/* * Copyright (c) 2015-2017, Intel Corporation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \file * \brief FDR literal matcher: Teddy build code. */ #include "teddy_compile.h" #include "fdr.h" #include "fdr_internal.h" #include "fdr_compile_internal.h" #include "fdr_confirm.h" #include "fdr_engine_description.h" #include "teddy_internal.h" #include "teddy_engine_description.h" #include "grey.h" #include "ue2common.h" #include "util/alloc.h" #include "util/compare.h" #include "util/noncopyable.h" #include "util/popcount.h" #include "util/target_info.h" #include "util/verify_types.h" #include #include #include #include #include #include #include #include #include #include #include using namespace std; namespace ue2 { namespace { //#define TEDDY_DEBUG class TeddyCompiler : noncopyable { const TeddyEngineDescription ŋ const Grey &grey; const vector &lits; bool make_small; public: TeddyCompiler(const vector &lits_in, const TeddyEngineDescription &eng_in, bool make_small_in, const Grey &grey_in) : eng(eng_in), grey(grey_in), lits(lits_in), make_small(make_small_in) { } bytecode_ptr build(); bool pack(map > &bucketToLits); }; class TeddySet { u32 len; // nibbleSets is a series of bitfields over 16 predicates // that represent the whether shufti nibble set // so for num_masks = 4 we will represent our strings by // 8 u16s in the vector that indicate what a shufti bucket // would have to look like vector nibbleSets; set litIds; public: explicit TeddySet(u32 len_in) : len(len_in), nibbleSets(len_in * 2, 0) {} const set & getLits() const { return litIds; } size_t litCount() const { return litIds.size(); } bool operator<(const TeddySet & s) const { return litIds < s.litIds; } #ifdef TEDDY_DEBUG void dump() const { printf("TS: "); for (u32 i = 0; i < nibbleSets.size(); i++) { printf("%04x ", (u32)nibbleSets[i]); } printf("\nnlits: %zu\nLit ids: ", litCount()); printf("Prob: %llu\n", probability()); for (const auto &id : litIds) { printf("%u ", id); } printf("\n"); printf("Flood prone : %s\n", isRunProne()?"yes":"no"); } #endif bool identicalTail(const TeddySet & ts) const { return nibbleSets == ts.nibbleSets; } void addLiteral(u32 lit_id, const hwlmLiteral &lit) { const string &s = lit.s; for (u32 i = 0; i < len; i++) { if (i < s.size()) { u8 c = s[s.size() - i - 1]; u8 c_hi = (c >> 4) & 0xf; u8 c_lo = c & 0xf; nibbleSets[i*2] = 1 << c_lo; if (lit.nocase && ourisalpha(c)) { nibbleSets[i*2+1] = (1 << (c_hi&0xd)) | (1 << (c_hi|0x2)); } else { nibbleSets[i*2+1] = 1 << c_hi; } } else { nibbleSets[i*2] = nibbleSets[i*2+1] = 0xffff; } } litIds.insert(lit_id); } void merge(const TeddySet &ts) { for (u32 i = 0; i < nibbleSets.size(); i++) { nibbleSets[i] |= ts.nibbleSets[i]; } litIds.insert(ts.litIds.begin(), ts.litIds.end()); } // return a value p from 0 .. MAXINT64 that gives p/MAXINT64 // likelihood of this TeddySet firing a first-stage accept // if it was given a bucket of its own and random data were // to be passed in u64a probability() const { u64a val = 1; for (size_t i = 0; i < nibbleSets.size(); i++) { val *= popcount32((u32)nibbleSets[i]); } return val; } // return a score based around the chance of this hitting times // a small fixed cost + the cost of traversing some sort of followup // (assumption is that the followup is linear) u64a heuristic() const { return probability() * (2+litCount()); } bool isRunProne() const { u16 lo_and = 0xffff; u16 hi_and = 0xffff; for (u32 i = 0; i < len; i++) { lo_and &= nibbleSets[i*2]; hi_and &= nibbleSets[i*2+1]; } // we're not flood-prone if there's no way to get // through with a flood if (!lo_and || !hi_and) { return false; } return true; } }; bool TeddyCompiler::pack(map > &bucketToLits) { set sts; for (u32 i = 0; i < lits.size(); i++) { TeddySet ts(eng.numMasks); ts.addLiteral(i, lits[i]); sts.insert(ts); } while (1) { #ifdef TEDDY_DEBUG printf("Size %zu\n", sts.size()); for (const TeddySet &ts : sts) { printf("\n"); ts.dump(); } printf("\n===============================================\n"); #endif auto m1 = sts.end(), m2 = sts.end(); u64a best = 0xffffffffffffffffULL; for (auto i1 = sts.begin(), e1 = sts.end(); i1 != e1; ++i1) { const TeddySet &s1 = *i1; for (auto i2 = next(i1), e2 = sts.end(); i2 != e2; ++i2) { const TeddySet &s2 = *i2; // be more conservative if we don't absolutely need to // keep packing if ((sts.size() <= eng.getNumBuckets()) && !s1.identicalTail(s2)) { continue; } TeddySet tmpSet(eng.numMasks); tmpSet.merge(s1); tmpSet.merge(s2); u64a newScore = tmpSet.heuristic(); u64a oldScore = s1.heuristic() + s2.heuristic(); if (newScore < oldScore) { m1 = i1; m2 = i2; break; } else { u64a score = newScore - oldScore; bool oldRunProne = s1.isRunProne() && s2.isRunProne(); bool newRunProne = tmpSet.isRunProne(); if (newRunProne && !oldRunProne) { continue; } if (score < best) { best = score; m1 = i1; m2 = i2; } } } } // if we didn't find a merge candidate, bail out if ((m1 == sts.end()) || (m2 == sts.end())) { break; } // do the merge TeddySet nts(eng.numMasks); nts.merge(*m1); nts.merge(*m2); #ifdef TEDDY_DEBUG printf("Merging\n"); printf("m1 = \n"); m1->dump(); printf("m2 = \n"); m2->dump(); printf("nts = \n"); nts.dump(); printf("\n===============================================\n"); #endif sts.erase(m1); sts.erase(m2); sts.insert(nts); } if (sts.size() > eng.getNumBuckets()) { return false; } u32 bucket_id = 0; for (const TeddySet &ts : sts) { const auto &ts_lits = ts.getLits(); auto &bucket_lits = bucketToLits[bucket_id]; bucket_lits.insert(end(bucket_lits), begin(ts_lits), end(ts_lits)); bucket_id++; } return true; } bytecode_ptr TeddyCompiler::build() { if (lits.size() > eng.getNumBuckets() * TEDDY_BUCKET_LOAD) { DEBUG_PRINTF("too many literals: %zu\n", lits.size()); return nullptr; } #ifdef TEDDY_DEBUG for (size_t i = 0; i < lits.size(); i++) { printf("lit %zu (len = %zu, %s) is ", i, lits[i].s.size(), lits[i].nocase ? "caseless" : "caseful"); for (size_t j = 0; j < lits[i].s.size(); j++) { printf("%02x", ((u32)lits[i].s[j])&0xff); } printf("\n"); } #endif map > bucketToLits; if(eng.needConfirm(lits)) { if (!pack(bucketToLits)) { DEBUG_PRINTF("more lits (%zu) than buckets (%u), can't pack.\n", lits.size(), eng.getNumBuckets()); return nullptr; } } else { for (u32 i = 0; i < lits.size(); i++) { bucketToLits[i].push_back(i); } } u32 maskWidth = eng.getNumBuckets() / 8; size_t maskLen = eng.numMasks * 16 * 2 * maskWidth; auto floodControlTmp = setupFDRFloodControl(lits, eng, grey); auto confirmTmp = setupFullConfs(lits, eng, bucketToLits, make_small); size_t size = ROUNDUP_N(sizeof(Teddy) + maskLen + confirmTmp.size() + floodControlTmp.size(), 16 * maskWidth); auto fdr = make_zeroed_bytecode_ptr(size, 64); assert(fdr); // otherwise would have thrown std::bad_alloc Teddy *teddy = (Teddy *)fdr.get(); // ugly u8 *teddy_base = (u8 *)teddy; teddy->size = size; teddy->engineID = eng.getID(); teddy->maxStringLen = verify_u32(maxLen(lits)); u8 *ptr = teddy_base + sizeof(Teddy) + maskLen; memcpy(ptr, confirmTmp.get(), confirmTmp.size()); ptr += confirmTmp.size(); teddy->floodOffset = verify_u32(ptr - teddy_base); memcpy(ptr, floodControlTmp.get(), floodControlTmp.size()); ptr += floodControlTmp.size(); u8 *baseMsk = teddy_base + sizeof(Teddy); for (const auto &b2l : bucketToLits) { const u32 &bucket_id = b2l.first; const vector &ids = b2l.second; const u8 bmsk = 1U << (bucket_id % 8); for (const LiteralIndex &lit_id : ids) { const hwlmLiteral &l = lits[lit_id]; DEBUG_PRINTF("putting lit %u into bucket %u\n", lit_id, bucket_id); const u32 sz = verify_u32(l.s.size()); // fill in masks for (u32 j = 0; j < eng.numMasks; j++) { u32 msk_id_lo = j * 2 * maskWidth + (bucket_id / 8); u32 msk_id_hi = (j * 2 + 1) * maskWidth + (bucket_id / 8); // if we don't have a char at this position, fill in i // locations in these masks with '1' if (j >= sz) { for (u32 n = 0; n < 16; n++) { baseMsk[msk_id_lo * 16 + n] |= bmsk; baseMsk[msk_id_hi * 16 + n] |= bmsk; } } else { u8 c = l.s[sz - 1 - j]; // if we do have a char at this position const u32 hiShift = 4; u32 n_hi = (c >> hiShift) & 0xf; u32 n_lo = c & 0xf; if (j < l.msk.size() && l.msk[l.msk.size() - 1 - j]) { u8 m = l.msk[l.msk.size() - 1 - j]; u8 m_hi = (m >> hiShift) & 0xf; u8 m_lo = m & 0xf; u8 cmp = l.cmp[l.msk.size() - 1 - j]; u8 cmp_lo = cmp & 0xf; u8 cmp_hi = (cmp >> hiShift) & 0xf; for (u8 cm = 0; cm < 0x10; cm++) { if ((cm & m_lo) == (cmp_lo & m_lo)) { baseMsk[msk_id_lo * 16 + cm] |= bmsk; } if ((cm & m_hi) == (cmp_hi & m_hi)) { baseMsk[msk_id_hi * 16 + cm] |= bmsk; } } } else{ if (l.nocase && ourisalpha(c)) { u32 cmHalfClear = (0xdf >> hiShift) & 0xf; u32 cmHalfSet = (0x20 >> hiShift) & 0xf; baseMsk[msk_id_hi * 16 + (n_hi & cmHalfClear)] |= bmsk; baseMsk[msk_id_hi * 16 + (n_hi | cmHalfSet )] |= bmsk; } else { baseMsk[msk_id_hi * 16 + n_hi] |= bmsk; } baseMsk[msk_id_lo * 16 + n_lo] |= bmsk; } } } } } #ifdef TEDDY_DEBUG for (u32 i = 0; i < eng.numMasks * 2; i++) { for (u32 j = 0; j < 16; j++) { u8 val = baseMsk[i * 16 + j]; for (u32 k = 0; k < 8; k++) { printf("%s", ((val >> k) & 0x1) ? "1" : "0"); } printf(" "); } printf("\n"); } #endif return fdr; } } // namespace bytecode_ptr teddyBuildTableHinted(const vector &lits, bool make_small, u32 hint, const target_t &target, const Grey &grey) { unique_ptr des; if (hint == HINT_INVALID) { des = chooseTeddyEngine(target, lits); } else { des = getTeddyDescription(hint); } if (!des) { return nullptr; } TeddyCompiler tc(lits, *des, make_small, grey); return tc.build(); } } // namespace ue2