/* * Copyright (c) 2015-2020, Intel Corporation * Copyright (c) 2020-2021, VectorCamp PC * Copyright (c) 2021, Arm Limited * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \file * \brief SIMD types and primitive operations. */ #ifndef ARCH_ARM_SIMD_UTILS_H #define ARCH_ARM_SIMD_UTILS_H #include #include #include "ue2common.h" #include "util/simd_types.h" #include "util/unaligned.h" #include "util/intrinsics.h" #ifdef HAVE_SVE #include "simd_utils_sve.h" #endif #ifdef HAVE_SVE2 #include "simd_utils_sve2.h" #endif #include // for memcpy #define ZEROES_8 0, 0, 0, 0, 0, 0, 0, 0 #define ZEROES_31 ZEROES_8, ZEROES_8, ZEROES_8, 0, 0, 0, 0, 0, 0, 0 #define ZEROES_32 ZEROES_8, ZEROES_8, ZEROES_8, ZEROES_8 /** \brief LUT for the mask1bit functions. */ ALIGN_CL_DIRECTIVE static const u8 simd_onebit_masks[] = { ZEROES_32, ZEROES_32, ZEROES_31, 0x01, ZEROES_32, ZEROES_31, 0x02, ZEROES_32, ZEROES_31, 0x04, ZEROES_32, ZEROES_31, 0x08, ZEROES_32, ZEROES_31, 0x10, ZEROES_32, ZEROES_31, 0x20, ZEROES_32, ZEROES_31, 0x40, ZEROES_32, ZEROES_31, 0x80, ZEROES_32, ZEROES_32, ZEROES_32, }; static really_inline m128 ones128(void) { return (m128) vdupq_n_s8(0xFF); } static really_inline m128 zeroes128(void) { return (m128) vdupq_n_s32(0); } /** \brief Bitwise not for m128*/ static really_inline m128 not128(m128 a) { return (m128) vmvnq_s32(a); } /** \brief Return 1 if a and b are different otherwise 0 */ static really_inline int diff128(m128 a, m128 b) { uint64_t res = vget_lane_u64( (uint64x1_t)vshrn_n_u16((uint16x8_t)vceqq_s32(a, b), 4), 0); return (~0ull != res); } static really_inline int isnonzero128(m128 a) { return diff128(a, zeroes128()); } /** * "Rich" version of diff128(). Takes two vectors a and b and returns a 4-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich128(m128 a, m128 b) { static const uint32x4_t movemask = { 1, 2, 4, 8 }; return vaddvq_u32(vandq_u32(vmvnq_u32(vceqq_u32((uint32x4_t)a, (uint32x4_t)b)), movemask)); } /** * "Rich" version of diff128(), 64-bit variant. Takes two vectors a and b and * returns a 4-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_128(m128 a, m128 b) { static const uint64x2_t movemask = { 1, 4 }; return (u32) vaddvq_u64(vandq_u64((uint64x2_t)vmvnq_u32((uint32x4_t)vceqq_u64((uint64x2_t)a, (uint64x2_t)b)), movemask)); } static really_really_inline m128 add_2x64(m128 a, m128 b) { return (m128) vaddq_u64((uint64x2_t)a, (uint64x2_t)b); } static really_really_inline m128 sub_2x64(m128 a, m128 b) { return (m128) vsubq_u64((uint64x2_t)a, (uint64x2_t)b); } static really_inline m128 lshift_m128(m128 a, unsigned b) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(b)) { return (m128) vshlq_n_u32((uint32x4_t)a, b); } #endif #define CASE_LSHIFT_m128(a, offset) case offset: return (m128)vshlq_n_u32((uint32x4_t)(a), (offset)); break; switch (b) { case 0: return a; break; CASE_LSHIFT_m128(a, 1); CASE_LSHIFT_m128(a, 2); CASE_LSHIFT_m128(a, 3); CASE_LSHIFT_m128(a, 4); CASE_LSHIFT_m128(a, 5); CASE_LSHIFT_m128(a, 6); CASE_LSHIFT_m128(a, 7); CASE_LSHIFT_m128(a, 8); CASE_LSHIFT_m128(a, 9); CASE_LSHIFT_m128(a, 10); CASE_LSHIFT_m128(a, 11); CASE_LSHIFT_m128(a, 12); CASE_LSHIFT_m128(a, 13); CASE_LSHIFT_m128(a, 14); CASE_LSHIFT_m128(a, 15); CASE_LSHIFT_m128(a, 16); CASE_LSHIFT_m128(a, 17); CASE_LSHIFT_m128(a, 18); CASE_LSHIFT_m128(a, 19); CASE_LSHIFT_m128(a, 20); CASE_LSHIFT_m128(a, 21); CASE_LSHIFT_m128(a, 22); CASE_LSHIFT_m128(a, 23); CASE_LSHIFT_m128(a, 24); CASE_LSHIFT_m128(a, 25); CASE_LSHIFT_m128(a, 26); CASE_LSHIFT_m128(a, 27); CASE_LSHIFT_m128(a, 28); CASE_LSHIFT_m128(a, 29); CASE_LSHIFT_m128(a, 30); CASE_LSHIFT_m128(a, 31); default: return zeroes128(); break; } #undef CASE_LSHIFT_m128 } static really_really_inline m128 rshift_m128(m128 a, unsigned b) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(b)) { return (m128) vshrq_n_u32((uint32x4_t)a, b); } #endif #define CASE_RSHIFT_m128(a, offset) case offset: return (m128)vshrq_n_u32((uint32x4_t)(a), (offset)); break; switch (b) { case 0: return a; break; CASE_RSHIFT_m128(a, 1); CASE_RSHIFT_m128(a, 2); CASE_RSHIFT_m128(a, 3); CASE_RSHIFT_m128(a, 4); CASE_RSHIFT_m128(a, 5); CASE_RSHIFT_m128(a, 6); CASE_RSHIFT_m128(a, 7); CASE_RSHIFT_m128(a, 8); CASE_RSHIFT_m128(a, 9); CASE_RSHIFT_m128(a, 10); CASE_RSHIFT_m128(a, 11); CASE_RSHIFT_m128(a, 12); CASE_RSHIFT_m128(a, 13); CASE_RSHIFT_m128(a, 14); CASE_RSHIFT_m128(a, 15); CASE_RSHIFT_m128(a, 16); CASE_RSHIFT_m128(a, 17); CASE_RSHIFT_m128(a, 18); CASE_RSHIFT_m128(a, 19); CASE_RSHIFT_m128(a, 20); CASE_RSHIFT_m128(a, 21); CASE_RSHIFT_m128(a, 22); CASE_RSHIFT_m128(a, 23); CASE_RSHIFT_m128(a, 24); CASE_RSHIFT_m128(a, 25); CASE_RSHIFT_m128(a, 26); CASE_RSHIFT_m128(a, 27); CASE_RSHIFT_m128(a, 28); CASE_RSHIFT_m128(a, 29); CASE_RSHIFT_m128(a, 30); CASE_RSHIFT_m128(a, 31); default: return zeroes128(); break; } #undef CASE_RSHIFT_m128 } static really_really_inline m128 lshift64_m128(m128 a, unsigned b) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(b)) { return (m128) vshlq_n_u64((uint64x2_t)a, b); } #endif #define CASE_LSHIFT64_m128(a, offset) case offset: return (m128)vshlq_n_u64((uint64x2_t)(a), (offset)); break; switch (b) { case 0: return a; break; CASE_LSHIFT64_m128(a, 1); CASE_LSHIFT64_m128(a, 2); CASE_LSHIFT64_m128(a, 3); CASE_LSHIFT64_m128(a, 4); CASE_LSHIFT64_m128(a, 5); CASE_LSHIFT64_m128(a, 6); CASE_LSHIFT64_m128(a, 7); CASE_LSHIFT64_m128(a, 8); CASE_LSHIFT64_m128(a, 9); CASE_LSHIFT64_m128(a, 10); CASE_LSHIFT64_m128(a, 11); CASE_LSHIFT64_m128(a, 12); CASE_LSHIFT64_m128(a, 13); CASE_LSHIFT64_m128(a, 14); CASE_LSHIFT64_m128(a, 15); CASE_LSHIFT64_m128(a, 16); CASE_LSHIFT64_m128(a, 17); CASE_LSHIFT64_m128(a, 18); CASE_LSHIFT64_m128(a, 19); CASE_LSHIFT64_m128(a, 20); CASE_LSHIFT64_m128(a, 21); CASE_LSHIFT64_m128(a, 22); CASE_LSHIFT64_m128(a, 23); CASE_LSHIFT64_m128(a, 24); CASE_LSHIFT64_m128(a, 25); CASE_LSHIFT64_m128(a, 26); CASE_LSHIFT64_m128(a, 27); CASE_LSHIFT64_m128(a, 28); CASE_LSHIFT64_m128(a, 29); CASE_LSHIFT64_m128(a, 30); CASE_LSHIFT64_m128(a, 31); CASE_LSHIFT64_m128(a, 32); CASE_LSHIFT64_m128(a, 33); CASE_LSHIFT64_m128(a, 34); CASE_LSHIFT64_m128(a, 35); CASE_LSHIFT64_m128(a, 36); CASE_LSHIFT64_m128(a, 37); CASE_LSHIFT64_m128(a, 38); CASE_LSHIFT64_m128(a, 39); CASE_LSHIFT64_m128(a, 40); CASE_LSHIFT64_m128(a, 41); CASE_LSHIFT64_m128(a, 42); CASE_LSHIFT64_m128(a, 43); CASE_LSHIFT64_m128(a, 44); CASE_LSHIFT64_m128(a, 45); CASE_LSHIFT64_m128(a, 46); CASE_LSHIFT64_m128(a, 47); CASE_LSHIFT64_m128(a, 48); CASE_LSHIFT64_m128(a, 49); CASE_LSHIFT64_m128(a, 50); CASE_LSHIFT64_m128(a, 51); CASE_LSHIFT64_m128(a, 52); CASE_LSHIFT64_m128(a, 53); CASE_LSHIFT64_m128(a, 54); CASE_LSHIFT64_m128(a, 55); CASE_LSHIFT64_m128(a, 56); CASE_LSHIFT64_m128(a, 57); CASE_LSHIFT64_m128(a, 58); CASE_LSHIFT64_m128(a, 59); CASE_LSHIFT64_m128(a, 60); CASE_LSHIFT64_m128(a, 61); CASE_LSHIFT64_m128(a, 62); CASE_LSHIFT64_m128(a, 63); default: return zeroes128(); break; } #undef CASE_LSHIFT64_m128 } static really_really_inline m128 rshift64_m128(m128 a, unsigned b) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(b)) { return (m128) vshrq_n_u64((uint64x2_t)a, b); } #endif #define CASE_RSHIFT64_m128(a, offset) case offset: return (m128)vshrq_n_u64((uint64x2_t)(a), (offset)); break; switch (b) { case 0: return a; break; CASE_RSHIFT64_m128(a, 1); CASE_RSHIFT64_m128(a, 2); CASE_RSHIFT64_m128(a, 3); CASE_RSHIFT64_m128(a, 4); CASE_RSHIFT64_m128(a, 5); CASE_RSHIFT64_m128(a, 6); CASE_RSHIFT64_m128(a, 7); CASE_RSHIFT64_m128(a, 8); CASE_RSHIFT64_m128(a, 9); CASE_RSHIFT64_m128(a, 10); CASE_RSHIFT64_m128(a, 11); CASE_RSHIFT64_m128(a, 12); CASE_RSHIFT64_m128(a, 13); CASE_RSHIFT64_m128(a, 14); CASE_RSHIFT64_m128(a, 15); CASE_RSHIFT64_m128(a, 16); CASE_RSHIFT64_m128(a, 17); CASE_RSHIFT64_m128(a, 18); CASE_RSHIFT64_m128(a, 19); CASE_RSHIFT64_m128(a, 20); CASE_RSHIFT64_m128(a, 21); CASE_RSHIFT64_m128(a, 22); CASE_RSHIFT64_m128(a, 23); CASE_RSHIFT64_m128(a, 24); CASE_RSHIFT64_m128(a, 25); CASE_RSHIFT64_m128(a, 26); CASE_RSHIFT64_m128(a, 27); CASE_RSHIFT64_m128(a, 28); CASE_RSHIFT64_m128(a, 29); CASE_RSHIFT64_m128(a, 30); CASE_RSHIFT64_m128(a, 31); CASE_RSHIFT64_m128(a, 32); CASE_RSHIFT64_m128(a, 33); CASE_RSHIFT64_m128(a, 34); CASE_RSHIFT64_m128(a, 35); CASE_RSHIFT64_m128(a, 36); CASE_RSHIFT64_m128(a, 37); CASE_RSHIFT64_m128(a, 38); CASE_RSHIFT64_m128(a, 39); CASE_RSHIFT64_m128(a, 40); CASE_RSHIFT64_m128(a, 41); CASE_RSHIFT64_m128(a, 42); CASE_RSHIFT64_m128(a, 43); CASE_RSHIFT64_m128(a, 44); CASE_RSHIFT64_m128(a, 45); CASE_RSHIFT64_m128(a, 46); CASE_RSHIFT64_m128(a, 47); CASE_RSHIFT64_m128(a, 48); CASE_RSHIFT64_m128(a, 49); CASE_RSHIFT64_m128(a, 50); CASE_RSHIFT64_m128(a, 51); CASE_RSHIFT64_m128(a, 52); CASE_RSHIFT64_m128(a, 53); CASE_RSHIFT64_m128(a, 54); CASE_RSHIFT64_m128(a, 55); CASE_RSHIFT64_m128(a, 56); CASE_RSHIFT64_m128(a, 57); CASE_RSHIFT64_m128(a, 58); CASE_RSHIFT64_m128(a, 59); CASE_RSHIFT64_m128(a, 60); CASE_RSHIFT64_m128(a, 61); CASE_RSHIFT64_m128(a, 62); CASE_RSHIFT64_m128(a, 63); default: return zeroes128(); break; } #undef CASE_RSHIFT64_m128 } static really_inline m128 eq128(m128 a, m128 b) { return (m128) vceqq_u8((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 eq64_m128(m128 a, m128 b) { return (m128) vceqq_u64((uint64x2_t)a, (uint64x2_t)b); } static really_inline u32 movemask128(m128 a) { ruint8x16_t input = vreinterpretq_u8_s32(a); uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7)); uint32x4_t paired16 = vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7)); uint64x2_t paired32 = vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14)); uint8x16_t paired64 = vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28)); return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8); } static really_inline m128 set1_16x8(u8 c) { return (m128) vdupq_n_u8(c); } static really_inline m128 set1_4x32(u32 c) { return (m128) vdupq_n_u32(c); } static really_inline m128 set1_2x64(u64a c) { return (m128) vdupq_n_u64(c); } static really_inline u32 movd(const m128 in) { return vgetq_lane_u32((uint32x4_t) in, 0); } static really_inline u64a movq(const m128 in) { return vgetq_lane_u64((uint64x2_t) in, 0); } /* another form of movq */ static really_inline m128 load_m128_from_u64a(const u64a *p) { return (m128) vsetq_lane_u64(*p, (uint64x2_t) zeroes128(), 0); } static really_inline u32 extract32from128(const m128 in, unsigned imm) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(imm)) { return vgetq_lane_u32((uint32x4_t) in, imm); } #endif switch (imm) { case 0: return vgetq_lane_u32((uint32x4_t) in, 0); break; case 1: return vgetq_lane_u32((uint32x4_t) in, 1); break; case 2: return vgetq_lane_u32((uint32x4_t) in, 2); break; case 3: return vgetq_lane_u32((uint32x4_t) in, 3); break; default: return 0; break; } } static really_inline u64a extract64from128(const m128 in, unsigned imm) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(imm)) { return vgetq_lane_u64((uint64x2_t) in, imm); } #endif switch (imm) { case 0: return vgetq_lane_u64((uint64x2_t) in, 0); break; case 1: return vgetq_lane_u64((uint64x2_t) in, 1); break; default: return 0; break; } } static really_inline m128 low64from128(const m128 in) { return (m128) vcombine_u64(vget_low_u64((uint64x2_t)in), vdup_n_u64(0)); } static really_inline m128 high64from128(const m128 in) { return (m128) vcombine_u64(vget_high_u64((uint64x2_t)in), vdup_n_u64(0)); } static really_inline m128 add128(m128 a, m128 b) { return (m128) vaddq_u64((uint64x2_t)a, (uint64x2_t)b); } static really_inline m128 and128(m128 a, m128 b) { return (m128) vandq_s8((int8x16_t)a, (int8x16_t)b); } static really_inline m128 xor128(m128 a, m128 b) { return (m128) veorq_s8((int8x16_t)a, (int8x16_t)b); } static really_inline m128 or128(m128 a, m128 b) { return (m128) vorrq_s8((int8x16_t)a, (int8x16_t)b); } static really_inline m128 andnot128(m128 a, m128 b) { return (m128) vandq_s8( vmvnq_s8((int8x16_t) a), (int8x16_t) b); } // aligned load static really_inline m128 load128(const void *ptr) { assert(ISALIGNED_N(ptr, alignof(m128))); return (m128) vld1q_s32((const int32_t *)ptr); } // aligned store static really_inline void store128(void *ptr, m128 a) { assert(ISALIGNED_N(ptr, alignof(m128))); vst1q_s32((int32_t *)ptr, a); } // unaligned load static really_inline m128 loadu128(const void *ptr) { return (m128) vld1q_s32((const int32_t *)ptr); } // unaligned store static really_inline void storeu128(void *ptr, m128 a) { vst1q_s32((int32_t *)ptr, a); } // packed unaligned store of first N bytes static really_inline void storebytes128(void *ptr, m128 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m128 loadbytes128(const void *ptr, unsigned int n) { m128 a = zeroes128(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } #define CASE_ALIGN_VECTORS(a, b, offset) case offset: return (m128)vextq_s8((int8x16_t)(a), (int8x16_t)(b), (offset)); break; static really_really_inline m128 palignr_imm(m128 r, m128 l, int offset) { switch (offset) { case 0: return l; break; CASE_ALIGN_VECTORS(l, r, 1); CASE_ALIGN_VECTORS(l, r, 2); CASE_ALIGN_VECTORS(l, r, 3); CASE_ALIGN_VECTORS(l, r, 4); CASE_ALIGN_VECTORS(l, r, 5); CASE_ALIGN_VECTORS(l, r, 6); CASE_ALIGN_VECTORS(l, r, 7); CASE_ALIGN_VECTORS(l, r, 8); CASE_ALIGN_VECTORS(l, r, 9); CASE_ALIGN_VECTORS(l, r, 10); CASE_ALIGN_VECTORS(l, r, 11); CASE_ALIGN_VECTORS(l, r, 12); CASE_ALIGN_VECTORS(l, r, 13); CASE_ALIGN_VECTORS(l, r, 14); CASE_ALIGN_VECTORS(l, r, 15); case 16: return r; break; default: return zeroes128(); break; } } static really_really_inline m128 palignr(m128 r, m128 l, int offset) { #if defined(HAVE__BUILTIN_CONSTANT_P) if (__builtin_constant_p(offset)) { return (m128)vextq_s8((int8x16_t)l, (int8x16_t)r, offset); } #endif return palignr_imm(r, l, offset); } #undef CASE_ALIGN_VECTORS static really_really_inline m128 rshiftbyte_m128(m128 a, unsigned b) { if (b == 0) { return a; } return palignr(zeroes128(), a, b); } static really_really_inline m128 lshiftbyte_m128(m128 a, unsigned b) { if (b == 0) { return a; } return palignr(a, zeroes128(), 16 - b); } static really_inline m128 variable_byte_shift_m128(m128 in, s32 amount) { assert(amount >= -16 && amount <= 16); if (amount < 0) { return palignr_imm(zeroes128(), in, -amount); } else { return palignr_imm(in, zeroes128(), 16 - amount); } } static really_inline m128 mask1bit128(unsigned int n) { assert(n < sizeof(m128) * 8); u32 mask_idx = ((n % 8) * 64) + 95; mask_idx -= n / 8; return loadu128(&simd_onebit_masks[mask_idx]); } // switches on bit N in the given vector. static really_inline void setbit128(m128 *ptr, unsigned int n) { *ptr = or128(mask1bit128(n), *ptr); } // switches off bit N in the given vector. static really_inline void clearbit128(m128 *ptr, unsigned int n) { *ptr = andnot128(mask1bit128(n), *ptr); } // tests bit N in the given vector. static really_inline char testbit128(m128 val, unsigned int n) { const m128 mask = mask1bit128(n); return isnonzero128(and128(mask, val)); } static really_inline m128 pshufb_m128(m128 a, m128 b) { /* On Intel, if bit 0x80 is set, then result is zero, otherwise which the lane it is &0xf. In NEON, if >=16, then the result is zero, otherwise it is that lane. btranslated is the version that is converted from Intel to NEON. */ int8x16_t btranslated = vandq_s8((int8x16_t)b,vdupq_n_s8(0x8f)); return (m128)vqtbl1q_s8((int8x16_t)a, (uint8x16_t)btranslated); } static really_inline m128 max_u8_m128(m128 a, m128 b) { return (m128) vmaxq_u8((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 min_u8_m128(m128 a, m128 b) { return (m128) vminq_u8((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 sadd_u8_m128(m128 a, m128 b) { return (m128) vqaddq_u8((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 sub_u8_m128(m128 a, m128 b) { return (m128) vsubq_u8((uint8x16_t)a, (uint8x16_t)b); } static really_inline m128 set4x32(u32 x3, u32 x2, u32 x1, u32 x0) { uint32_t ALIGN_ATTR(16) data[4] = { x0, x1, x2, x3 }; return (m128) vld1q_u32((uint32_t *) data); } static really_inline m128 set2x64(u64a hi, u64a lo) { uint64_t ALIGN_ATTR(16) data[2] = { lo, hi }; return (m128) vld1q_u64((uint64_t *) data); } #endif // ARCH_ARM_SIMD_UTILS_H