/* * Copyright (c) 2015-2016, Intel Corporation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \file * \brief Rose compile-time analysis for lookaround masks. */ #include "rose_build_lookaround.h" #include "rose_build_impl.h" #include "nfa/castlecompile.h" #include "nfa/goughcompile.h" #include "nfa/rdfa.h" #include "nfagraph/ng_repeat.h" #include "nfagraph/ng_util.h" #include "util/container.h" #include "util/dump_charclass.h" #include "util/graph_range.h" #include "util/ue2_containers.h" #include "util/verify_types.h" #include #include using namespace std; namespace ue2 { /** \brief Max search distance for reachability in front of a role. */ static const u32 MAX_FWD_LEN = 64; /** \brief Max search distance for reachability behind a role. */ static const u32 MAX_BACK_LEN = 64; /** \brief Max lookaround entries for a role. */ static const u32 MAX_LOOKAROUND_ENTRIES = 16; /** \brief We would rather have lookarounds with smaller reach than this. */ static const u32 LOOKAROUND_WIDE_REACH = 200; static void getForwardReach(const NGHolder &g, u32 top, map &look) { ue2::flat_set curr, next; // Consider only successors of start with the required top. for (const auto &e : out_edges_range(g.start, g)) { NFAVertex v = target(e, g); if (v == g.startDs) { continue; } if (contains(g[e].tops, top)) { curr.insert(v); } } for (u32 i = 0; i < MAX_FWD_LEN; i++) { if (curr.empty() || contains(curr, g.accept) || contains(curr, g.acceptEod)) { break; } next.clear(); CharReach cr; for (auto v : curr) { assert(!is_special(v, g)); cr |= g[v].char_reach; insert(&next, adjacent_vertices(v, g)); } assert(cr.any()); look[i] |= cr; curr.swap(next); } } static void getBackwardReach(const NGHolder &g, ReportID report, u32 lag, map &look) { ue2::flat_set curr, next; for (auto v : inv_adjacent_vertices_range(g.accept, g)) { if (contains(g[v].reports, report)) { curr.insert(v); } } for (u32 i = lag + 1; i <= MAX_BACK_LEN; i++) { if (curr.empty() || contains(curr, g.start) || contains(curr, g.startDs)) { break; } next.clear(); CharReach cr; for (auto v : curr) { assert(!is_special(v, g)); cr |= g[v].char_reach; insert(&next, inv_adjacent_vertices(v, g)); } assert(cr.any()); look[0 - i] |= cr; curr.swap(next); } } static void getForwardReach(const CastleProto &castle, u32 top, map &look) { depth len = castle.repeats.at(top).bounds.min; len = min(len, depth(MAX_FWD_LEN)); assert(len.is_finite()); const CharReach &cr = castle.reach(); for (u32 i = 0; i < len; i++) { look[i] |= cr; } } static void getBackwardReach(const CastleProto &castle, ReportID report, u32 lag, map &look) { depth min_depth = depth::infinity(); for (const auto &m : castle.repeats) { const PureRepeat &pr = m.second; if (contains(pr.reports, report)) { min_depth = min(min_depth, pr.bounds.min); } } if (!min_depth.is_finite()) { assert(0); return; } const CharReach &cr = castle.reach(); for (u32 i = lag + 1; i <= min(lag + (u32)min_depth, MAX_BACK_LEN); i++) { look[0 - i] |= cr; } } static void getForwardReach(const raw_dfa &rdfa, map &look) { if (rdfa.states.size() < 2) { return; } ue2::flat_set curr, next; curr.insert(rdfa.start_anchored); for (u32 i = 0; i < MAX_FWD_LEN && !curr.empty(); i++) { next.clear(); CharReach cr; for (const auto state_id : curr) { const dstate &ds = rdfa.states[state_id]; if (!ds.reports.empty() || !ds.reports_eod.empty()) { return; } for (unsigned c = 0; c < N_CHARS; c++) { dstate_id_t succ = ds.next[rdfa.alpha_remap[c]]; if (succ != DEAD_STATE) { cr.set(c); next.insert(succ); } } } assert(cr.any()); look[i] |= cr; curr.swap(next); } } static void getSuffixForwardReach(const suffix_id &suff, u32 top, map &look) { if (suff.graph()) { getForwardReach(*suff.graph(), top, look); } else if (suff.castle()) { getForwardReach(*suff.castle(), top, look); } else if (suff.dfa()) { assert(top == 0); // DFA isn't multi-top capable. getForwardReach(*suff.dfa(), look); } else if (suff.haig()) { assert(top == 0); // DFA isn't multi-top capable. getForwardReach(*suff.haig(), look); } } static void getRoseForwardReach(const left_id &left, u32 top, map &look) { if (left.graph()) { getForwardReach(*left.graph(), top, look); } else if (left.castle()) { getForwardReach(*left.castle(), top, look); } else if (left.dfa()) { assert(top == 0); // DFA isn't multi-top capable. getForwardReach(*left.dfa(), look); } else if (left.haig()) { assert(top == 0); // DFA isn't multi-top capable. getForwardReach(*left.haig(), look); } } static void combineForwardMasks(const vector > &rose_look, map &look) { for (u32 i = 0; i < MAX_FWD_LEN; i++) { for (const auto &rlook : rose_look) { if (contains(rlook, i)) { look[i] |= rlook.at(i); } else { look[i].setall(); } } } } static void findForwardReach(const RoseGraph &g, const RoseVertex v, map &look) { if (!g[v].reports.empty()) { DEBUG_PRINTF("acceptor\n"); return; } // Non-leaf vertices can pick up a mask per successor prefix rose // engine. vector> rose_look; for (const auto &e : out_edges_range(v, g)) { RoseVertex t = target(e, g); if (!g[t].left) { DEBUG_PRINTF("successor %zu has no leftfix\n", g[t].index); return; } rose_look.push_back(map()); getRoseForwardReach(g[t].left, g[e].rose_top, rose_look.back()); } if (g[v].suffix) { DEBUG_PRINTF("suffix engine\n"); rose_look.push_back(map()); getSuffixForwardReach(g[v].suffix, g[v].suffix.top, rose_look.back()); } combineForwardMasks(rose_look, look); } static void findBackwardReach(const RoseGraph &g, const RoseVertex v, map &look) { if (!g[v].left) { return; } DEBUG_PRINTF("leftfix, report=%u, lag=%u\n", g[v].left.leftfix_report, g[v].left.lag); if (g[v].left.graph) { getBackwardReach(*g[v].left.graph, g[v].left.leftfix_report, g[v].left.lag, look); } else if (g[v].left.castle) { getBackwardReach(*g[v].left.castle, g[v].left.leftfix_report, g[v].left.lag, look); } // TODO: implement DFA variants if necessary. } #if defined(DEBUG) || defined(DUMP_SUPPORT) #include static UNUSED string dump(const map &look) { ostringstream oss; for (auto it = look.begin(), ite = look.end(); it != ite; ++it) { if (it != look.begin()) { oss << ", "; } oss << "{" << it->first << ": " << describeClass(it->second) << "}"; } return oss.str(); } #endif static void normalise(map &look) { // We can erase entries where the reach is "all characters". vector dead; for (const auto &m : look) { if (m.second.all()) { dead.push_back(m.first); } } erase_all(&look, dead); } namespace { struct LookPriority { explicit LookPriority(const map &look_in) : look(look_in) {} bool operator()(s32 a, s32 b) const { const CharReach &a_reach = look.at(a); const CharReach &b_reach = look.at(b); if (a_reach.count() != b_reach.count()) { return a_reach.count() < b_reach.count(); } return abs(a) < abs(b); } private: const map &look; }; } // namespace static bool isFloodProne(const map &look, const CharReach &flood_cr) { for (const auto &m : look) { const CharReach &look_cr = m.second; if (!overlaps(look_cr, flood_cr)) { return false; } } DEBUG_PRINTF("look can't escape flood on %s\n", describeClass(flood_cr).c_str()); return true; } static bool isFloodProne(const map &look, const set &flood_reach) { if (flood_reach.empty()) { return false; } for (const CharReach &flood_cr : flood_reach) { if (isFloodProne(look, flood_cr)) { return true; } } return false; } static void reduce(map &look, set &flood_reach) { if (look.size() <= MAX_LOOKAROUND_ENTRIES) { return; } DEBUG_PRINTF("before reduce: %s\n", dump(look).c_str()); // First, remove floods that we already can't escape; they shouldn't affect // the analysis below. for (auto it = flood_reach.begin(); it != flood_reach.end();) { if (isFloodProne(look, *it)) { DEBUG_PRINTF("removing inescapable flood on %s from analysis\n", describeClass(*it).c_str()); flood_reach.erase(it++); } else { ++it; } } LookPriority cmp(look); priority_queue, LookPriority> pq(cmp); for (const auto &m : look) { pq.push(m.first); } while (!pq.empty() && look.size() > MAX_LOOKAROUND_ENTRIES) { s32 d = pq.top(); assert(contains(look, d)); const CharReach cr(look[d]); // copy pq.pop(); DEBUG_PRINTF("erasing {%d: %s}\n", d, describeClass(cr).c_str()); look.erase(d); // If removing this entry would result in us becoming flood_prone on a // particular flood_reach case, reinstate it and move on. if (isFloodProne(look, flood_reach)) { DEBUG_PRINTF("reinstating {%d: %s} due to flood-prone check\n", d, describeClass(cr).c_str()); look.insert(make_pair(d, cr)); } } while (!pq.empty()) { s32 d = pq.top(); assert(contains(look, d)); const CharReach cr(look[d]); // copy pq.pop(); if (cr.count() < LOOKAROUND_WIDE_REACH) { continue; } DEBUG_PRINTF("erasing {%d: %s}\n", d, describeClass(cr).c_str()); look.erase(d); // If removing this entry would result in us becoming flood_prone on a // particular flood_reach case, reinstate it and move on. if (isFloodProne(look, flood_reach)) { DEBUG_PRINTF("reinstating {%d: %s} due to flood-prone check\n", d, describeClass(cr).c_str()); look.insert(make_pair(d, cr)); } } DEBUG_PRINTF("after reduce: %s\n", dump(look).c_str()); } static void findFloodReach(const RoseBuildImpl &tbi, const RoseVertex v, set &flood_reach) { for (u32 lit_id : tbi.g[v].literals) { const ue2_literal &s = tbi.literals.right.at(lit_id).s; if (s.empty()) { continue; } if (is_flood(s)) { CharReach cr(*s.begin()); DEBUG_PRINTF("flood-prone with reach: %s\n", describeClass(cr).c_str()); flood_reach.insert(cr); } } } static map findLiteralReach(const RoseBuildImpl &build, const RoseVertex v) { map look; for (u32 lit_id : build.g[v].literals) { const rose_literal_id &lit = build.literals.right.at(lit_id); u32 i = lit.delay + 1; for (auto it = lit.s.rbegin(), ite = lit.s.rend(); it != ite; ++it) { look[0 - i] |= *it; i++; } } DEBUG_PRINTF("lit lookaround: %s\n", dump(look).c_str()); return look; } /** * Trim lookaround checks from the prefix that overlap with the literals * themselves. */ static void trimLiterals(const RoseBuildImpl &build, const RoseVertex v, map &look) { DEBUG_PRINTF("pre-trim lookaround: %s\n", dump(look).c_str()); for (const auto &m : findLiteralReach(build, v)) { auto it = look.find(m.first); if (it == end(look)) { continue; } if (m.second.isSubsetOf(it->second)) { DEBUG_PRINTF("can trim entry at %d\n", it->first); look.erase(it); } } DEBUG_PRINTF("post-trim lookaround: %s\n", dump(look).c_str()); } void findLookaroundMasks(const RoseBuildImpl &tbi, const RoseVertex v, vector &lookaround) { lookaround.clear(); const RoseGraph &g = tbi.g; map look; findBackwardReach(g, v, look); findForwardReach(g, v, look); trimLiterals(tbi, v, look); if (look.empty()) { return; } normalise(look); if (look.empty()) { return; } set flood_reach; findFloodReach(tbi, v, flood_reach); reduce(look, flood_reach); if (look.empty()) { return; } DEBUG_PRINTF("lookaround: %s\n", dump(look).c_str()); lookaround.reserve(look.size()); for (const auto &m : look) { s8 offset = verify_s8(m.first); lookaround.emplace_back(offset, m.second); } } static bool hasSingleFloatingStart(const NGHolder &g) { NFAVertex initial = NGHolder::null_vertex(); for (auto v : adjacent_vertices_range(g.startDs, g)) { if (v == g.startDs) { continue; } if (initial != NGHolder::null_vertex()) { DEBUG_PRINTF("more than one start\n"); return false; } initial = v; } if (initial == NGHolder::null_vertex()) { DEBUG_PRINTF("no floating starts\n"); return false; } // Anchored start must have no successors other than startDs and initial. for (auto v : adjacent_vertices_range(g.start, g)) { if (v != initial && v != g.startDs) { DEBUG_PRINTF("anchored start\n"); return false; } } return true; } static bool getTransientPrefixReach(const NGHolder &g, u32 lag, map &look) { if (in_degree(g.accept, g) != 1) { DEBUG_PRINTF("more than one accept\n"); return false; } // Must be a floating chain wired to startDs. if (!hasSingleFloatingStart(g)) { DEBUG_PRINTF("not a single floating start\n"); return false; } NFAVertex v = *(inv_adjacent_vertices(g.accept, g).first); u32 i = lag + 1; while (v != g.startDs) { DEBUG_PRINTF("i=%u, v=%zu\n", i, g[v].index); if (is_special(v, g)) { DEBUG_PRINTF("special\n"); return false; } look[0 - i] = g[v].char_reach; NFAVertex next = NGHolder::null_vertex(); for (auto u : inv_adjacent_vertices_range(v, g)) { if (u == g.start) { continue; // Benign, checked by hasSingleFloatingStart } if (next == NGHolder::null_vertex()) { next = u; continue; } DEBUG_PRINTF("branch\n"); return false; } if (next == NGHolder::null_vertex() || next == v) { DEBUG_PRINTF("no predecessor or only self-loop\n"); // This graph is malformed -- all vertices in a graph that makes it // to this analysis should have predecessors. assert(0); return false; } v = next; i++; } DEBUG_PRINTF("done\n"); return true; } static void normaliseLeftfix(map &look) { // We can erase entries where the reach is "all characters", except for the // very first one -- this might be required to establish a minimum bound on // the literal's match offset. // TODO: It would be cleaner to use a literal program instruction to check // the minimum bound explicitly. if (look.empty()) { return; } const auto earliest = begin(look)->first; vector dead; for (const auto &m : look) { if (m.second.all() && m.first != earliest) { dead.push_back(m.first); } } erase_all(&look, dead); } bool makeLeftfixLookaround(const RoseBuildImpl &build, const RoseVertex v, vector &lookaround) { lookaround.clear(); const RoseGraph &g = build.g; const left_id leftfix(g[v].left); if (!contains(build.transient, leftfix)) { DEBUG_PRINTF("not transient\n"); return false; } if (!leftfix.graph()) { DEBUG_PRINTF("only supported for graphs so far\n"); return false; } map look; if (!getTransientPrefixReach(*leftfix.graph(), g[v].left.lag, look)) { DEBUG_PRINTF("not a chain\n"); return false; } trimLiterals(build, v, look); normaliseLeftfix(look); if (look.size() > MAX_LOOKAROUND_ENTRIES) { DEBUG_PRINTF("lookaround too big (%zu entries)\n", look.size()); return false; } if (look.empty()) { DEBUG_PRINTF("lookaround empty; this is weird\n"); return false; } lookaround.reserve(look.size()); for (const auto &m : look) { if (m.first < -128 || m.first > 127) { DEBUG_PRINTF("range too big\n"); return false; } s8 offset = verify_s8(m.first); lookaround.emplace_back(offset, m.second); } return true; } void mergeLookaround(vector &lookaround, const vector &more_lookaround) { if (lookaround.size() >= MAX_LOOKAROUND_ENTRIES) { DEBUG_PRINTF("big enough!\n"); return; } // Don't merge lookarounds at offsets we already have entries for. ue2::flat_set offsets; for (const auto &e : lookaround) { offsets.insert(e.offset); } map more; LookPriority cmp(more); priority_queue, LookPriority> pq(cmp); for (const auto &e : more_lookaround) { if (!contains(offsets, e.offset)) { more.emplace(e.offset, e.reach); pq.push(e.offset); } } while (!pq.empty() && lookaround.size() < MAX_LOOKAROUND_ENTRIES) { const s32 offset = pq.top(); pq.pop(); const auto &cr = more.at(offset); DEBUG_PRINTF("added {%d,%s}\n", offset, describeClass(cr).c_str()); lookaround.emplace_back(verify_s8(offset), cr); } // Order by offset. sort(begin(lookaround), end(lookaround), [](const LookEntry &a, const LookEntry &b) { return a.offset < b.offset; }); } } // namespace ue2