/* * Copyright (c) 2015-2017, Intel Corporation * Copyright (c) 2020-2021, VectorCamp PC * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef SIMD_IMPL_HPP #define SIMD_IMPL_HPP #include #include "util/simd/arch/arm/types.hpp" // 128-bit NEON implementation template<> really_inline SuperVector<16>::SuperVector(SuperVector const &o) { u.v128[0] = o.u.v128[0]; } template<> really_inline SuperVector<16>::SuperVector(typename base_type::type const v) { u.v128[0] = v; }; template<> template<> really_inline SuperVector<16>::SuperVector(int8x16_t const o) { u.v128[0] = static_cast(o); } template<> template<> really_inline SuperVector<16>::SuperVector(uint8x16_t const o) { u.v128[0] = static_cast(o); } template<> template<> really_inline SuperVector<16>::SuperVector(int8_t const o) { u.v128[0] = vdupq_n_s8(o); } template<> template<> really_inline SuperVector<16>::SuperVector(uint8_t const o) { u.v128[0] = vdupq_n_u8(o); } template<> template<> really_inline SuperVector<16>::SuperVector(int16_t const o) { u.v128[0] = vdupq_n_s16(o); } template<> template<> really_inline SuperVector<16>::SuperVector(uint16_t const o) { u.v128[0] = vdupq_n_u16(o); } template<> template<> really_inline SuperVector<16>::SuperVector(int32_t const o) { u.v128[0] = vdupq_n_s32(o); } template<> template<> really_inline SuperVector<16>::SuperVector(uint32_t const o) { u.v128[0] = vdupq_n_u32(o); } template<> template<> really_inline SuperVector<16>::SuperVector(int64_t const o) { u.v128[0] = vdupq_n_s64(o); } template<> template<> really_inline SuperVector<16>::SuperVector(uint64_t const o) { u.v128[0] = vdupq_n_u64(o); } // Constants template<> really_inline SuperVector<16> SuperVector<16>::Ones(void) { return {vdupq_n_u8(0xFF)}; } template<> really_inline SuperVector<16> SuperVector<16>::Zeroes(void) { return {vdupq_n_u8(0)}; } template <> really_inline void SuperVector<16>::operator=(SuperVector<16> const &o) { u.v128[0] = o.u.v128[0]; } template <> really_inline SuperVector<16> SuperVector<16>::operator&(SuperVector<16> const b) const { return {vandq_s8(u.v128[0], b.u.v128[0])}; } template <> really_inline SuperVector<16> SuperVector<16>::eq(SuperVector<16> const b) const { return {vceqq_s8((int16x8_t)u.v128[0], (int16x8_t)b.u.v128[0])}; } template <> really_inline typename SuperVector<16>::movemask_type SuperVector<16>::movemask(void) const { static const uint8x16_t powers{ 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128 }; // Compute the mask from the input uint64x2_t mask = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(vandq_u8((uint16x8_t)u.v128[0], powers)))); uint64x2_t mask1 = (m128)vextq_s8(mask, zeroes128(), 7); mask = vorrq_u8(mask, mask1); // Get the resulting bytes uint16_t output; vst1q_lane_u16((uint16_t*)&output, (uint16x8_t)mask, 0); return static_cast::movemask_type>(output); } template <> really_inline typename SuperVector<16>::movemask_type SuperVector<16>::eqmask(SuperVector<16> const b) const { return eq(b).movemask(); } #ifndef DEBUG template <> really_inline SuperVector<16> SuperVector<16>::operator<<(uint8_t const N) const { return {vshlq_n_s32(u.v128[0], N)}; } #else template <> really_inline SuperVector<16> SuperVector<16>::operator<<(uint8_t const N) const { switch(N) { case 0: return *this; break; case 1: return {vshlq_n_s32((int16x8_t) u.v128[0], 1)}; break; case 2: return {vshlq_n_s32((int16x8_t) u.v128[0], 2)}; break; case 3: return {vshlq_n_s32((int16x8_t) u.v128[0], 3)}; break; case 4: return {vshlq_n_s32((int16x8_t) u.v128[0], 4)}; break; case 5: return {vshlq_n_s32((int16x8_t) u.v128[0], 5)}; break; case 6: return {vshlq_n_s32((int16x8_t) u.v128[0], 6)}; break; case 7: return {vshlq_n_s32((int16x8_t) u.v128[0], 7)}; break; case 8: return {vshlq_n_s32((int16x8_t) u.v128[0], 8)}; break; case 9: return {vshlq_n_s32((int16x8_t) u.v128[0], 9)}; break; case 10: return {vshlq_n_s32((int16x8_t) u.v128[0], 10)}; break; case 11: return {vshlq_n_s32((int16x8_t) u.v128[0], 11)}; break; case 12: return {vshlq_n_s32((int16x8_t) u.v128[0], 12)}; break; case 13: return {vshlq_n_s32((int16x8_t) u.v128[0], 13)}; break; case 14: return {vshlq_n_s32((int16x8_t) u.v128[0], 14)}; break; case 15: return {vshlq_n_s32((int16x8_t) u.v128[0], 15)}; break; case 16: return Zeroes(); break; default: break; } return *this; } #endif template <> really_inline SuperVector<16> SuperVector<16>::loadu(void const *ptr) { return {vld1q_s32((const int32_t *)ptr)}; } template <> really_inline SuperVector<16> SuperVector<16>::load(void const *ptr) { assert(ISALIGNED_N(ptr, alignof(SuperVector::size))); ptr = assume_aligned(ptr, SuperVector::size); return vld1q_s32((const int32_t *)ptr); } #ifndef DEBUG template<> really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> r, int8_t offset) { return {vextq_s8((int16x8_t)u.v128[0], (int16x8_t)r.u.v128[0], offset)}; } #else template<> really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> l, int8_t offset) { switch(offset) { case 0: return *this; break; case 1: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 1)}; break; case 2: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 2)}; break; case 3: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 3)}; break; case 4: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 4)}; break; case 5: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 5)}; break; case 6: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 6)}; break; case 7: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 7)}; break; case 8: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 8)}; break; case 9: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 9)}; break; case 10: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 10)}; break; case 11: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 11)}; break; case 12: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 12)}; break; case 13: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 13)}; break; case 14: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 14)}; break; case 15: return {vextq_s8((int16x8_t) u.v128[0], (int16x8_t) l.u.v128[0], 15)}; break; case 16: return l; break; default: break; } return *this; } #endif #endif // SIMD_IMPL_HPP