/* * Copyright (c) 2015-2016, Intel Corporation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef PROGRAM_RUNTIME_H #define PROGRAM_RUNTIME_H #include "catchup.h" #include "counting_miracle.h" #include "infix.h" #include "match.h" #include "miracle.h" #include "report.h" #include "rose.h" #include "rose_internal.h" #include "rose_program.h" #include "rose_types.h" #include "runtime.h" #include "scratch.h" #include "ue2common.h" #include "util/compare.h" #include "util/fatbit.h" #include "util/multibit.h" static rose_inline int roseCheckBenefits(const struct core_info *ci, u64a end, u32 mask_rewind, const u8 *and_mask, const u8 *exp_mask) { const u8 *data; // If the check works over part of the history and part of the buffer, we // create a temporary copy of the data in here so it's contiguous. u8 temp[MAX_MASK2_WIDTH]; s64a buffer_offset = (s64a)end - ci->buf_offset; DEBUG_PRINTF("rel offset %lld\n", buffer_offset); if (buffer_offset >= mask_rewind) { data = ci->buf + buffer_offset - mask_rewind; DEBUG_PRINTF("all in one case data=%p buf=%p rewind=%u\n", data, ci->buf, mask_rewind); } else if (buffer_offset <= 0) { data = ci->hbuf + ci->hlen + buffer_offset - mask_rewind; DEBUG_PRINTF("all in one case data=%p buf=%p rewind=%u\n", data, ci->buf, mask_rewind); } else { u32 shortfall = mask_rewind - buffer_offset; DEBUG_PRINTF("shortfall of %u, rewind %u hlen %zu\n", shortfall, mask_rewind, ci->hlen); data = temp; memcpy(temp, ci->hbuf + ci->hlen - shortfall, shortfall); memcpy(temp + shortfall, ci->buf, mask_rewind - shortfall); } #ifdef DEBUG DEBUG_PRINTF("DATA: "); for (u32 i = 0; i < mask_rewind; i++) { printf("%c", ourisprint(data[i]) ? data[i] : '?'); } printf(" (len=%u)\n", mask_rewind); #endif u32 len = mask_rewind; while (len >= sizeof(u64a)) { u64a a = unaligned_load_u64a(data); a &= *(const u64a *)and_mask; if (a != *(const u64a *)exp_mask) { DEBUG_PRINTF("argh %016llx %016llx\n", a, *(const u64a *)exp_mask); return 0; } data += sizeof(u64a); and_mask += sizeof(u64a); exp_mask += sizeof(u64a); len -= sizeof(u64a); } while (len) { u8 a = *data; a &= *and_mask; if (a != *exp_mask) { DEBUG_PRINTF("argh d%02hhx =%02hhx am%02hhx em%02hhx\n", a, *data, *and_mask, *exp_mask); return 0; } data++; and_mask++; exp_mask++; len--; } return 1; } static rose_inline void rosePushDelayedMatch(const struct RoseEngine *t, struct hs_scratch *scratch, u32 delay, u32 delay_index, u64a offset) { assert(delay); const u32 src_slot_index = delay; u32 slot_index = (src_slot_index + offset) & DELAY_MASK; struct RoseContext *tctxt = &scratch->tctxt; if (offset + src_slot_index <= tctxt->delayLastEndOffset) { DEBUG_PRINTF("skip too late\n"); return; } const u32 delay_count = t->delay_count; struct fatbit **delaySlots = getDelaySlots(scratch); struct fatbit *slot = delaySlots[slot_index]; DEBUG_PRINTF("pushing tab %u into slot %u\n", delay_index, slot_index); if (!(tctxt->filledDelayedSlots & (1U << slot_index))) { tctxt->filledDelayedSlots |= 1U << slot_index; fatbit_clear(slot); } fatbit_set(slot, delay_count, delay_index); } static rose_inline char roseLeftfixCheckMiracles(const struct RoseEngine *t, const struct LeftNfaInfo *left, struct core_info *ci, struct mq *q, u64a end, const char is_infix) { if (!is_infix && left->transient) { // Miracles won't help us with transient leftfix engines; they only // scan for a limited time anyway. return 1; } if (!left->stopTable) { return 1; } DEBUG_PRINTF("looking for miracle on queue %u\n", q->nfa->queueIndex); const s64a begin_loc = q_cur_loc(q); const s64a end_loc = end - ci->buf_offset; s64a miracle_loc; if (roseMiracleOccurs(t, left, ci, begin_loc, end_loc, &miracle_loc)) { goto found_miracle; } if (roseCountingMiracleOccurs(t, left, ci, begin_loc, end_loc, &miracle_loc)) { goto found_miracle; } return 1; found_miracle: DEBUG_PRINTF("miracle at %lld\n", miracle_loc); assert(miracle_loc >= begin_loc); // If we're a prefix, then a miracle effectively results in us needing to // re-init our state and start fresh. if (!is_infix) { if (miracle_loc != begin_loc) { DEBUG_PRINTF("re-init prefix state\n"); q->cur = q->end = 0; pushQueueAt(q, 0, MQE_START, miracle_loc); pushQueueAt(q, 1, MQE_TOP, miracle_loc); nfaQueueInitState(q->nfa, q); } return 1; } // Otherwise, we're an infix. Remove tops before the miracle from the queue // and re-init at that location. q_skip_forward_to(q, miracle_loc); if (q_last_type(q) == MQE_START) { DEBUG_PRINTF("miracle caused infix to die\n"); return 0; } DEBUG_PRINTF("re-init infix state\n"); assert(q->items[q->cur].type == MQE_START); q->items[q->cur].location = miracle_loc; nfaQueueInitState(q->nfa, q); return 1; } static rose_inline hwlmcb_rv_t roseHaltIfExhausted(const struct RoseEngine *t, struct hs_scratch *scratch) { struct core_info *ci = &scratch->core_info; if (isAllExhausted(t, ci->exhaustionVector)) { ci->status |= STATUS_EXHAUSTED; scratch->tctxt.groups = 0; DEBUG_PRINTF("all exhausted, termination requested\n"); return HWLM_TERMINATE_MATCHING; } return HWLM_CONTINUE_MATCHING; } static really_inline hwlmcb_rv_t ensureQueueFlushed_i(const struct RoseEngine *t, struct hs_scratch *scratch, u32 qi, s64a loc, char is_mpv, char in_catchup) { struct RoseContext *tctxt = &scratch->tctxt; u8 *aa = getActiveLeafArray(t, scratch->core_info.state); struct fatbit *activeQueues = scratch->aqa; u32 aaCount = t->activeArrayCount; u32 qCount = t->queueCount; struct mq *q = &scratch->queues[qi]; DEBUG_PRINTF("qcl %lld, loc: %lld, min (non mpv) match offset: %llu\n", q_cur_loc(q), loc, tctxt->minNonMpvMatchOffset); if (q_cur_loc(q) == loc) { /* too many tops enqueued at the one spot; need to flatten this queue. * We can use the full catchups as it will short circuit as we are * already at this location. It also saves waking everybody up */ pushQueueNoMerge(q, MQE_END, loc); nfaQueueExec(q->nfa, q, loc); q->cur = q->end = 0; pushQueueAt(q, 0, MQE_START, loc); } else if (!in_catchup) { if (is_mpv) { tctxt->next_mpv_offset = 0; /* force us to catch the mpv */ if (loc + scratch->core_info.buf_offset <= tctxt->minNonMpvMatchOffset) { DEBUG_PRINTF("flushing chained\n"); if (roseCatchUpMPV(t, loc, scratch) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } goto done_queue_empty; } } if (roseCatchUpTo(t, scratch, loc + scratch->core_info.buf_offset) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } } else { /* we must be a chained nfa */ assert(is_mpv); DEBUG_PRINTF("flushing chained\n"); tctxt->next_mpv_offset = 0; /* force us to catch the mpv */ if (roseCatchUpMPV(t, loc, scratch) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } } done_queue_empty: if (!mmbit_set(aa, aaCount, qi)) { initQueue(q, qi, t, scratch); nfaQueueInitState(q->nfa, q); pushQueueAt(q, 0, MQE_START, loc); fatbit_set(activeQueues, qCount, qi); } assert(!isQueueFull(q)); return roseHaltIfExhausted(t, scratch); } static rose_inline hwlmcb_rv_t ensureQueueFlushed(const struct RoseEngine *t, struct hs_scratch *scratch, u32 qi, s64a loc) { return ensureQueueFlushed_i(t, scratch, qi, loc, 0, 0); } static rose_inline hwlmcb_rv_t roseTriggerSuffix(const struct RoseEngine *t, struct hs_scratch *scratch, u32 qi, u32 top, u64a som, u64a end) { DEBUG_PRINTF("suffix qi=%u, top event=%u\n", qi, top); struct core_info *ci = &scratch->core_info; u8 *aa = getActiveLeafArray(t, ci->state); const u32 aaCount = t->activeArrayCount; const u32 qCount = t->queueCount; struct mq *q = &scratch->queues[qi]; const struct NfaInfo *info = getNfaInfoByQueue(t, qi); const struct NFA *nfa = getNfaByInfo(t, info); s64a loc = (s64a)end - ci->buf_offset; assert(loc <= (s64a)ci->len && loc >= -(s64a)ci->hlen); if (!mmbit_set(aa, aaCount, qi)) { initQueue(q, qi, t, scratch); nfaQueueInitState(nfa, q); pushQueueAt(q, 0, MQE_START, loc); fatbit_set(scratch->aqa, qCount, qi); } else if (info->no_retrigger) { DEBUG_PRINTF("yawn\n"); /* nfa only needs one top; we can go home now */ return HWLM_CONTINUE_MATCHING; } else if (!fatbit_set(scratch->aqa, qCount, qi)) { initQueue(q, qi, t, scratch); loadStreamState(nfa, q, 0); pushQueueAt(q, 0, MQE_START, 0); } else if (isQueueFull(q)) { DEBUG_PRINTF("queue %u full -> catching up nfas\n", qi); if (info->eod) { /* can catch up suffix independently no pq */ q->context = NULL; pushQueueNoMerge(q, MQE_END, loc); nfaQueueExecRose(q->nfa, q, MO_INVALID_IDX); q->cur = q->end = 0; pushQueueAt(q, 0, MQE_START, loc); } else if (ensureQueueFlushed(t, scratch, qi, loc) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } } assert(top == MQE_TOP || (top >= MQE_TOP_FIRST && top < MQE_INVALID)); pushQueueSom(q, top, loc, som); if (q_cur_loc(q) == (s64a)ci->len && !info->eod) { /* we may not run the nfa; need to ensure state is fine */ DEBUG_PRINTF("empty run\n"); pushQueueNoMerge(q, MQE_END, loc); char alive = nfaQueueExec(nfa, q, loc); if (alive) { q->cur = q->end = 0; pushQueueAt(q, 0, MQE_START, loc); } else { mmbit_unset(aa, aaCount, qi); fatbit_unset(scratch->aqa, qCount, qi); } } return HWLM_CONTINUE_MATCHING; } static really_inline char roseTestLeftfix(const struct RoseEngine *t, struct hs_scratch *scratch, u32 qi, u32 leftfixLag, ReportID leftfixReport, u64a end, const char is_infix) { struct core_info *ci = &scratch->core_info; u32 ri = queueToLeftIndex(t, qi); const struct LeftNfaInfo *left = getLeftTable(t) + ri; DEBUG_PRINTF("testing %s %s %u/%u with lag %u (maxLag=%u)\n", (left->transient ? "transient" : "active"), (is_infix ? "infix" : "prefix"), ri, qi, leftfixLag, left->maxLag); assert(leftfixLag <= left->maxLag); assert(left->infix == is_infix); assert(!is_infix || !left->transient); // Only prefixes can be transient. struct mq *q = scratch->queues + qi; char *state = scratch->core_info.state; u8 *activeLeftArray = getActiveLeftArray(t, state); u32 qCount = t->queueCount; u32 arCount = t->activeLeftCount; if (!mmbit_isset(activeLeftArray, arCount, ri)) { DEBUG_PRINTF("engine is dead nothing to see here\n"); return 0; } if (unlikely(end < leftfixLag)) { assert(0); /* lag is the literal length */ return 0; } if (nfaSupportsZombie(getNfaByQueue(t, qi)) && ci->buf_offset && !fatbit_isset(scratch->aqa, qCount, qi) && isZombie(t, state, left)) { DEBUG_PRINTF("zombie\n"); return 1; } if (!fatbit_set(scratch->aqa, qCount, qi)) { DEBUG_PRINTF("initing q %u\n", qi); initRoseQueue(t, qi, left, scratch); if (ci->buf_offset) { // there have been writes before us! s32 sp; if (!is_infix && left->transient) { sp = -(s32)ci->hlen; } else { sp = -(s32)loadRoseDelay(t, state, left); } /* transient nfas are always started fresh -> state not maintained * at stream boundary */ pushQueueAt(q, 0, MQE_START, sp); if (is_infix || (ci->buf_offset + sp > 0 && !left->transient)) { loadStreamState(q->nfa, q, sp); } else { pushQueueAt(q, 1, MQE_TOP, sp); nfaQueueInitState(q->nfa, q); } } else { // first write ever pushQueueAt(q, 0, MQE_START, 0); pushQueueAt(q, 1, MQE_TOP, 0); nfaQueueInitState(q->nfa, q); } } s64a loc = (s64a)end - ci->buf_offset - leftfixLag; assert(loc >= q_cur_loc(q)); assert(leftfixReport != MO_INVALID_IDX); if (!is_infix && left->transient) { s64a start_loc = loc - left->transient; if (q_cur_loc(q) < start_loc) { q->cur = q->end = 0; pushQueueAt(q, 0, MQE_START, start_loc); pushQueueAt(q, 1, MQE_TOP, start_loc); nfaQueueInitState(q->nfa, q); } } if (q_cur_loc(q) < loc || q_last_type(q) != MQE_START) { if (is_infix) { if (infixTooOld(q, loc)) { DEBUG_PRINTF("infix %u died of old age\n", ri); goto nfa_dead; } reduceInfixQueue(q, loc, left->maxQueueLen, q->nfa->maxWidth); } if (!roseLeftfixCheckMiracles(t, left, ci, q, end, is_infix)) { DEBUG_PRINTF("leftfix %u died due to miracle\n", ri); goto nfa_dead; } #ifdef DEBUG debugQueue(q); #endif pushQueueNoMerge(q, MQE_END, loc); char rv = nfaQueueExecRose(q->nfa, q, leftfixReport); if (!rv) { /* nfa is dead */ DEBUG_PRINTF("leftfix %u died while trying to catch up\n", ri); goto nfa_dead; } // Queue must have next start loc before we call nfaInAcceptState. q->cur = q->end = 0; pushQueueAt(q, 0, MQE_START, loc); DEBUG_PRINTF("checking for report %u\n", leftfixReport); DEBUG_PRINTF("leftfix done %hhd\n", (signed char)rv); return rv == MO_MATCHES_PENDING; } else { DEBUG_PRINTF("checking for report %u\n", leftfixReport); char rv = nfaInAcceptState(q->nfa, leftfixReport, q); DEBUG_PRINTF("leftfix done %hhd\n", (signed char)rv); return rv; } nfa_dead: mmbit_unset(activeLeftArray, arCount, ri); scratch->tctxt.groups &= left->squash_mask; return 0; } static rose_inline char roseTestPrefix(const struct RoseEngine *t, struct hs_scratch *scratch, u32 qi, u32 leftfixLag, ReportID leftfixReport, u64a end) { return roseTestLeftfix(t, scratch, qi, leftfixLag, leftfixReport, end, 0); } static rose_inline char roseTestInfix(const struct RoseEngine *t, struct hs_scratch *scratch, u32 qi, u32 leftfixLag, ReportID leftfixReport, u64a end) { return roseTestLeftfix(t, scratch, qi, leftfixLag, leftfixReport, end, 1); } static rose_inline void roseTriggerInfix(const struct RoseEngine *t, struct hs_scratch *scratch, u64a start, u64a end, u32 qi, u32 topEvent, u8 cancel) { struct core_info *ci = &scratch->core_info; s64a loc = (s64a)end - ci->buf_offset; u32 ri = queueToLeftIndex(t, qi); assert(topEvent < MQE_INVALID); const struct LeftNfaInfo *left = getLeftInfoByQueue(t, qi); assert(!left->transient); DEBUG_PRINTF("rose %u (qi=%u) event %u\n", ri, qi, topEvent); struct mq *q = scratch->queues + qi; const struct NfaInfo *info = getNfaInfoByQueue(t, qi); char *state = ci->state; u8 *activeLeftArray = getActiveLeftArray(t, state); const u32 arCount = t->activeLeftCount; char alive = mmbit_set(activeLeftArray, arCount, ri); if (alive && info->no_retrigger) { DEBUG_PRINTF("yawn\n"); return; } struct fatbit *aqa = scratch->aqa; const u32 qCount = t->queueCount; if (alive && nfaSupportsZombie(getNfaByInfo(t, info)) && ci->buf_offset && !fatbit_isset(aqa, qCount, qi) && isZombie(t, state, left)) { DEBUG_PRINTF("yawn - zombie\n"); return; } if (cancel) { DEBUG_PRINTF("dominating top: (re)init\n"); fatbit_set(aqa, qCount, qi); initRoseQueue(t, qi, left, scratch); pushQueueAt(q, 0, MQE_START, loc); nfaQueueInitState(q->nfa, q); } else if (!fatbit_set(aqa, qCount, qi)) { DEBUG_PRINTF("initing %u\n", qi); initRoseQueue(t, qi, left, scratch); if (alive) { s32 sp = -(s32)loadRoseDelay(t, state, left); pushQueueAt(q, 0, MQE_START, sp); loadStreamState(q->nfa, q, sp); } else { pushQueueAt(q, 0, MQE_START, loc); nfaQueueInitState(q->nfa, q); } } else if (!alive) { q->cur = q->end = 0; pushQueueAt(q, 0, MQE_START, loc); nfaQueueInitState(q->nfa, q); } else if (isQueueFull(q)) { reduceInfixQueue(q, loc, left->maxQueueLen, q->nfa->maxWidth); if (isQueueFull(q)) { /* still full - reduceInfixQueue did nothing */ DEBUG_PRINTF("queue %u full (%u items) -> catching up nfa\n", qi, q->end - q->cur); pushQueueNoMerge(q, MQE_END, loc); nfaQueueExecRose(q->nfa, q, MO_INVALID_IDX); q->cur = q->end = 0; pushQueueAt(q, 0, MQE_START, loc); } } pushQueueSom(q, topEvent, loc, start); } static rose_inline hwlmcb_rv_t roseReport(const struct RoseEngine *t, struct hs_scratch *scratch, u64a end, ReportID onmatch, s32 offset_adjust, u32 ekey) { assert(!t->needsCatchup || end == scratch->tctxt.minMatchOffset); DEBUG_PRINTF("firing callback onmatch=%u, end=%llu\n", onmatch, end); updateLastMatchOffset(&scratch->tctxt, end); int cb_rv = roseDeliverReport(end, onmatch, offset_adjust, scratch, ekey); if (cb_rv == MO_HALT_MATCHING) { DEBUG_PRINTF("termination requested\n"); return HWLM_TERMINATE_MATCHING; } if (ekey == INVALID_EKEY || cb_rv == ROSE_CONTINUE_MATCHING_NO_EXHAUST) { return HWLM_CONTINUE_MATCHING; } return roseHaltIfExhausted(t, scratch); } /* catches up engines enough to ensure any earlier mpv triggers are enqueued * and then adds the trigger to the mpv queue. Must not be called during catch * up */ static rose_inline hwlmcb_rv_t roseCatchUpAndHandleChainMatch(const struct RoseEngine *t, struct hs_scratch *scratch, u32 event, u64a top_squash_distance, u64a end, const char in_catchup) { if (!in_catchup && roseCatchUpMpvFeeders(t, scratch, end) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } return roseHandleChainMatch(t, scratch, event, top_squash_distance, end, in_catchup); } static rose_inline void roseHandleSom(UNUSED const struct RoseEngine *t, struct hs_scratch *scratch, const struct som_operation *sr, u64a end) { DEBUG_PRINTF("end=%llu, minMatchOffset=%llu\n", end, scratch->tctxt.minMatchOffset); assert(!t->needsCatchup || end == scratch->tctxt.minMatchOffset); updateLastMatchOffset(&scratch->tctxt, end); handleSomInternal(scratch, sr, end); } static rose_inline hwlmcb_rv_t roseReportSom(const struct RoseEngine *t, struct hs_scratch *scratch, u64a start, u64a end, ReportID onmatch, s32 offset_adjust, u32 ekey) { assert(!t->needsCatchup || end == scratch->tctxt.minMatchOffset); DEBUG_PRINTF("firing som callback onmatch=%u, start=%llu, end=%llu\n", onmatch, start, end); updateLastMatchOffset(&scratch->tctxt, end); int cb_rv = roseDeliverSomReport(start, end, onmatch, offset_adjust, scratch, ekey); if (cb_rv == MO_HALT_MATCHING) { DEBUG_PRINTF("termination requested\n"); return HWLM_TERMINATE_MATCHING; } if (ekey == INVALID_EKEY || cb_rv == ROSE_CONTINUE_MATCHING_NO_EXHAUST) { return HWLM_CONTINUE_MATCHING; } return roseHaltIfExhausted(t, scratch); } static rose_inline void roseHandleSomSom(UNUSED const struct RoseEngine *t, struct hs_scratch *scratch, const struct som_operation *sr, u64a start, u64a end) { DEBUG_PRINTF("start=%llu, end=%llu, minMatchOffset=%llu\n", start, end, scratch->tctxt.minMatchOffset); assert(!t->needsCatchup || end == scratch->tctxt.minMatchOffset); updateLastMatchOffset(&scratch->tctxt, end); setSomFromSomAware(scratch, sr, start, end); } static really_inline int reachHasBit(const u8 *reach, u8 c) { return !!(reach[c / 8U] & (u8)1U << (c % 8U)); } /** * \brief Scan around a literal, checking that that "lookaround" reach masks * are satisfied. */ static rose_inline int roseCheckLookaround(const struct RoseEngine *t, const struct hs_scratch *scratch, u32 lookaroundIndex, u32 lookaroundCount, u64a end) { assert(lookaroundIndex != MO_INVALID_IDX); assert(lookaroundCount > 0); const struct core_info *ci = &scratch->core_info; DEBUG_PRINTF("end=%llu, buf_offset=%llu, buf_end=%llu\n", end, ci->buf_offset, ci->buf_offset + ci->len); const u8 *base = (const u8 *)t; const s8 *look_base = (const s8 *)(base + t->lookaroundTableOffset); const s8 *look = look_base + lookaroundIndex; const s8 *look_end = look + lookaroundCount; assert(look < look_end); const u8 *reach_base = base + t->lookaroundReachOffset; const u8 *reach = reach_base + lookaroundIndex * REACH_BITVECTOR_LEN; // The following code assumes that the lookaround structures are ordered by // increasing offset. const s64a base_offset = end - ci->buf_offset; DEBUG_PRINTF("base_offset=%lld\n", base_offset); DEBUG_PRINTF("first look has offset %d\n", *look); // If our first check tells us we need to look at an offset before the // start of the stream, this role cannot match. if (unlikely(*look < 0 && (u64a)(0 - *look) > end)) { DEBUG_PRINTF("too early, fail\n"); return 0; } // Skip over offsets that are before the history buffer. do { s64a offset = base_offset + *look; if (offset >= -(s64a)ci->hlen) { goto in_history; } DEBUG_PRINTF("look=%d before history\n", *look); look++; reach += REACH_BITVECTOR_LEN; } while (look < look_end); // History buffer. DEBUG_PRINTF("scan history (%zu looks left)\n", look_end - look); for (; look < look_end; ++look, reach += REACH_BITVECTOR_LEN) { in_history: ; s64a offset = base_offset + *look; DEBUG_PRINTF("reach=%p, rel offset=%lld\n", reach, offset); if (offset >= 0) { DEBUG_PRINTF("in buffer\n"); goto in_buffer; } assert(offset >= -(s64a)ci->hlen && offset < 0); u8 c = ci->hbuf[ci->hlen + offset]; if (!reachHasBit(reach, c)) { DEBUG_PRINTF("char 0x%02x failed reach check\n", c); return 0; } } // Current buffer. DEBUG_PRINTF("scan buffer (%zu looks left)\n", look_end - look); for (; look < look_end; ++look, reach += REACH_BITVECTOR_LEN) { in_buffer: ; s64a offset = base_offset + *look; DEBUG_PRINTF("reach=%p, rel offset=%lld\n", reach, offset); if (offset >= (s64a)ci->len) { DEBUG_PRINTF("in the future\n"); break; } assert(offset >= 0 && offset < (s64a)ci->len); u8 c = ci->buf[offset]; if (!reachHasBit(reach, c)) { DEBUG_PRINTF("char 0x%02x failed reach check\n", c); return 0; } } DEBUG_PRINTF("OK :)\n"); return 1; } static int roseNfaEarliestSom(u64a from_offset, UNUSED u64a offset, UNUSED ReportID id, void *context) { u64a *som = context; *som = MIN(*som, from_offset); return MO_CONTINUE_MATCHING; } static rose_inline u64a roseGetHaigSom(const struct RoseEngine *t, struct hs_scratch *scratch, const u32 qi, UNUSED const u32 leftfixLag) { u32 ri = queueToLeftIndex(t, qi); UNUSED const struct LeftNfaInfo *left = getLeftTable(t) + ri; DEBUG_PRINTF("testing %s prefix %u/%u with lag %u (maxLag=%u)\n", left->transient ? "transient" : "active", ri, qi, leftfixLag, left->maxLag); assert(leftfixLag <= left->maxLag); struct mq *q = scratch->queues + qi; u64a start = ~0ULL; /* switch the callback + context for a fun one */ q->som_cb = roseNfaEarliestSom; q->context = &start; nfaReportCurrentMatches(q->nfa, q); /* restore the old callback + context */ q->som_cb = roseNfaSomAdaptor; q->context = NULL; DEBUG_PRINTF("earliest som is %llu\n", start); return start; } static rose_inline char roseCheckBounds(u64a end, u64a min_bound, u64a max_bound) { DEBUG_PRINTF("check offset=%llu against bounds [%llu,%llu]\n", end, min_bound, max_bound); assert(min_bound <= max_bound); return end >= min_bound && end <= max_bound; } static rose_inline hwlmcb_rv_t roseEnginesEod(const struct RoseEngine *rose, struct hs_scratch *scratch, u64a offset, u32 iter_offset) { const char is_streaming = rose->mode != HS_MODE_BLOCK; /* data, len is used for state decompress, should be full available data */ u8 key = 0; if (is_streaming) { const u8 *eod_data = scratch->core_info.hbuf; size_t eod_len = scratch->core_info.hlen; key = eod_len ? eod_data[eod_len - 1] : 0; } const u8 *aa = getActiveLeafArray(rose, scratch->core_info.state); const u32 aaCount = rose->activeArrayCount; const struct mmbit_sparse_iter *it = getByOffset(rose, iter_offset); assert(ISALIGNED(it)); u32 idx = 0; struct mmbit_sparse_state si_state[MAX_SPARSE_ITER_STATES]; for (u32 qi = mmbit_sparse_iter_begin(aa, aaCount, &idx, it, si_state); qi != MMB_INVALID; qi = mmbit_sparse_iter_next(aa, aaCount, qi, &idx, it, si_state)) { DEBUG_PRINTF("checking nfa %u\n", qi); struct mq *q = scratch->queues + qi; assert(q->nfa == getNfaByQueue(rose, qi)); assert(nfaAcceptsEod(q->nfa)); if (is_streaming) { // Decompress stream state. nfaExpandState(q->nfa, q->state, q->streamState, offset, key); } if (nfaCheckFinalState(q->nfa, q->state, q->streamState, offset, roseReportAdaptor, roseReportSomAdaptor, scratch) == MO_HALT_MATCHING) { DEBUG_PRINTF("user instructed us to stop\n"); return HWLM_TERMINATE_MATCHING; } } return HWLM_CONTINUE_MATCHING; } static rose_inline hwlmcb_rv_t roseSuffixesEod(const struct RoseEngine *rose, struct hs_scratch *scratch, u64a offset) { const u8 *aa = getActiveLeafArray(rose, scratch->core_info.state); const u32 aaCount = rose->activeArrayCount; for (u32 qi = mmbit_iterate(aa, aaCount, MMB_INVALID); qi != MMB_INVALID; qi = mmbit_iterate(aa, aaCount, qi)) { DEBUG_PRINTF("checking nfa %u\n", qi); struct mq *q = scratch->queues + qi; assert(q->nfa == getNfaByQueue(rose, qi)); assert(nfaAcceptsEod(q->nfa)); /* We have just been triggered. */ assert(fatbit_isset(scratch->aqa, rose->queueCount, qi)); pushQueueNoMerge(q, MQE_END, scratch->core_info.len); q->context = NULL; /* rose exec is used as we don't want to / can't raise matches in the * history buffer. */ if (!nfaQueueExecRose(q->nfa, q, MO_INVALID_IDX)) { DEBUG_PRINTF("nfa is dead\n"); continue; } if (nfaCheckFinalState(q->nfa, q->state, q->streamState, offset, roseReportAdaptor, roseReportSomAdaptor, scratch) == MO_HALT_MATCHING) { DEBUG_PRINTF("user instructed us to stop\n"); return HWLM_TERMINATE_MATCHING; } } return HWLM_CONTINUE_MATCHING; } static rose_inline hwlmcb_rv_t roseMatcherEod(const struct RoseEngine *rose, struct hs_scratch *scratch, u64a offset) { assert(rose->ematcherOffset); assert(rose->ematcherRegionSize); // Clear role state and active engines, since we have already handled all // outstanding work there. DEBUG_PRINTF("clear role state and active leaf array\n"); char *state = scratch->core_info.state; mmbit_clear(getRoleState(state), rose->rolesWithStateCount); mmbit_clear(getActiveLeafArray(rose, state), rose->activeArrayCount); const char is_streaming = rose->mode != HS_MODE_BLOCK; size_t eod_len; const u8 *eod_data; if (!is_streaming) { /* Block */ eod_data = scratch->core_info.buf; eod_len = scratch->core_info.len; } else { /* Streaming */ eod_len = scratch->core_info.hlen; eod_data = scratch->core_info.hbuf; } assert(eod_data); assert(eod_len); DEBUG_PRINTF("%zu bytes of eod data to scan at offset %llu\n", eod_len, offset); // If we don't have enough bytes to produce a match from an EOD table scan, // there's no point scanning. if (eod_len < rose->eodmatcherMinWidth) { DEBUG_PRINTF("too short for min width %u\n", rose->eodmatcherMinWidth); return HWLM_CONTINUE_MATCHING; } // Ensure that we only need scan the last N bytes, where N is the length of // the eod-anchored matcher region. size_t adj = eod_len - MIN(eod_len, rose->ematcherRegionSize); const struct HWLM *etable = getByOffset(rose, rose->ematcherOffset); hwlmExec(etable, eod_data, eod_len, adj, roseCallback, scratch, scratch->tctxt.groups); // We may need to fire delayed matches. if (cleanUpDelayed(rose, scratch, 0, offset) == HWLM_TERMINATE_MATCHING) { DEBUG_PRINTF("user instructed us to stop\n"); return HWLM_TERMINATE_MATCHING; } roseFlushLastByteHistory(rose, scratch, offset); return HWLM_CONTINUE_MATCHING; } static void updateSeqPoint(struct RoseContext *tctxt, u64a offset, const char from_mpv) { if (from_mpv) { updateMinMatchOffsetFromMpv(tctxt, offset); } else { updateMinMatchOffset(tctxt, offset); } } #define PROGRAM_CASE(name) \ case ROSE_INSTR_##name: { \ DEBUG_PRINTF("instruction: " #name " (pc=%u)\n", \ programOffset + (u32)(pc - pc_base)); \ const struct ROSE_STRUCT_##name *ri = \ (const struct ROSE_STRUCT_##name *)pc; #define PROGRAM_NEXT_INSTRUCTION \ pc += ROUNDUP_N(sizeof(*ri), ROSE_INSTR_MIN_ALIGN); \ break; \ } static rose_inline hwlmcb_rv_t roseRunProgram(const struct RoseEngine *t, struct hs_scratch *scratch, u32 programOffset, u64a som, u64a end, size_t match_len, char in_anchored, char in_catchup, char from_mpv, char skip_mpv_catchup) { DEBUG_PRINTF("program=%u, offsets [%llu,%llu]\n", programOffset, som, end); assert(programOffset >= sizeof(struct RoseEngine)); assert(programOffset < t->size); const char *pc_base = getByOffset(t, programOffset); const char *pc = pc_base; // Local sparse iterator state for programs that use the SPARSE_ITER_BEGIN // and SPARSE_ITER_NEXT instructions. struct mmbit_sparse_state si_state[MAX_SPARSE_ITER_STATES]; // If this program has an effect, work_done will be set to one (which may // allow the program to squash groups). int work_done = 0; struct RoseContext *tctxt = &scratch->tctxt; assert(*(const u8 *)pc != ROSE_INSTR_END); for (;;) { assert(ISALIGNED_N(pc, ROSE_INSTR_MIN_ALIGN)); assert(pc >= pc_base); assert((size_t)(pc - pc_base) < t->size); const u8 code = *(const u8 *)pc; assert(code <= ROSE_INSTR_END); switch ((enum RoseInstructionCode)code) { PROGRAM_CASE(ANCHORED_DELAY) { if (in_anchored && end > t->floatingMinLiteralMatchOffset) { DEBUG_PRINTF("delay until playback\n"); tctxt->groups |= ri->groups; work_done = 1; assert(ri->done_jump); // must progress pc += ri->done_jump; continue; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_LIT_MASK) { assert(match_len); struct core_info *ci = &scratch->core_info; if (!roseCheckBenefits(ci, end, match_len, ri->and_mask.a8, ri->cmp_mask.a8)) { DEBUG_PRINTF("halt: failed mask check\n"); return HWLM_CONTINUE_MATCHING; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_LIT_EARLY) { if (end < ri->min_offset) { DEBUG_PRINTF("halt: before min_offset=%u\n", ri->min_offset); return HWLM_CONTINUE_MATCHING; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_GROUPS) { DEBUG_PRINTF("groups=0x%llx, checking instr groups=0x%llx\n", tctxt->groups, ri->groups); if (!(ri->groups & tctxt->groups)) { DEBUG_PRINTF("halt: no groups are set\n"); return HWLM_CONTINUE_MATCHING; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_ONLY_EOD) { struct core_info *ci = &scratch->core_info; if (end != ci->buf_offset + ci->len) { DEBUG_PRINTF("should only match at end of data\n"); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_BOUNDS) { if (!roseCheckBounds(end, ri->min_bound, ri->max_bound)) { DEBUG_PRINTF("failed bounds check\n"); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_NOT_HANDLED) { struct fatbit *handled = scratch->handled_roles; if (fatbit_set(handled, t->handledKeyCount, ri->key)) { DEBUG_PRINTF("key %u already set\n", ri->key); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_LOOKAROUND) { if (!roseCheckLookaround(t, scratch, ri->index, ri->count, end)) { DEBUG_PRINTF("failed lookaround check\n"); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_INFIX) { if (!roseTestInfix(t, scratch, ri->queue, ri->lag, ri->report, end)) { DEBUG_PRINTF("failed infix check\n"); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_PREFIX) { if (!roseTestPrefix(t, scratch, ri->queue, ri->lag, ri->report, end)) { DEBUG_PRINTF("failed prefix check\n"); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(PUSH_DELAYED) { rosePushDelayedMatch(t, scratch, ri->delay, ri->index, end); } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CATCH_UP) { if (roseCatchUpTo(t, scratch, end) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CATCH_UP_MPV) { if (from_mpv || skip_mpv_catchup) { DEBUG_PRINTF("skipping mpv catchup\n"); } else if (roseCatchUpMPV(t, end - scratch->core_info.buf_offset, scratch) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(SOM_ADJUST) { assert(ri->distance <= end); som = end - ri->distance; DEBUG_PRINTF("som is (end - %u) = %llu\n", ri->distance, som); } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(SOM_LEFTFIX) { som = roseGetHaigSom(t, scratch, ri->queue, ri->lag); DEBUG_PRINTF("som from leftfix is %llu\n", som); } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(SOM_FROM_REPORT) { som = handleSomExternal(scratch, &ri->som, end); DEBUG_PRINTF("som from report %u is %llu\n", ri->som.onmatch, som); } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(SOM_ZERO) { DEBUG_PRINTF("setting SOM to zero\n"); som = 0; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(TRIGGER_INFIX) { roseTriggerInfix(t, scratch, som, end, ri->queue, ri->event, ri->cancel); work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(TRIGGER_SUFFIX) { if (roseTriggerSuffix(t, scratch, ri->queue, ri->event, som, end) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(DEDUPE) { updateSeqPoint(tctxt, end, from_mpv); const char do_som = t->hasSom; // TODO: constant propagate const char is_external_report = 1; enum DedupeResult rv = dedupeCatchup(t, scratch, end, som, end + ri->offset_adjust, ri->dkey, ri->offset_adjust, is_external_report, ri->quash_som, do_som); switch (rv) { case DEDUPE_HALT: return HWLM_TERMINATE_MATCHING; case DEDUPE_SKIP: assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; case DEDUPE_CONTINUE: break; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(DEDUPE_SOM) { updateSeqPoint(tctxt, end, from_mpv); const char is_external_report = 0; const char do_som = 1; enum DedupeResult rv = dedupeCatchup(t, scratch, end, som, end + ri->offset_adjust, ri->dkey, ri->offset_adjust, is_external_report, ri->quash_som, do_som); switch (rv) { case DEDUPE_HALT: return HWLM_TERMINATE_MATCHING; case DEDUPE_SKIP: assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; case DEDUPE_CONTINUE: break; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(REPORT_CHAIN) { // Note: sequence points updated inside this function. if (roseCatchUpAndHandleChainMatch( t, scratch, ri->event, ri->top_squash_distance, end, in_catchup) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(REPORT_SOM_INT) { updateSeqPoint(tctxt, end, from_mpv); roseHandleSom(t, scratch, &ri->som, end); work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(REPORT_SOM_AWARE) { updateSeqPoint(tctxt, end, from_mpv); roseHandleSomSom(t, scratch, &ri->som, som, end); work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(REPORT) { updateSeqPoint(tctxt, end, from_mpv); if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust, INVALID_EKEY) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(REPORT_EXHAUST) { updateSeqPoint(tctxt, end, from_mpv); if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust, ri->ekey) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(REPORT_SOM) { updateSeqPoint(tctxt, end, from_mpv); if (roseReportSom(t, scratch, som, end, ri->onmatch, ri->offset_adjust, INVALID_EKEY) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(REPORT_SOM_EXHAUST) { updateSeqPoint(tctxt, end, from_mpv); if (roseReportSom(t, scratch, som, end, ri->onmatch, ri->offset_adjust, ri->ekey) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(DEDUPE_AND_REPORT) { updateSeqPoint(tctxt, end, from_mpv); const char do_som = t->hasSom; // TODO: constant propagate const char is_external_report = 1; enum DedupeResult rv = dedupeCatchup(t, scratch, end, som, end + ri->offset_adjust, ri->dkey, ri->offset_adjust, is_external_report, ri->quash_som, do_som); switch (rv) { case DEDUPE_HALT: return HWLM_TERMINATE_MATCHING; case DEDUPE_SKIP: assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; case DEDUPE_CONTINUE: break; } const u32 ekey = INVALID_EKEY; if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust, ekey) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(FINAL_REPORT) { updateSeqPoint(tctxt, end, from_mpv); if (roseReport(t, scratch, end, ri->onmatch, ri->offset_adjust, INVALID_EKEY) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } /* One-shot specialisation: this instruction always terminates * execution of the program. */ return HWLM_CONTINUE_MATCHING; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_EXHAUSTED) { DEBUG_PRINTF("check ekey %u\n", ri->ekey); assert(ri->ekey != INVALID_EKEY); assert(ri->ekey < t->ekeyCount); const char *evec = scratch->core_info.exhaustionVector; if (isExhausted(t, evec, ri->ekey)) { DEBUG_PRINTF("ekey %u already set, match is exhausted\n", ri->ekey); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_MIN_LENGTH) { DEBUG_PRINTF("check min length %llu (adj %d)\n", ri->min_length, ri->end_adj); assert(ri->min_length > 0); assert(ri->end_adj == 0 || ri->end_adj == -1); assert(som == HS_OFFSET_PAST_HORIZON || som <= end); if (som != HS_OFFSET_PAST_HORIZON && ((end + ri->end_adj) - som < ri->min_length)) { DEBUG_PRINTF("failed check, match len %llu\n", (u64a)((end + ri->end_adj) - som)); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(SET_STATE) { DEBUG_PRINTF("set state index %u\n", ri->index); mmbit_set(getRoleState(scratch->core_info.state), t->rolesWithStateCount, ri->index); work_done = 1; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(SET_GROUPS) { tctxt->groups |= ri->groups; DEBUG_PRINTF("set groups 0x%llx -> 0x%llx\n", ri->groups, tctxt->groups); } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(SQUASH_GROUPS) { assert(popcount64(ri->groups) == 63); // Squash only one group. if (work_done) { tctxt->groups &= ri->groups; DEBUG_PRINTF("squash groups 0x%llx -> 0x%llx\n", ri->groups, tctxt->groups); } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(CHECK_STATE) { DEBUG_PRINTF("check state %u\n", ri->index); const u8 *roles = getRoleState(scratch->core_info.state); if (!mmbit_isset(roles, t->rolesWithStateCount, ri->index)) { DEBUG_PRINTF("state not on\n"); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(SPARSE_ITER_BEGIN) { DEBUG_PRINTF("iter_offset=%u\n", ri->iter_offset); const struct mmbit_sparse_iter *it = getByOffset(t, ri->iter_offset); assert(ISALIGNED(it)); const u8 *roles = getRoleState(scratch->core_info.state); u32 idx = 0; u32 i = mmbit_sparse_iter_begin(roles, t->rolesWithStateCount, &idx, it, si_state); if (i == MMB_INVALID) { DEBUG_PRINTF("no states in sparse iter are on\n"); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } fatbit_clear(scratch->handled_roles); const u32 *jumps = getByOffset(t, ri->jump_table); DEBUG_PRINTF("state %u (idx=%u) is on, jump to %u\n", i, idx, jumps[idx]); pc = pc_base + jumps[idx]; continue; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(SPARSE_ITER_NEXT) { DEBUG_PRINTF("iter_offset=%u, state=%u\n", ri->iter_offset, ri->state); const struct mmbit_sparse_iter *it = getByOffset(t, ri->iter_offset); assert(ISALIGNED(it)); const u8 *roles = getRoleState(scratch->core_info.state); u32 idx = 0; u32 i = mmbit_sparse_iter_next(roles, t->rolesWithStateCount, ri->state, &idx, it, si_state); if (i == MMB_INVALID) { DEBUG_PRINTF("no more states in sparse iter are on\n"); assert(ri->fail_jump); // must progress pc += ri->fail_jump; continue; } const u32 *jumps = getByOffset(t, ri->jump_table); DEBUG_PRINTF("state %u (idx=%u) is on, jump to %u\n", i, idx, jumps[idx]); pc = pc_base + jumps[idx]; continue; } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(ENGINES_EOD) { if (roseEnginesEod(t, scratch, end, ri->iter_offset) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(SUFFIXES_EOD) { if (roseSuffixesEod(t, scratch, end) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(MATCHER_EOD) { if (roseMatcherEod(t, scratch, end) == HWLM_TERMINATE_MATCHING) { return HWLM_TERMINATE_MATCHING; } } PROGRAM_NEXT_INSTRUCTION PROGRAM_CASE(END) { DEBUG_PRINTF("finished\n"); return HWLM_CONTINUE_MATCHING; } PROGRAM_NEXT_INSTRUCTION } } assert(0); // unreachable return HWLM_CONTINUE_MATCHING; } #undef PROGRAM_CASE #undef PROGRAM_NEXT_INSTRUCTION #endif // PROGRAM_RUNTIME_H