b) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(b)) { return _mm512_slli_epi64(a, b); } #endif m128 x = _mm_cvtsi32_si128(b); return _mm512_sll_epi64(a, x); } #define rshift64_m512(a, b) _mm512_srli_epi64((a), (b)) #define rshift128_m512(a, count_immed) _mm512_bsrli_epi128(a, count_immed) #define lshift128_m512(a, count_immed) _mm512_bslli_epi128(a, count_immed) #if !defined(_MM_CMPINT_NE) #define _MM_CMPINT_NE 0x4 #endif static really_inline int diff512(m512 a, m512 b) { return !!_mm512_cmp_epi8_mask(a, b, _MM_CMPINT_NE); } static really_inline int isnonzero512(m512 a) { return diff512(a, zeroes512()); } /** * "Rich" version of diff512(). Takes two vectors a and b and returns a 16-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich512(m512 a, m512 b) { return _mm512_cmp_epi32_mask(a, b, _MM_CMPINT_NE); } /** * "Rich" version of diffrich(), 64-bit variant. Takes two vectors a and b and * returns a 16-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_512(m512 a, m512 b) { //TODO: cmp_epi64? u32 d = diffrich512(a, b); return (d | (d >> 1)) & 0x55555555; } // aligned load static really_inline m512 load512(const void *ptr) { return _mm512_load_si512(ptr); } // aligned store static really_inline void store512(void *ptr, m512 a) { assert(ISALIGNED_N(ptr, alignof(m512))); return _mm512_store_si512(ptr, a); } // unaligned load static really_inline m512 loadu512(const void *ptr) { return _mm512_loadu_si512(ptr); } // unaligned store static really_inline void storeu512(void *ptr, m512 a) { #if defined(HAVE_AVX512) _mm512_storeu_si512((m512 *)ptr, a); #elif defined(HAVE_AVX2) storeu256(ptr, a.lo); storeu256((char *)ptr + 32, a.hi); #else storeu128(ptr, a.lo.lo); storeu128((char *)ptr + 16, a.lo.hi); storeu128((char *)ptr + 32, a.hi.lo); storeu128((char *)ptr + 48, a.hi.hi); #endif } static really_inline m512 loadu_maskz_m512(__mmask64 k, const void *ptr) { return _mm512_maskz_loadu_epi8(k, ptr); } static really_inline m512 loadu_mask_m512(m512 src, __mmask64 k, const void *ptr) { return _mm512_mask_loadu_epi8(src, k, ptr); } static really_inline void storeu_mask_m512(void *ptr, __mmask64 k, m512 a) { _mm512_mask_storeu_epi8(ptr, k, a); } static really_inline m512 set_mask_m512(__mmask64 k) { return _mm512_movm_epi8(k); } // packed unaligned store of first N bytes static really_inline void storebytes512(void *ptr, m512 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m512 loadbytes512(const void *ptr, unsigned int n) { m512 a = zeroes512(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } static really_inline m512 mask1bit512(unsigned int n) { assert(n < sizeof(m512) * 8); u32 mask_idx = ((n % 8) * 64) + 95; mask_idx -= n / 8; return loadu512(&simd_onebit_masks[mask_idx]); } // switches on bit N in the given vector. static really_inline void setbit512(m512 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); *ptr = or512(mask1bit512(n), *ptr); } // switches off bit N in the given vector. static really_inline void clearbit512(m512 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); *ptr = andnot512(mask1bit512(n), *ptr); } // tests bit N in the given vector. static really_inline char testbit512(m512 val, unsigned int n) { assert(n < sizeof(val) * 8); const m512 mask = mask1bit512(n); return !!_mm512_test_epi8_mask(mask, val); } #endif // HAVE_SIMD_512_BITS #endif // ARCH_X86_SIMD_UTILS_H