/* * Copyright (c) 2015, Intel Corporation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "mcclellancompile.h" #include "accel.h" #include "grey.h" #include "mcclellan_internal.h" #include "nfa_internal.h" #include "shufticompile.h" #include "trufflecompile.h" #include "ue2common.h" #include "util/alloc.h" #include "util/bitutils.h" #include "util/charreach.h" #include "util/compare.h" #include "util/compile_context.h" #include "util/container.h" #include "util/make_unique.h" #include "util/order_check.h" #include "util/ue2_containers.h" #include "util/unaligned.h" #include "util/verify_types.h" #include #include #include #include #include #include #include #include using namespace std; namespace ue2 { /* compile time accel defs */ #define ACCEL_MAX_STOP_CHAR 160 /* larger than nfa, as we don't have a budget and the nfa cheats on stop characters for sets of states */ #define ACCEL_MAX_FLOATING_STOP_CHAR 192 /* accelerating sds is important */ namespace /* anon */ { struct dstate_extra { u16 daddytaken; bool shermanState; bool accelerable; dstate_extra(void) : daddytaken(0), shermanState(false), accelerable(false) {} }; struct dfa_info { dfa_build_strat &strat; raw_dfa &raw; vector &states; vector extra; const u16 alpha_size; /* including special symbols */ const array &alpha_remap; const u16 impl_alpha_size; u8 getAlphaShift() const; explicit dfa_info(dfa_build_strat &s) : strat(s), raw(s.get_raw()), states(raw.states), extra(raw.states.size()), alpha_size(raw.alpha_size), alpha_remap(raw.alpha_remap), impl_alpha_size(raw.getImplAlphaSize()) {} dstate_id_t implId(dstate_id_t raw_id) const { return states[raw_id].impl_id; } bool is_sherman(dstate_id_t raw_id) const { return extra[raw_id].shermanState; } bool is_accel(dstate_id_t raw_id) const { return extra[raw_id].accelerable; } size_t size(void) const { return states.size(); } }; u8 dfa_info::getAlphaShift() const { if (impl_alpha_size < 2) { return 1; } else { /* log2 round up */ return 32 - clz32(impl_alpha_size - 1); } } } // namespace static mstate_aux *getAux(NFA *n, dstate_id_t i) { assert(isMcClellanType(n->type)); mcclellan *m = (mcclellan *)getMutableImplNfa(n); mstate_aux *aux_base = (mstate_aux *)((char *)n + m->aux_offset); mstate_aux *aux = aux_base + i; assert((const char *)aux < (const char *)n + m->length); return aux; } static void markEdges(NFA *n, u16 *succ_table, const dfa_info &info) { assert((size_t)succ_table % 2 == 0); assert(n->type == MCCLELLAN_NFA_16); u8 alphaShift = info.getAlphaShift(); u16 alphaSize = info.impl_alpha_size; mcclellan *m = (mcclellan *)getMutableImplNfa(n); /* handle the normal states */ for (u32 i = 0; i < m->sherman_limit; i++) { for (size_t j = 0; j < alphaSize; j++) { size_t c_prime = (i << alphaShift) + j; mstate_aux *aux = getAux(n, succ_table[c_prime]); if (aux->accept) { succ_table[c_prime] |= ACCEPT_FLAG; } if (aux->accel_offset) { succ_table[c_prime] |= ACCEL_FLAG; } } } /* handle the sherman states */ char *sherman_base_offset = (char *)n + m->sherman_offset; for (u16 j = m->sherman_limit; j < m->state_count; j++) { char *sherman_cur = findMutableShermanState(sherman_base_offset, m->sherman_limit, j); assert(*(sherman_cur + SHERMAN_TYPE_OFFSET) == SHERMAN_STATE); u8 len = *(u8 *)(sherman_cur + SHERMAN_LEN_OFFSET); u16 *succs = (u16 *)(sherman_cur + SHERMAN_STATES_OFFSET(len)); for (u8 i = 0; i < len; i++) { u16 succ_i = unaligned_load_u16((u8 *)&succs[i]); mstate_aux *aux = getAux(n, succ_i); if (aux->accept) { succ_i |= ACCEPT_FLAG; } if (aux->accel_offset) { succ_i |= ACCEL_FLAG; } unaligned_store_u16((u8 *)&succs[i], succ_i); } } } void mcclellan_build_strat::find_escape_strings(dstate_id_t this_idx, escape_info *out) const { const dstate &raw = rdfa.states[this_idx]; const auto &alpha_remap = rdfa.alpha_remap; flat_set> outs2_local; for (unsigned i = 0; i < N_CHARS; i++) { outs2_local.clear(); if (raw.next[alpha_remap[i]] != this_idx) { out->outs.set(i); DEBUG_PRINTF("next is %hu\n", raw.next[alpha_remap[i]]); const dstate &raw_next = rdfa.states[raw.next[alpha_remap[i]]]; if (!raw_next.reports.empty() && generates_callbacks(rdfa.kind)) { DEBUG_PRINTF("leads to report\n"); out->outs2_broken = true; /* cannot accelerate over reports */ } for (unsigned j = 0; !out->outs2_broken && j < N_CHARS; j++) { if (raw_next.next[alpha_remap[j]] == raw.next[alpha_remap[j]]) { continue; } DEBUG_PRINTF("adding %02x %02x -> %hu to 2 \n", i, j, raw_next.next[alpha_remap[j]]); outs2_local.emplace((u8)i, (u8)j); } if (outs2_local.size() > 8) { DEBUG_PRINTF("adding %02x to outs2_single\n", i); out->outs2_single.set(i); } else { insert(&out->outs2, outs2_local); } if (out->outs2.size() > 8) { DEBUG_PRINTF("outs2 too big\n"); out->outs2_broken = true; } } } } /** builds acceleration schemes for states */ void mcclellan_build_strat::buildAccel(dstate_id_t this_idx, void *accel_out) { AccelAux *accel = (AccelAux *)accel_out; escape_info out; find_escape_strings(this_idx, &out); if (!out.outs2_broken && out.outs2_single.none() && out.outs2.size() == 1) { accel->accel_type = ACCEL_DVERM; accel->dverm.c1 = out.outs2.begin()->first; accel->dverm.c2 = out.outs2.begin()->second; DEBUG_PRINTF("state %hu is double vermicelli\n", this_idx); return; } if (!out.outs2_broken && out.outs2_single.none() && (out.outs2.size() == 2 || out.outs2.size() == 4)) { bool ok = true; assert(!out.outs2.empty()); u8 firstC = out.outs2.begin()->first & CASE_CLEAR; u8 secondC = out.outs2.begin()->second & CASE_CLEAR; for (const pair &p : out.outs2) { if ((p.first & CASE_CLEAR) != firstC || (p.second & CASE_CLEAR) != secondC) { ok = false; break; } } if (ok) { accel->accel_type = ACCEL_DVERM_NOCASE; accel->dverm.c1 = firstC; accel->dverm.c2 = secondC; DEBUG_PRINTF("state %hu is nc double vermicelli\n", this_idx); return; } } if (!out.outs2_broken && (out.outs2_single.count() + out.outs2.size()) <= 8 && out.outs2_single.count() < out.outs2.size() && out.outs2_single.count() <= 2 && !out.outs2.empty()) { accel->accel_type = ACCEL_DSHUFTI; shuftiBuildDoubleMasks(out.outs2_single, out.outs2, &accel->dshufti.lo1, &accel->dshufti.hi1, &accel->dshufti.lo2, &accel->dshufti.hi2); DEBUG_PRINTF("state %hu is double shufti\n", this_idx); return; } if (out.outs.none()) { accel->accel_type = ACCEL_RED_TAPE; DEBUG_PRINTF("state %hu is a dead end full of bureaucratic red tape" " from which there is no escape\n", this_idx); return; } if (out.outs.count() == 1) { accel->accel_type = ACCEL_VERM; accel->verm.c = out.outs.find_first(); DEBUG_PRINTF("state %hu is vermicelli\n", this_idx); return; } if (out.outs.count() == 2 && out.outs.isCaselessChar()) { accel->accel_type = ACCEL_VERM_NOCASE; accel->verm.c = out.outs.find_first() & CASE_CLEAR; DEBUG_PRINTF("state %hu is caseless vermicelli\n", this_idx); return; } if (out.outs.count() > ACCEL_MAX_FLOATING_STOP_CHAR) { accel->accel_type = ACCEL_NONE; DEBUG_PRINTF("state %hu is too broad\n", this_idx); return; } accel->accel_type = ACCEL_SHUFTI; if (-1 != shuftiBuildMasks(out.outs, &accel->shufti.lo, &accel->shufti.hi)) { DEBUG_PRINTF("state %hu is shufti\n", this_idx); return; } assert(!out.outs.none()); accel->accel_type = ACCEL_TRUFFLE; truffleBuildMasks(out.outs, &accel->truffle.mask1, &accel->truffle.mask2); DEBUG_PRINTF("state %hu is truffle\n", this_idx); } static bool is_accel(const raw_dfa &raw, dstate_id_t sds_or_proxy, dstate_id_t this_idx) { if (!this_idx /* dead state is not accelerable */) { return false; } /* Note on report acceleration states: While we can't accelerate while we * are spamming out callbacks, the QR code paths don't raise reports * during scanning so they can accelerate report states. */ if (generates_callbacks(raw.kind) && !raw.states[this_idx].reports.empty()) { return false; } size_t single_limit = this_idx == sds_or_proxy ? ACCEL_MAX_FLOATING_STOP_CHAR : ACCEL_MAX_STOP_CHAR; DEBUG_PRINTF("inspecting %hu/%hu: %zu\n", this_idx, sds_or_proxy, single_limit); CharReach out; for (u32 i = 0; i < N_CHARS; i++) { if (raw.states[this_idx].next[raw.alpha_remap[i]] != this_idx) { out.set(i); } } if (out.count() <= single_limit) { DEBUG_PRINTF("state %hu should be accelerable %zu\n", this_idx, out.count()); return true; } DEBUG_PRINTF("state %hu is not accelerable has %zu\n", this_idx, out.count()); return false; } static bool has_self_loop(dstate_id_t s, const raw_dfa &raw) { u16 top_remap = raw.alpha_remap[TOP]; for (u32 i = 0; i < raw.states[s].next.size(); i++) { if (i != top_remap && raw.states[s].next[i] == s) { return true; } } return false; } static dstate_id_t get_sds_or_proxy(const raw_dfa &raw) { if (raw.start_floating != DEAD_STATE) { DEBUG_PRINTF("has floating start\n"); return raw.start_floating; } DEBUG_PRINTF("looking for SDS proxy\n"); dstate_id_t s = raw.start_anchored; if (has_self_loop(s, raw)) { return s; } u16 top_remap = raw.alpha_remap[TOP]; ue2::unordered_set seen; while (true) { seen.insert(s); DEBUG_PRINTF("basis %hu\n", s); /* check if we are connected to a state with a self loop */ for (u32 i = 0; i < raw.states[s].next.size(); i++) { dstate_id_t t = raw.states[s].next[i]; if (i != top_remap && t != DEAD_STATE && has_self_loop(t, raw)) { return t; } } /* find a neighbour to use as a basis for looking for the sds proxy */ dstate_id_t t = DEAD_STATE; for (u32 i = 0; i < raw.states[s].next.size(); i++) { dstate_id_t tt = raw.states[s].next[i]; if (i != top_remap && tt != DEAD_STATE && !contains(seen, tt)) { t = tt; break; } } if (t == DEAD_STATE) { /* we were unable to find a state to use as a SDS proxy */ return DEAD_STATE; } s = t; seen.insert(t); } } static void populateAccelerationInfo(dfa_info &info, u32 *ac, const Grey &grey) { *ac = 0; /* number of accelerable states */ if (!grey.accelerateDFA) { return; } dstate_id_t sds_proxy = get_sds_or_proxy(info.raw); DEBUG_PRINTF("sds %hu\n", sds_proxy); for (size_t i = 0; i < info.size(); i++) { if (is_accel(info.raw, sds_proxy, i)) { ++*ac; info.extra[i].accelerable = true; } } } static void populateBasicInfo(size_t state_size, const dfa_info &info, u32 total_size, u32 aux_offset, u32 accel_offset, u32 accel_count, ReportID arb, bool single, NFA *nfa) { assert(state_size == sizeof(u16) || state_size == sizeof(u8)); nfa->length = total_size; nfa->nPositions = info.states.size(); nfa->scratchStateSize = verify_u32(state_size); nfa->streamStateSize = verify_u32(state_size); if (state_size == sizeof(u8)) { nfa->type = MCCLELLAN_NFA_8; } else { nfa->type = MCCLELLAN_NFA_16; } mcclellan *m = (mcclellan *)getMutableImplNfa(nfa); for (u32 i = 0; i < 256; i++) { m->remap[i] = verify_u8(info.alpha_remap[i]); } m->alphaShift = info.getAlphaShift(); m->length = total_size; m->aux_offset = aux_offset; m->accel_offset = accel_offset; m->arb_report = arb; m->state_count = verify_u16(info.size()); m->start_anchored = info.implId(info.raw.start_anchored); m->start_floating = info.implId(info.raw.start_floating); m->has_accel = accel_count ? 1 : 0; if (single) { m->flags |= MCCLELLAN_FLAG_SINGLE; } } raw_dfa::~raw_dfa() { } raw_report_info::raw_report_info() { } raw_report_info::~raw_report_info() { } namespace { struct raw_report_list { flat_set reports; explicit raw_report_list(const flat_set &reports_in) : reports(reports_in) {} bool operator<(const raw_report_list &b) const { return reports < b.reports; } }; struct raw_report_info_impl : public raw_report_info { vector rl; u32 getReportListSize() const override; size_t size() const override; void fillReportLists(NFA *n, size_t base_offset, std::vector &ro /* out */) const override; }; } unique_ptr mcclellan_build_strat::gatherReports( vector &reports, vector &reports_eod, u8 *isSingleReport, ReportID *arbReport) const { DEBUG_PRINTF("gathering reports\n"); auto ri = ue2::make_unique(); map rev; for (const dstate &s : rdfa.states) { if (s.reports.empty()) { reports.push_back(MO_INVALID_IDX); continue; } raw_report_list rrl(s.reports); DEBUG_PRINTF("non empty r\n"); if (rev.find(rrl) != rev.end()) { reports.push_back(rev[rrl]); } else { DEBUG_PRINTF("adding to rl %zu\n", ri->size()); rev[rrl] = ri->size(); reports.push_back(ri->size()); ri->rl.push_back(rrl); } } for (const dstate &s : rdfa.states) { if (s.reports_eod.empty()) { reports_eod.push_back(MO_INVALID_IDX); continue; } DEBUG_PRINTF("non empty r eod\n"); raw_report_list rrl(s.reports_eod); if (rev.find(rrl) != rev.end()) { reports_eod.push_back(rev[rrl]); continue; } DEBUG_PRINTF("adding to rl eod %zu\n", s.reports_eod.size()); rev[rrl] = ri->size(); reports_eod.push_back(ri->size()); ri->rl.push_back(rrl); } assert(!ri->rl.empty()); /* all components should be able to generate reports */ if (!ri->rl.empty()) { *arbReport = *ri->rl.begin()->reports.begin(); } else { *arbReport = 0; } /* if we have only a single report id generated from all accepts (not eod) * we can take some short cuts */ set reps; for (u32 rl_index : reports) { if (rl_index == MO_INVALID_IDX) { continue; } assert(rl_index < ri->size()); insert(&reps, ri->rl[rl_index].reports); } if (reps.size() == 1) { *isSingleReport = 1; *arbReport = *reps.begin(); DEBUG_PRINTF("single -- %u\n", *arbReport); } else { *isSingleReport = 0; } return move(ri); } u32 raw_report_info_impl::getReportListSize() const { u32 rv = 0; for (const auto &reps : rl) { rv += sizeof(report_list); rv += sizeof(ReportID) * reps.reports.size(); } return rv; } size_t raw_report_info_impl::size() const { return rl.size(); } void raw_report_info_impl::fillReportLists(NFA *n, size_t base_offset, vector &ro) const { for (const auto &reps : rl) { ro.push_back(base_offset); report_list *p = (report_list *)((char *)n + base_offset); u32 i = 0; for (const ReportID report : reps.reports) { p->report[i++] = report; } p->count = verify_u32(reps.reports.size()); base_offset += sizeof(report_list); base_offset += sizeof(ReportID) * reps.reports.size(); } } static size_t calcShermanRegionSize(const dfa_info &info) { size_t rv = 0; for (size_t i = 0; i < info.size(); i++) { if (info.is_sherman(i)) { rv += SHERMAN_FIXED_SIZE; } } return ROUNDUP_16(rv); } static void fillInAux(mstate_aux *aux, dstate_id_t i, const dfa_info &info, const vector &reports, const vector &reports_eod, vector &reportOffsets) { const dstate &raw_state = info.states[i]; aux->accept = raw_state.reports.empty() ? 0 : reportOffsets[reports[i]]; aux->accept_eod = raw_state.reports_eod.empty() ? 0 : reportOffsets[reports_eod[i]]; aux->top = info.implId(i ? raw_state.next[info.alpha_remap[TOP]] : info.raw.start_floating); } /* returns non-zero on error */ static int allocateFSN16(dfa_info &info, dstate_id_t *sherman_base) { info.states[0].impl_id = 0; /* dead is always 0 */ vector norm; vector sherm; if (info.size() > (1 << 16)) { DEBUG_PRINTF("too many states\n"); *sherman_base = 0; return 1; } for (u32 i = 1; i < info.size(); i++) { if (info.is_sherman(i)) { sherm.push_back(i); } else { norm.push_back(i); } } dstate_id_t next_norm = 1; for (const dstate_id_t &s : norm) { info.states[s].impl_id = next_norm++; } *sherman_base = next_norm; dstate_id_t next_sherman = next_norm; for (const dstate_id_t &s : sherm) { info.states[s].impl_id = next_sherman++; } /* Check to see if we haven't over allocated our states */ DEBUG_PRINTF("next sherman %u masked %u\n", next_sherman, (dstate_id_t)(next_sherman & STATE_MASK)); return (next_sherman - 1) != ((next_sherman - 1) & STATE_MASK); } static aligned_unique_ptr mcclellanCompile16(dfa_info &info, const CompileContext &cc) { DEBUG_PRINTF("building mcclellan 16\n"); vector reports; /* index in ri for the appropriate report list */ vector reports_eod; /* as above */ ReportID arb; u8 single; u32 accelCount; u8 alphaShift = info.getAlphaShift(); assert(alphaShift <= 8); u16 count_real_states; if (allocateFSN16(info, &count_real_states)) { DEBUG_PRINTF("failed to allocate state numbers, %zu states total\n", info.size()); return nullptr; } unique_ptr ri = info.strat.gatherReports(reports, reports_eod, &single, &arb); populateAccelerationInfo(info, &accelCount, cc.grey); size_t tran_size = (1 << info.getAlphaShift()) * sizeof(u16) * count_real_states; size_t aux_size = sizeof(mstate_aux) * info.size(); size_t aux_offset = ROUNDUP_16(sizeof(NFA) + sizeof(mcclellan) + tran_size); size_t accel_size = info.strat.accelSize() * accelCount; size_t accel_offset = ROUNDUP_N(aux_offset + aux_size + ri->getReportListSize(), 32); size_t sherman_offset = ROUNDUP_16(accel_offset + accel_size); size_t sherman_size = calcShermanRegionSize(info); size_t total_size = sherman_offset + sherman_size; accel_offset -= sizeof(NFA); /* adj accel offset to be relative to m */ assert(ISALIGNED_N(accel_offset, alignof(union AccelAux))); aligned_unique_ptr nfa = aligned_zmalloc_unique(total_size); char *nfa_base = (char *)nfa.get(); populateBasicInfo(sizeof(u16), info, total_size, aux_offset, accel_offset, accelCount, arb, single, nfa.get()); vector reportOffsets; ri->fillReportLists(nfa.get(), aux_offset + aux_size, reportOffsets); u16 *succ_table = (u16 *)(nfa_base + sizeof(NFA) + sizeof(mcclellan)); mstate_aux *aux = (mstate_aux *)(nfa_base + aux_offset); mcclellan *m = (mcclellan *)getMutableImplNfa(nfa.get()); /* copy in the mc header information */ m->sherman_offset = sherman_offset; m->sherman_end = total_size; m->sherman_limit = count_real_states; /* do normal states */ for (size_t i = 0; i < info.size(); i++) { if (info.is_sherman(i)) { continue; } u16 fs = info.implId(i); mstate_aux *this_aux = getAux(nfa.get(), fs); assert(fs < count_real_states); for (size_t j = 0; j < info.impl_alpha_size; j++) { succ_table[(fs << alphaShift) + j] = info.implId(info.states[i].next[j]); } fillInAux(&aux[fs], i, info, reports, reports_eod, reportOffsets); if (info.is_accel(i)) { this_aux->accel_offset = accel_offset; accel_offset += info.strat.accelSize(); assert(accel_offset + sizeof(NFA) <= sherman_offset); assert(ISALIGNED_N(accel_offset, alignof(union AccelAux))); info.strat.buildAccel(i, (void *)((char *)m + this_aux->accel_offset)); } } /* do sherman states */ char *sherman_table = nfa_base + m->sherman_offset; assert(ISALIGNED_16(sherman_table)); for (size_t i = 0; i < info.size(); i++) { if (!info.is_sherman(i)) { continue; } u16 fs = verify_u16(info.implId(i)); mstate_aux *this_aux = getAux(nfa.get(), fs); assert(fs >= count_real_states); char *curr_sherman_entry = sherman_table + (fs - m->sherman_limit) * SHERMAN_FIXED_SIZE; assert(curr_sherman_entry <= nfa_base + m->length); fillInAux(this_aux, i, info, reports, reports_eod, reportOffsets); if (info.is_accel(i)) { this_aux->accel_offset = accel_offset; accel_offset += info.strat.accelSize(); assert(accel_offset + sizeof(NFA) <= sherman_offset); assert(ISALIGNED_N(accel_offset, alignof(union AccelAux))); info.strat.buildAccel(i, (void *)((char *)m + this_aux->accel_offset)); } u8 len = verify_u8(info.impl_alpha_size - info.extra[i].daddytaken); assert(len <= 9); dstate_id_t d = info.states[i].daddy; *(u8 *)(curr_sherman_entry + SHERMAN_TYPE_OFFSET) = SHERMAN_STATE; *(u8 *)(curr_sherman_entry + SHERMAN_LEN_OFFSET) = len; *(u16 *)(curr_sherman_entry + SHERMAN_DADDY_OFFSET) = info.implId(d); u8 *chars = (u8 *)(curr_sherman_entry + SHERMAN_CHARS_OFFSET); for (u16 s = 0; s < info.impl_alpha_size; s++) { if (info.states[i].next[s] != info.states[d].next[s]) { *(chars++) = (u8)s; } } u16 *states = (u16 *)(curr_sherman_entry + SHERMAN_STATES_OFFSET(len)); for (u16 s = 0; s < info.impl_alpha_size; s++) { if (info.states[i].next[s] != info.states[d].next[s]) { DEBUG_PRINTF("s overrider %hu dad %hu char next %hu\n", fs, info.implId(d), info.implId(info.states[i].next[s])); unaligned_store_u16((u8 *)states++, info.implId(info.states[i].next[s])); } } } markEdges(nfa.get(), succ_table, info); return nfa; } static void fillInBasicState8(const dfa_info &info, mstate_aux *aux, u8 *succ_table, const vector &reportOffsets, const vector &reports, const vector &reports_eod, u32 i) { dstate_id_t j = info.implId(i); u8 alphaShift = info.getAlphaShift(); assert(alphaShift <= 8); for (size_t s = 0; s < info.impl_alpha_size; s++) { dstate_id_t raw_succ = info.states[i].next[s]; succ_table[(j << alphaShift) + s] = info.implId(raw_succ); } aux[j].accept = 0; aux[j].accept_eod = 0; if (!info.states[i].reports.empty()) { DEBUG_PRINTF("i=%u r[i]=%u\n", i, reports[i]); assert(reports[i] != MO_INVALID_IDX); aux[j].accept = reportOffsets[reports[i]]; } if (!info.states[i].reports_eod.empty()) { DEBUG_PRINTF("i=%u re[i]=%u\n", i, reports_eod[i]); aux[j].accept_eod = reportOffsets[reports_eod[i]]; } dstate_id_t raw_top = i ? info.states[i].next[info.alpha_remap[TOP]] : info.raw.start_floating; aux[j].top = info.implId(raw_top); } static void allocateFSN8(dfa_info &info, u16 *accel_limit, u16 *accept_limit) { info.states[0].impl_id = 0; /* dead is always 0 */ vector norm; vector accel; vector accept; assert(info.size() <= (1 << 8)); for (u32 i = 1; i < info.size(); i++) { if (!info.states[i].reports.empty()) { accept.push_back(i); } else if (info.is_accel(i)) { accel.push_back(i); } else { norm.push_back(i); } } u32 j = 1; /* dead is already at 0 */ for (const dstate_id_t &s : norm) { assert(j <= 256); DEBUG_PRINTF("mapping state %u to %u\n", s, j); info.states[s].impl_id = j++; } *accel_limit = j; for (const dstate_id_t &s : accel) { assert(j <= 256); DEBUG_PRINTF("mapping state %u to %u\n", s, j); info.states[s].impl_id = j++; } *accept_limit = j; for (const dstate_id_t &s : accept) { assert(j <= 256); DEBUG_PRINTF("mapping state %u to %u\n", s, j); info.states[s].impl_id = j++; } } static aligned_unique_ptr mcclellanCompile8(dfa_info &info, const CompileContext &cc) { DEBUG_PRINTF("building mcclellan 8\n"); vector reports; vector reports_eod; ReportID arb; u8 single; u32 accelCount; unique_ptr ri = info.strat.gatherReports(reports, reports_eod, &single, &arb); populateAccelerationInfo(info, &accelCount, cc.grey); size_t tran_size = sizeof(u8) * (1 << info.getAlphaShift()) * info.size(); size_t aux_size = sizeof(mstate_aux) * info.size(); size_t aux_offset = ROUNDUP_16(sizeof(NFA) + sizeof(mcclellan) + tran_size); size_t accel_size = info.strat.accelSize() * accelCount; size_t accel_offset = ROUNDUP_N(aux_offset + aux_size + ri->getReportListSize(), 32); size_t total_size = accel_offset + accel_size; DEBUG_PRINTF("aux_size %zu\n", aux_size); DEBUG_PRINTF("aux_offset %zu\n", aux_offset); DEBUG_PRINTF("rl size %u\n", ri->getReportListSize()); DEBUG_PRINTF("accel_size %zu\n", accel_size); DEBUG_PRINTF("accel_offset %zu\n", accel_offset); DEBUG_PRINTF("total_size %zu\n", total_size); accel_offset -= sizeof(NFA); /* adj accel offset to be relative to m */ assert(ISALIGNED_N(accel_offset, alignof(union AccelAux))); aligned_unique_ptr nfa = aligned_zmalloc_unique(total_size); char *nfa_base = (char *)nfa.get(); mcclellan *m = (mcclellan *)getMutableImplNfa(nfa.get()); allocateFSN8(info, &m->accel_limit_8, &m->accept_limit_8); populateBasicInfo(sizeof(u8), info, total_size, aux_offset, accel_offset, accelCount, arb, single, nfa.get()); vector reportOffsets; ri->fillReportLists(nfa.get(), aux_offset + aux_size, reportOffsets); /* copy in the state information */ u8 *succ_table = (u8 *)(nfa_base + sizeof(NFA) + sizeof(mcclellan)); mstate_aux *aux = (mstate_aux *)(nfa_base + aux_offset); for (size_t i = 0; i < info.size(); i++) { if (info.is_accel(i)) { u32 j = info.implId(i); aux[j].accel_offset = accel_offset; accel_offset += info.strat.accelSize(); info.strat.buildAccel(i, (void *)((char *)m + aux[j].accel_offset)); } fillInBasicState8(info, aux, succ_table, reportOffsets, reports, reports_eod, i); } assert(accel_offset + sizeof(NFA) <= total_size); DEBUG_PRINTF("rl size %zu\n", ri->size()); return nfa; } #define MAX_SHERMAN_LIST_LEN 8 static void addIfEarlier(set &dest, dstate_id_t candidate, dstate_id_t max) { if (candidate < max) { dest.insert(candidate); } } static void addSuccessors(set &dest, const dstate &source, u16 alphasize, dstate_id_t curr_id) { for (symbol_t s = 0; s < alphasize; s++) { addIfEarlier(dest, source.next[s], curr_id); } } #define MAX_SHERMAN_SELF_LOOP 20 static void find_better_daddy(dfa_info &info, dstate_id_t curr_id, bool using8bit, bool any_cyclic_near_anchored_state, const Grey &grey) { if (!grey.allowShermanStates) { return; } const u16 width = using8bit ? sizeof(u8) : sizeof(u16); const u16 alphasize = info.impl_alpha_size; if (info.raw.start_anchored != DEAD_STATE && any_cyclic_near_anchored_state && curr_id < alphasize * 3) { /* crude attempt to prevent frequent states from being sherman'ed * depends on the fact that states are numbers are currently in bfs * order */ DEBUG_PRINTF("%hu is banned\n", curr_id); return; } if (info.raw.start_floating != DEAD_STATE && curr_id >= info.raw.start_floating && curr_id < info.raw.start_floating + alphasize * 3) { /* crude attempt to prevent frequent states from being sherman'ed * depends on the fact that states are numbers are currently in bfs * order */ DEBUG_PRINTF("%hu is banned (%hu)\n", curr_id, info.raw.start_floating); return; } const u16 full_state_size = width * alphasize; const u16 max_list_len = MIN(MAX_SHERMAN_LIST_LEN, (full_state_size - 2)/(width + 1)); u16 best_score = 0; dstate_id_t best_daddy = 0; dstate &currState = info.states[curr_id]; set hinted; /* set of states to search for a better daddy */ addIfEarlier(hinted, 0, curr_id); addIfEarlier(hinted, info.raw.start_anchored, curr_id); addIfEarlier(hinted, info.raw.start_floating, curr_id); dstate_id_t mydaddy = currState.daddy; if (mydaddy) { addIfEarlier(hinted, mydaddy, curr_id); addSuccessors(hinted, info.states[mydaddy], alphasize, curr_id); dstate_id_t mygranddaddy = info.states[mydaddy].daddy; if (mygranddaddy) { addIfEarlier(hinted, mygranddaddy, curr_id); addSuccessors(hinted, info.states[mygranddaddy], alphasize, curr_id); } } for (const dstate_id_t &donor : hinted) { assert(donor < curr_id); u32 score = 0; if (info.is_sherman(donor)) { continue; } const dstate &donorState = info.states[donor]; for (symbol_t s = 0; s < alphasize; s++) { if (currState.next[s] == donorState.next[s]) { score++; } } /* prefer lower ids to provide some stability amongst potential * siblings */ if (score > best_score || (score == best_score && donor < best_daddy)) { best_daddy = donor; best_score = score; if (score == alphasize) { break; } } } currState.daddy = best_daddy; info.extra[curr_id].daddytaken = best_score; DEBUG_PRINTF("%hu -> daddy %hu: %u/%u BF\n", curr_id, best_daddy, best_score, alphasize); if (best_score + max_list_len < alphasize) { return; /* ??? */ } if (info.is_sherman(currState.daddy)) { return; } u32 self_loop_width = 0; const dstate curr_raw = info.states[curr_id]; for (unsigned i = 0; i < N_CHARS; i++) { if (curr_raw.next[info.alpha_remap[i]] == curr_id) { self_loop_width++; } } if (self_loop_width > MAX_SHERMAN_SELF_LOOP) { DEBUG_PRINTF("%hu is banned wide self loop (%u)\n", curr_id, self_loop_width); return; } DEBUG_PRINTF("%hu is sherman\n", curr_id); info.extra[curr_id].shermanState = true; } /* * Calls accessible outside this module. */ u16 raw_dfa::getImplAlphaSize() const { return alpha_size - N_SPECIAL_SYMBOL; } void raw_dfa::stripExtraEodReports(void) { /* if a state generates a given report as a normal accept - then it does * not also need to generate an eod report for it */ for (dstate &ds : states) { for (const ReportID &report : ds.reports) { ds.reports_eod.erase(report); } } } bool raw_dfa::hasEodReports(void) const { for (const dstate &ds : states) { if (!ds.reports_eod.empty()) { return true; } } return false; } static bool is_cyclic_near(const raw_dfa &raw, dstate_id_t root) { symbol_t alphasize = raw.getImplAlphaSize(); for (symbol_t s = 0; s < alphasize; s++) { dstate_id_t succ_id = raw.states[root].next[s]; if (succ_id == DEAD_STATE) { continue; } const dstate &succ = raw.states[succ_id]; for (symbol_t t = 0; t < alphasize; t++) { if (succ.next[t] == root || succ.next[t] == succ_id) { return true; } } } return false; } static void fillAccelOut(const dfa_info &info, set *accel_states) { for (size_t i = 0; i < info.size(); i++) { if (info.is_accel(i)) { accel_states->insert(i); } } } aligned_unique_ptr mcclellanCompile_i(raw_dfa &raw, dfa_build_strat &strat, const CompileContext &cc, set *accel_states) { u16 total_daddy = 0; dfa_info info(strat); bool using8bit = cc.grey.allowMcClellan8 && info.size() <= 256; if (!cc.streaming) { /* TODO: work out if we can do the strip in streaming * mode with our semantics */ raw.stripExtraEodReports(); } bool has_eod_reports = raw.hasEodReports(); bool any_cyclic_near_anchored_state = is_cyclic_near(raw, raw.start_anchored); for (u32 i = 0; i < info.size(); i++) { find_better_daddy(info, i, using8bit, any_cyclic_near_anchored_state, cc.grey); total_daddy += info.extra[i].daddytaken; } DEBUG_PRINTF("daddy %hu/%zu states=%zu alpha=%hu\n", total_daddy, info.size() * info.impl_alpha_size, info.size(), info.impl_alpha_size); aligned_unique_ptr nfa; if (!using8bit) { nfa = mcclellanCompile16(info, cc); } else { nfa = mcclellanCompile8(info, cc); } if (has_eod_reports) { nfa->flags |= NFA_ACCEPTS_EOD; } if (accel_states && nfa) { fillAccelOut(info, accel_states); } DEBUG_PRINTF("compile done\n"); return nfa; } aligned_unique_ptr mcclellanCompile(raw_dfa &raw, const CompileContext &cc, set *accel_states) { mcclellan_build_strat mbs(raw); return mcclellanCompile_i(raw, mbs, cc, accel_states); } size_t mcclellan_build_strat::accelSize(void) const { return sizeof(AccelAux); /* McClellan accel structures are just bare * accelaux */ } u32 mcclellanStartReachSize(const raw_dfa *raw) { if (raw->states.size() < 2) { return 0; } const dstate &ds = raw->states[raw->start_anchored]; CharReach out; for (unsigned i = 0; i < N_CHARS; i++) { if (ds.next[raw->alpha_remap[i]] != DEAD_STATE) { out.set(i); } } return out.count(); } bool has_accel_dfa(const NFA *nfa) { const mcclellan *m = (const mcclellan *)getImplNfa(nfa); return m->has_accel; } dfa_build_strat::~dfa_build_strat() { } } // namespace ue2