/* * Copyright (c) 2015-2016, Intel Corporation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \file * \brief SIMD types and primitive operations. */ #ifndef SIMD_UTILS #define SIMD_UTILS #if !defined(_WIN32) && !defined(__SSSE3__) #error SSSE3 instructions must be enabled #endif #include "config.h" #include // for memcpy // more recent headers are bestest, but only if we can use them #ifdef __cplusplus # if defined(HAVE_CXX_X86INTRIN_H) # define USE_X86INTRIN_H # endif #else // C # if defined(HAVE_C_X86INTRIN_H) # define USE_X86INTRIN_H # endif #endif #ifdef __cplusplus # if defined(HAVE_CXX_INTRIN_H) # define USE_INTRIN_H # endif #else // C # if defined(HAVE_C_INTRIN_H) # define USE_INTRIN_H # endif #endif #if defined(USE_X86INTRIN_H) #include #elif defined(USE_INTRIN_H) #include #else #error no intrins! #endif #include "ue2common.h" #include "simd_types.h" // Define a common assume_aligned using an appropriate compiler built-in, if // it's available. Note that we need to handle C or C++ compilation. #ifdef __cplusplus # ifdef HAVE_CXX_BUILTIN_ASSUME_ALIGNED # define assume_aligned(x, y) __builtin_assume_aligned((x), (y)) # endif #else # ifdef HAVE_CC_BUILTIN_ASSUME_ALIGNED # define assume_aligned(x, y) __builtin_assume_aligned((x), (y)) # endif #endif // Fallback to identity case. #ifndef assume_aligned #define assume_aligned(x, y) (x) #endif #ifdef __cplusplus extern "C" { #endif extern const char vbs_mask_data[]; #ifdef __cplusplus } #endif static really_inline m128 ones128(void) { #if defined(__GNUC__) || defined(__INTEL_COMPILER) /* gcc gets this right */ return _mm_set1_epi8(0xFF); #else /* trick from Intel's optimization guide to generate all-ones. * ICC converts this to the single cmpeq instruction */ return _mm_cmpeq_epi8(_mm_setzero_si128(), _mm_setzero_si128()); #endif } static really_inline m128 zeroes128(void) { return _mm_setzero_si128(); } /** \brief Bitwise not for m128*/ static really_inline m128 not128(m128 a) { return _mm_xor_si128(a, ones128()); } /** \brief Return 1 if a and b are different otherwise 0 */ static really_inline int diff128(m128 a, m128 b) { return (_mm_movemask_epi8(_mm_cmpeq_epi8(a, b)) ^ 0xffff); } static really_inline int isnonzero128(m128 a) { return !!diff128(a, zeroes128()); } /** * "Rich" version of diff128(). Takes two vectors a and b and returns a 4-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich128(m128 a, m128 b) { a = _mm_cmpeq_epi32(a, b); return ~(_mm_movemask_ps(_mm_castsi128_ps(a))) & 0xf; } /** * "Rich" version of diff128(), 64-bit variant. Takes two vectors a and b and * returns a 4-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_128(m128 a, m128 b) { #if defined(__SSE_41__) a = _mm_cmpeq_epi64(a, b); return ~(_mm_movemask_ps(_mm_castsi128_ps(a))) & 0x5; #else u32 d = diffrich128(a, b); return (d | (d >> 1)) & 0x5; #endif } #define lshift64_m128(a, b) _mm_slli_epi64((a), (b)) #define rshift64_m128(a, b) _mm_srli_epi64((a), (b)) #define eq128(a, b) _mm_cmpeq_epi8((a), (b)) #define movemask128(a) ((u32)_mm_movemask_epi8((a))) static really_inline m128 set16x8(u8 c) { return _mm_set1_epi8(c); } static really_inline u32 movd(const m128 in) { return _mm_cvtsi128_si32(in); } static really_inline u64a movq(const m128 in) { #if defined(ARCH_X86_64) return _mm_cvtsi128_si64(in); #else // 32-bit - this is horrific u32 lo = movd(in); u32 hi = movd(_mm_srli_epi64(in, 32)); return (u64a)hi << 32 | lo; #endif } #define rshiftbyte_m128(a, count_immed) _mm_srli_si128(a, count_immed) #define lshiftbyte_m128(a, count_immed) _mm_slli_si128(a, count_immed) #if !defined(__AVX2__) // TODO: this entire file needs restructuring - this carveout is awful #define extractlow64from256(a) movq(a.lo) #define extractlow32from256(a) movd(a.lo) #if defined(__SSE4_1__) #define extract32from256(a, imm) _mm_extract_epi32((imm >> 2) ? a.hi : a.lo, imm % 4) #define extract64from256(a, imm) _mm_extract_epi64((imm >> 2) ? a.hi : a.lo, imm % 2) #else #define extract32from256(a, imm) movd(_mm_srli_si128((imm >> 2) ? a.hi : a.lo, (imm % 4) * 8)) #define extract64from256(a, imm) movq(_mm_srli_si128((imm >> 2) ? a.hi : a.lo, (imm % 2) * 8)) #endif #endif // !AVX2 static really_inline m128 and128(m128 a, m128 b) { return _mm_and_si128(a,b); } static really_inline m128 xor128(m128 a, m128 b) { return _mm_xor_si128(a,b); } static really_inline m128 or128(m128 a, m128 b) { return _mm_or_si128(a,b); } static really_inline m128 andnot128(m128 a, m128 b) { return _mm_andnot_si128(a, b); } // aligned load static really_inline m128 load128(const void *ptr) { assert(ISALIGNED_N(ptr, alignof(m128))); ptr = assume_aligned(ptr, 16); return _mm_load_si128((const m128 *)ptr); } // aligned store static really_inline void store128(void *ptr, m128 a) { assert(ISALIGNED_N(ptr, alignof(m128))); ptr = assume_aligned(ptr, 16); *(m128 *)ptr = a; } // unaligned load static really_inline m128 loadu128(const void *ptr) { return _mm_loadu_si128((const m128 *)ptr); } // unaligned store static really_inline void storeu128(void *ptr, m128 a) { _mm_storeu_si128 ((m128 *)ptr, a); } // packed unaligned store of first N bytes static really_inline void storebytes128(void *ptr, m128 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m128 loadbytes128(const void *ptr, unsigned int n) { m128 a = zeroes128(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } // switches on bit N in the given vector. static really_inline void setbit128(m128 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); // We should be able to figure out a better way than this. union { m128 simd; u8 bytes[sizeof(m128)]; } x; x.simd = *ptr; u8 *b = &x.bytes[n / 8]; *b |= 1U << (n % 8); *ptr = x.simd; } // switches off bit N in the given vector. static really_inline void clearbit128(m128 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); // We should be able to figure out a better way than this. union { m128 simd; u8 bytes[sizeof(m128)]; } x; x.simd = *ptr; u8 *b = &x.bytes[n / 8]; *b &= ~(1U << (n % 8)); *ptr = x.simd; } // tests bit N in the given vector. static really_inline char testbit128(const m128 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); // We should be able to figure out a better way than this. const char *bytes = (const char *)ptr; return !!(bytes[n / 8] & (1 << (n % 8))); } // offset must be an immediate #define palignr(r, l, offset) _mm_alignr_epi8(r, l, offset) static really_inline m128 pshufb(m128 a, m128 b) { m128 result; result = _mm_shuffle_epi8(a, b); return result; } static really_inline m256 vpshufb(m256 a, m256 b) { #if defined(__AVX2__) return _mm256_shuffle_epi8(a, b); #else m256 rv; rv.lo = pshufb(a.lo, b.lo); rv.hi = pshufb(a.hi, b.hi); return rv; #endif } static really_inline m128 variable_byte_shift_m128(m128 in, s32 amount) { assert(amount >= -16 && amount <= 16); m128 shift_mask = loadu128(vbs_mask_data + 16 - amount); return pshufb(in, shift_mask); } /**** **** 256-bit Primitives ****/ #if defined(__AVX2__) #define lshift64_m256(a, b) _mm256_slli_epi64((a), (b)) #define rshift64_m256(a, b) _mm256_srli_epi64((a), (b)) static really_inline m256 set32x8(u32 in) { return _mm256_set1_epi8(in); } #define eq256(a, b) _mm256_cmpeq_epi8((a), (b)) #define movemask256(a) ((u32)_mm256_movemask_epi8((a))) static really_inline m256 set2x128(m128 a) { return _mm256_broadcastsi128_si256(a); } #else static really_inline m256 lshift64_m256(m256 a, int b) { m256 rv = a; rv.lo = lshift64_m128(rv.lo, b); rv.hi = lshift64_m128(rv.hi, b); return rv; } static really_inline m256 rshift64_m256(m256 a, int b) { m256 rv = a; rv.lo = rshift64_m128(rv.lo, b); rv.hi = rshift64_m128(rv.hi, b); return rv; } static really_inline m256 set32x8(u32 in) { m256 rv; rv.lo = set16x8((u8) in); rv.hi = rv.lo; return rv; } #endif static really_inline m256 zeroes256(void) { #if defined(__AVX2__) return _mm256_setzero_si256(); #else m256 rv = {zeroes128(), zeroes128()}; return rv; #endif } static really_inline m256 ones256(void) { #if defined(__AVX2__) m256 rv = _mm256_set1_epi8(0xFF); #else m256 rv = {ones128(), ones128()}; #endif return rv; } #if defined(__AVX2__) static really_inline m256 and256(m256 a, m256 b) { return _mm256_and_si256(a, b); } #else static really_inline m256 and256(m256 a, m256 b) { m256 rv; rv.lo = and128(a.lo, b.lo); rv.hi = and128(a.hi, b.hi); return rv; } #endif #if defined(__AVX2__) static really_inline m256 or256(m256 a, m256 b) { return _mm256_or_si256(a, b); } #else static really_inline m256 or256(m256 a, m256 b) { m256 rv; rv.lo = or128(a.lo, b.lo); rv.hi = or128(a.hi, b.hi); return rv; } #endif #if defined(__AVX2__) static really_inline m256 xor256(m256 a, m256 b) { return _mm256_xor_si256(a, b); } #else static really_inline m256 xor256(m256 a, m256 b) { m256 rv; rv.lo = xor128(a.lo, b.lo); rv.hi = xor128(a.hi, b.hi); return rv; } #endif #if defined(__AVX2__) static really_inline m256 not256(m256 a) { return _mm256_xor_si256(a, ones256()); } #else static really_inline m256 not256(m256 a) { m256 rv; rv.lo = not128(a.lo); rv.hi = not128(a.hi); return rv; } #endif #if defined(__AVX2__) static really_inline m256 andnot256(m256 a, m256 b) { return _mm256_andnot_si256(a, b); } #else static really_inline m256 andnot256(m256 a, m256 b) { m256 rv; rv.lo = andnot128(a.lo, b.lo); rv.hi = andnot128(a.hi, b.hi); return rv; } #endif static really_inline int diff256(m256 a, m256 b) { #if defined(__AVX2__) return !!(_mm256_movemask_epi8(_mm256_cmpeq_epi8(a, b)) ^ (int)-1); #else return diff128(a.lo, b.lo) || diff128(a.hi, b.hi); #endif } static really_inline int isnonzero256(m256 a) { #if defined(__AVX2__) return !!diff256(a, zeroes256()); #else return isnonzero128(or128(a.lo, a.hi)); #endif } /** * "Rich" version of diff256(). Takes two vectors a and b and returns an 8-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich256(m256 a, m256 b) { #if defined(__AVX2__) a = _mm256_cmpeq_epi32(a, b); return ~(_mm256_movemask_ps(_mm256_castsi256_ps(a))) & 0xFF; #else m128 z = zeroes128(); a.lo = _mm_cmpeq_epi32(a.lo, b.lo); a.hi = _mm_cmpeq_epi32(a.hi, b.hi); m128 packed = _mm_packs_epi16(_mm_packs_epi32(a.lo, a.hi), z); return ~(_mm_movemask_epi8(packed)) & 0xff; #endif } /** * "Rich" version of diff256(), 64-bit variant. Takes two vectors a and b and * returns an 8-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_256(m256 a, m256 b) { u32 d = diffrich256(a, b); return (d | (d >> 1)) & 0x55555555; } // aligned load static really_inline m256 load256(const void *ptr) { assert(ISALIGNED_N(ptr, alignof(m256))); #if defined(__AVX2__) return _mm256_load_si256((const m256 *)ptr); #else m256 rv = { load128(ptr), load128((const char *)ptr + 16) }; return rv; #endif } // aligned load of 128-bit value to low and high part of 256-bit value static really_inline m256 load2x128(const void *ptr) { #if defined(__AVX2__) return set2x128(load128(ptr)); #else assert(ISALIGNED_N(ptr, alignof(m128))); m256 rv; rv.hi = rv.lo = load128(ptr); return rv; #endif } // aligned store static really_inline void store256(void *ptr, m256 a) { assert(ISALIGNED_N(ptr, alignof(m256))); #if defined(__AVX2__) _mm256_store_si256((m256 *)ptr, a); #else ptr = assume_aligned(ptr, 16); *(m256 *)ptr = a; #endif } // unaligned load static really_inline m256 loadu256(const void *ptr) { #if defined(__AVX2__) return _mm256_loadu_si256((const m256 *)ptr); #else m256 rv = { loadu128(ptr), loadu128((const char *)ptr + 16) }; return rv; #endif } // packed unaligned store of first N bytes static really_inline void storebytes256(void *ptr, m256 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m256 loadbytes256(const void *ptr, unsigned int n) { m256 a = zeroes256(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } #if !defined(__AVX2__) // switches on bit N in the given vector. static really_inline void setbit256(m256 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); m128 *sub; if (n < 128) { sub = &ptr->lo; } else { sub = &ptr->hi; n -= 128; } setbit128(sub, n); } // switches off bit N in the given vector. static really_inline void clearbit256(m256 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); m128 *sub; if (n < 128) { sub = &ptr->lo; } else { sub = &ptr->hi; n -= 128; } clearbit128(sub, n); } // tests bit N in the given vector. static really_inline char testbit256(const m256 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); const m128 *sub; if (n < 128) { sub = &ptr->lo; } else { sub = &ptr->hi; n -= 128; } return testbit128(sub, n); } #else // AVX2 // switches on bit N in the given vector. static really_inline void setbit256(m256 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); // We should be able to figure out a better way than this. union { m256 simd; u8 bytes[sizeof(m256)]; } x; x.simd = *ptr; u8 *b = &x.bytes[n / 8]; *b |= 1U << (n % 8); *ptr = x.simd; } // TODO: can we do this better in avx-land? static really_inline void clearbit256(m256 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); union { m256 simd; u8 bytes[sizeof(m256)]; } x; x.simd = *ptr; u8 *b = &x.bytes[n / 8]; *b &= ~(1U << (n % 8)); *ptr = x.simd; } // tests bit N in the given vector. static really_inline char testbit256(const m256 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); const char *bytes = (const char *)ptr; return !!(bytes[n / 8] & (1 << (n % 8))); } static really_really_inline m128 movdq_hi(m256 x) { return _mm256_extracti128_si256(x, 1); } static really_really_inline m128 movdq_lo(m256 x) { return _mm256_extracti128_si256(x, 0); } #define cast256to128(a) _mm256_castsi256_si128(a) #define cast128to256(a) _mm256_castsi128_si256(a) #define swap128in256(a) _mm256_permute4x64_epi64(a, 0x4E) #define insert128to256(a, b, imm) _mm256_inserti128_si256(a, b, imm) #define rshift128_m256(a, count_immed) _mm256_srli_si256(a, count_immed) #define lshift128_m256(a, count_immed) _mm256_slli_si256(a, count_immed) #define extract64from256(a, imm) _mm_extract_epi64(_mm256_extracti128_si256(a, imm >> 1), imm % 2) #define extract32from256(a, imm) _mm_extract_epi32(_mm256_extracti128_si256(a, imm >> 2), imm % 4) #define extractlow64from256(a) _mm_cvtsi128_si64(cast256to128(a)) #define extractlow32from256(a) movd(cast256to128(a)) #define interleave256hi(a, b) _mm256_unpackhi_epi8(a, b); #define interleave256lo(a, b) _mm256_unpacklo_epi8(a, b); #define vpalignr(r, l, offset) _mm256_alignr_epi8(r, l, offset) #endif //AVX2 /**** **** 384-bit Primitives ****/ static really_inline m384 and384(m384 a, m384 b) { m384 rv; rv.lo = and128(a.lo, b.lo); rv.mid = and128(a.mid, b.mid); rv.hi = and128(a.hi, b.hi); return rv; } static really_inline m384 or384(m384 a, m384 b) { m384 rv; rv.lo = or128(a.lo, b.lo); rv.mid = or128(a.mid, b.mid); rv.hi = or128(a.hi, b.hi); return rv; } static really_inline m384 xor384(m384 a, m384 b) { m384 rv; rv.lo = xor128(a.lo, b.lo); rv.mid = xor128(a.mid, b.mid); rv.hi = xor128(a.hi, b.hi); return rv; } static really_inline m384 not384(m384 a) { m384 rv; rv.lo = not128(a.lo); rv.mid = not128(a.mid); rv.hi = not128(a.hi); return rv; } static really_inline m384 andnot384(m384 a, m384 b) { m384 rv; rv.lo = andnot128(a.lo, b.lo); rv.mid = andnot128(a.mid, b.mid); rv.hi = andnot128(a.hi, b.hi); return rv; } // The shift amount is an immediate static really_really_inline m384 lshift64_m384(m384 a, unsigned b) { m384 rv; rv.lo = lshift64_m128(a.lo, b); rv.mid = lshift64_m128(a.mid, b); rv.hi = lshift64_m128(a.hi, b); return rv; } static really_inline m384 zeroes384(void) { m384 rv = {zeroes128(), zeroes128(), zeroes128()}; return rv; } static really_inline m384 ones384(void) { m384 rv = {ones128(), ones128(), ones128()}; return rv; } static really_inline int diff384(m384 a, m384 b) { return diff128(a.lo, b.lo) || diff128(a.mid, b.mid) || diff128(a.hi, b.hi); } static really_inline int isnonzero384(m384 a) { return isnonzero128(or128(or128(a.lo, a.mid), a.hi)); } /** * "Rich" version of diff384(). Takes two vectors a and b and returns a 12-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich384(m384 a, m384 b) { m128 z = zeroes128(); a.lo = _mm_cmpeq_epi32(a.lo, b.lo); a.mid = _mm_cmpeq_epi32(a.mid, b.mid); a.hi = _mm_cmpeq_epi32(a.hi, b.hi); m128 packed = _mm_packs_epi16(_mm_packs_epi32(a.lo, a.mid), _mm_packs_epi32(a.hi, z)); return ~(_mm_movemask_epi8(packed)) & 0xfff; } /** * "Rich" version of diff384(), 64-bit variant. Takes two vectors a and b and * returns a 12-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_384(m384 a, m384 b) { u32 d = diffrich384(a, b); return (d | (d >> 1)) & 0x55555555; } // aligned load static really_inline m384 load384(const void *ptr) { assert(ISALIGNED_16(ptr)); m384 rv = { load128(ptr), load128((const char *)ptr + 16), load128((const char *)ptr + 32) }; return rv; } // aligned store static really_inline void store384(void *ptr, m384 a) { assert(ISALIGNED_16(ptr)); ptr = assume_aligned(ptr, 16); *(m384 *)ptr = a; } // unaligned load static really_inline m384 loadu384(const void *ptr) { m384 rv = { loadu128(ptr), loadu128((const char *)ptr + 16), loadu128((const char *)ptr + 32)}; return rv; } // packed unaligned store of first N bytes static really_inline void storebytes384(void *ptr, m384 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m384 loadbytes384(const void *ptr, unsigned int n) { m384 a = zeroes384(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } // switches on bit N in the given vector. static really_inline void setbit384(m384 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); m128 *sub; if (n < 128) { sub = &ptr->lo; } else if (n < 256) { sub = &ptr->mid; } else { sub = &ptr->hi; } setbit128(sub, n % 128); } // switches off bit N in the given vector. static really_inline void clearbit384(m384 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); m128 *sub; if (n < 128) { sub = &ptr->lo; } else if (n < 256) { sub = &ptr->mid; } else { sub = &ptr->hi; } clearbit128(sub, n % 128); } // tests bit N in the given vector. static really_inline char testbit384(const m384 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); const m128 *sub; if (n < 128) { sub = &ptr->lo; } else if (n < 256) { sub = &ptr->mid; } else { sub = &ptr->hi; } return testbit128(sub, n % 128); } /**** **** 512-bit Primitives ****/ static really_inline m512 and512(m512 a, m512 b) { m512 rv; rv.lo = and256(a.lo, b.lo); rv.hi = and256(a.hi, b.hi); return rv; } static really_inline m512 or512(m512 a, m512 b) { m512 rv; rv.lo = or256(a.lo, b.lo); rv.hi = or256(a.hi, b.hi); return rv; } static really_inline m512 xor512(m512 a, m512 b) { m512 rv; rv.lo = xor256(a.lo, b.lo); rv.hi = xor256(a.hi, b.hi); return rv; } static really_inline m512 not512(m512 a) { m512 rv; rv.lo = not256(a.lo); rv.hi = not256(a.hi); return rv; } static really_inline m512 andnot512(m512 a, m512 b) { m512 rv; rv.lo = andnot256(a.lo, b.lo); rv.hi = andnot256(a.hi, b.hi); return rv; } // The shift amount is an immediate static really_really_inline m512 lshift64_m512(m512 a, unsigned b) { m512 rv; rv.lo = lshift64_m256(a.lo, b); rv.hi = lshift64_m256(a.hi, b); return rv; } static really_inline m512 zeroes512(void) { m512 rv = {zeroes256(), zeroes256()}; return rv; } static really_inline m512 ones512(void) { m512 rv = {ones256(), ones256()}; return rv; } static really_inline int diff512(m512 a, m512 b) { return diff256(a.lo, b.lo) || diff256(a.hi, b.hi); } static really_inline int isnonzero512(m512 a) { #if !defined(__AVX2__) m128 x = or128(a.lo.lo, a.lo.hi); m128 y = or128(a.hi.lo, a.hi.hi); return isnonzero128(or128(x, y)); #else m256 x = or256(a.lo, a.hi); return !!diff256(x, zeroes256()); #endif } /** * "Rich" version of diff512(). Takes two vectors a and b and returns a 16-bit * mask indicating which 32-bit words contain differences. */ static really_inline u32 diffrich512(m512 a, m512 b) { #if defined(__AVX2__) return diffrich256(a.lo, b.lo) | (diffrich256(a.hi, b.hi) << 8); #else a.lo.lo = _mm_cmpeq_epi32(a.lo.lo, b.lo.lo); a.lo.hi = _mm_cmpeq_epi32(a.lo.hi, b.lo.hi); a.hi.lo = _mm_cmpeq_epi32(a.hi.lo, b.hi.lo); a.hi.hi = _mm_cmpeq_epi32(a.hi.hi, b.hi.hi); m128 packed = _mm_packs_epi16(_mm_packs_epi32(a.lo.lo, a.lo.hi), _mm_packs_epi32(a.hi.lo, a.hi.hi)); return ~(_mm_movemask_epi8(packed)) & 0xffff; #endif } /** * "Rich" version of diffrich(), 64-bit variant. Takes two vectors a and b and * returns a 16-bit mask indicating which 64-bit words contain differences. */ static really_inline u32 diffrich64_512(m512 a, m512 b) { u32 d = diffrich512(a, b); return (d | (d >> 1)) & 0x55555555; } // aligned load static really_inline m512 load512(const void *ptr) { assert(ISALIGNED_N(ptr, alignof(m256))); m512 rv = { load256(ptr), load256((const char *)ptr + 32) }; return rv; } // aligned store static really_inline void store512(void *ptr, m512 a) { assert(ISALIGNED_N(ptr, alignof(m256))); #if defined(__AVX2__) m512 *x = (m512 *)ptr; store256(&x->lo, a.lo); store256(&x->hi, a.hi); #else ptr = assume_aligned(ptr, 16); *(m512 *)ptr = a; #endif } // unaligned load static really_inline m512 loadu512(const void *ptr) { m512 rv = { loadu256(ptr), loadu256((const char *)ptr + 32) }; return rv; } // packed unaligned store of first N bytes static really_inline void storebytes512(void *ptr, m512 a, unsigned int n) { assert(n <= sizeof(a)); memcpy(ptr, &a, n); } // packed unaligned load of first N bytes, pad with zero static really_inline m512 loadbytes512(const void *ptr, unsigned int n) { m512 a = zeroes512(); assert(n <= sizeof(a)); memcpy(&a, ptr, n); return a; } // switches on bit N in the given vector. static really_inline void setbit512(m512 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); #if !defined(__AVX2__) m128 *sub; if (n < 128) { sub = &ptr->lo.lo; } else if (n < 256) { sub = &ptr->lo.hi; } else if (n < 384) { sub = &ptr->hi.lo; } else { sub = &ptr->hi.hi; } setbit128(sub, n % 128); #else m256 *sub; if (n < 256) { sub = &ptr->lo; } else { sub = &ptr->hi; n -= 256; } setbit256(sub, n); #endif } // switches off bit N in the given vector. static really_inline void clearbit512(m512 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); #if !defined(__AVX2__) m128 *sub; if (n < 128) { sub = &ptr->lo.lo; } else if (n < 256) { sub = &ptr->lo.hi; } else if (n < 384) { sub = &ptr->hi.lo; } else { sub = &ptr->hi.hi; } clearbit128(sub, n % 128); #else m256 *sub; if (n < 256) { sub = &ptr->lo; } else { sub = &ptr->hi; n -= 256; } clearbit256(sub, n); #endif } // tests bit N in the given vector. static really_inline char testbit512(const m512 *ptr, unsigned int n) { assert(n < sizeof(*ptr) * 8); #if !defined(__AVX2__) const m128 *sub; if (n < 128) { sub = &ptr->lo.lo; } else if (n < 256) { sub = &ptr->lo.hi; } else if (n < 384) { sub = &ptr->hi.lo; } else { sub = &ptr->hi.hi; } return testbit128(sub, n % 128); #else const m256 *sub; if (n < 256) { sub = &ptr->lo; } else { sub = &ptr->hi; n -= 256; } return testbit256(sub, n); #endif } #endif