Merge pull request #86 from VectorCamp/develop

New release 5.4.6
This commit is contained in:
Konstantinos Margaritis 2022-01-21 12:25:40 +02:00 committed by GitHub
commit e6f856407e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
62 changed files with 3987 additions and 1942 deletions

View File

@ -3,7 +3,7 @@ project (vectorscan C CXX)
set (HS_MAJOR_VERSION 5)
set (HS_MINOR_VERSION 4)
set (HS_PATCH_VERSION 3)
set (HS_PATCH_VERSION 6)
set (HS_VERSION ${HS_MAJOR_VERSION}.${HS_MINOR_VERSION}.${HS_PATCH_VERSION})
set(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
@ -128,11 +128,9 @@ CMAKE_DEPENDENT_OPTION(DUMP_SUPPORT "Dump code support; normally on, except in r
CMAKE_DEPENDENT_OPTION(DISABLE_ASSERTS "Disable assert(); Asserts are enabled in debug builds, disabled in release builds" OFF "NOT RELEASE_BUILD" ON)
option(BUILD_AVX512 "Experimental: support avx512 in the fat runtime"
OFF)
option(BUILD_AVX512 "Experimental: support avx512 in the fat runtime" OFF)
option(BUILD_AVX512VBMI "Experimental: support avx512vbmi in the fat runtime"
OFF)
option(BUILD_AVX512VBMI "Experimental: support avx512vbmi in the fat runtime" OFF)
if (BUILD_AVX512VBMI)
set(BUILD_AVX512 ON)
@ -140,47 +138,95 @@ endif ()
# TODO: per platform config files?
# remove CMake's idea of optimisation
foreach (CONFIG ${CMAKE_BUILD_TYPE} ${CMAKE_CONFIGURATION_TYPES})
string(REGEX REPLACE "-O[^ ]*" "" CMAKE_C_FLAGS_${CONFIG} "${CMAKE_C_FLAGS_${CONFIG}}")
string(REGEX REPLACE "-O[^ ]*" "" CMAKE_CXX_FLAGS_${CONFIG} "${CMAKE_CXX_FLAGS_${CONFIG}}")
endforeach ()
# remove CMake's idea of optimisation
foreach (CONFIG ${CMAKE_BUILD_TYPE} ${CMAKE_CONFIGURATION_TYPES})
string(REGEX REPLACE "-O[^ ]*" "" CMAKE_C_FLAGS_${CONFIG} "${CMAKE_C_FLAGS_${CONFIG}}")
string(REGEX REPLACE "-O[^ ]*" "" CMAKE_CXX_FLAGS_${CONFIG} "${CMAKE_CXX_FLAGS_${CONFIG}}")
endforeach ()
if (CMAKE_COMPILER_IS_GNUCC AND NOT CROSS_COMPILE_AARCH64)
message(STATUS "gcc version ${CMAKE_C_COMPILER_VERSION}")
# If gcc doesn't recognise the host cpu, then mtune=native becomes
# generic, which isn't very good in some cases. march=native looks at
# cpuid info and then chooses the best microarch it can (and replaces
# the flag), so use that for tune.
if (CMAKE_C_COMPILER_ID MATCHES "Intel")
set(SKYLAKE_FLAG "-xCORE-AVX512")
else ()
set(SKYLAKE_FLAG "-march=skylake-avx512")
set(ICELAKE_FLAG "-march=icelake-server")
endif ()
# arg1 might exist if using ccache
string (STRIP "${CMAKE_C_COMPILER_ARG1}" CC_ARG1)
set (EXEC_ARGS ${CC_ARG1} -c -Q --help=target -march=native -mtune=native)
execute_process(COMMAND ${CMAKE_C_COMPILER} ${EXEC_ARGS}
OUTPUT_VARIABLE _GCC_OUTPUT)
string(FIND "${_GCC_OUTPUT}" "march" POS)
string(SUBSTRING "${_GCC_OUTPUT}" ${POS} -1 _GCC_OUTPUT)
string(REGEX REPLACE "march=[ \t]*([^ \n]*)[ \n].*" "\\1"
GNUCC_ARCH "${_GCC_OUTPUT}")
if(ARCH_PPC64EL)
set(ARCH_FLAG mcpu)
else()
set(ARCH_FLAG march)
endif()
if (ARCH_IA32 OR ARCH_X86_64)
# test the parsed flag
set (EXEC_ARGS ${CC_ARG1} -E - -mtune=${GNUCC_ARCH})
execute_process(COMMAND ${CMAKE_C_COMPILER} ${EXEC_ARGS}
OUTPUT_QUIET ERROR_QUIET
INPUT_FILE /dev/null
RESULT_VARIABLE GNUCC_TUNE_TEST)
if (NOT GNUCC_TUNE_TEST EQUAL 0)
message(SEND_ERROR "Something went wrong determining gcc tune: -mtune=${GNUCC_ARCH} not valid")
endif()
set(TUNE_FLAG ${GNUCC_ARCH})
else()
set(TUNE_FLAG native)
endif()
elseif (NOT TUNE_FLAG)
# Detect best GNUCC_ARCH to tune for
if (CMAKE_COMPILER_IS_GNUCC AND NOT CROSS_COMPILE)
message(STATUS "gcc version ${CMAKE_C_COMPILER_VERSION}")
# If gcc doesn't recognise the host cpu, then mtune=native becomes
# generic, which isn't very good in some cases. march=native looks at
# cpuid info and then chooses the best microarch it can (and replaces
# the flag), so use that for tune.
# arg1 might exist if using ccache
string (STRIP "${CMAKE_C_COMPILER_ARG1}" CC_ARG1)
set (EXEC_ARGS ${CC_ARG1} -c -Q --help=target -${ARCH_FLAG}=native -mtune=native)
execute_process(COMMAND ${CMAKE_C_COMPILER} ${EXEC_ARGS}
OUTPUT_VARIABLE _GCC_OUTPUT)
string(FIND "${_GCC_OUTPUT}" "${ARCH_FLAG}" POS)
string(SUBSTRING "${_GCC_OUTPUT}" ${POS} -1 _GCC_OUTPUT)
string(REGEX REPLACE "${ARCH_FLAG}=[ \t]*([^ \n]*)[ \n].*" "\\1" GNUCC_ARCH "${_GCC_OUTPUT}")
# test the parsed flag
set (EXEC_ARGS ${CC_ARG1} -E - -mtune=${GNUCC_ARCH})
execute_process(COMMAND ${CMAKE_C_COMPILER} ${EXEC_ARGS}
OUTPUT_QUIET ERROR_QUIET
INPUT_FILE /dev/null
RESULT_VARIABLE GNUCC_TUNE_TEST)
if (NOT GNUCC_TUNE_TEST EQUAL 0)
message(WARNING "Something went wrong determining gcc tune: -mtune=${GNUCC_ARCH} not valid, falling back to -mtune=native")
set(TUNE_FLAG native)
else()
set(TUNE_FLAG ${GNUCC_ARCH})
message(STATUS "gcc will tune for ${GNUCC_ARCH}, ${TUNE_FLAG}")
endif()
elseif (CMAKE_COMPILER_IS_CLANG AND NOT CROSS_COMPILE)
if (ARCH_IA32 OR ARCH_X86_64)
set(GNUCC_ARCH native)
set(TUNE_FLAG generic)
elseif(ARCH_AARCH64)
set(GNUCC_ARCH armv8)
set(TUNE_FLAG generic)
elseif(ARCH_ARM32)
set(GNUCC_ARCH armv7a)
set(TUNE_FLAG generic)
else()
set(GNUCC_ARCH native)
set(TUNE_FLAG generic)
endif()
message(STATUS "clang will tune for ${GNUCC_ARCH}, ${TUNE_FLAG}")
elseif (CROSS_COMPILE)
set(GNUCC_ARCH generic)
set(TUNE_FLAG generic)
endif()
if (ARCH_IA32 OR ARCH_X86_64)
if (NOT FAT_RUNTIME)
if (BUILD_AVX512)
set(ARCH_C_FLAGS "${SKYLAKE_FLAG}")
set(ARCH_CXX_FLAGS "${SKYLAKE_FLAG}")
elseif (BUILD_AVX2)
set(ARCH_C_FLAGS "-mavx2")
set(ARCH_CXX_FLAGS "-mavx2")
else()
set(ARCH_C_FLAGS "-msse4.2")
set(ARCH_CXX_FLAGS "-msse4.2")
endif()
else()
set(ARCH_C_FLAGS "-msse4.2")
set(ARCH_CXX_FLAGS "-msse4.2")
endif()
endif()
if (ARCH_AARCH64)
if (BUILD_SVE2_BITPERM)
set(GNUCC_ARCH "${GNUCC_ARCH}+sve2-bitperm")
elseif (BUILD_SVE2)
@ -188,80 +234,95 @@ endif ()
elseif (BUILD_SVE)
set(GNUCC_ARCH "${GNUCC_ARCH}+sve")
endif ()
endif(ARCH_AARCH64)
# compiler version checks TODO: test more compilers
if (CMAKE_COMPILER_IS_GNUCXX)
set(GNUCXX_MINVER "4.8.1")
message(STATUS "g++ version ${CMAKE_CXX_COMPILER_VERSION}")
if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS GNUCXX_MINVER)
message(FATAL_ERROR "A minimum of g++ ${GNUCXX_MINVER} is required for C++11 support")
endif()
message(STATUS "ARCH_C_FLAGS : ${ARCH_C_FLAGS}")
message(STATUS "ARCH_CXX_FLAGS : ${ARCH_CXX_FLAGS}")
if (NOT FAT_RUNTIME)
set(ARCH_C_FLAGS "-${ARCH_FLAG}=${GNUCC_ARCH} -mtune=${TUNE_FLAG} ${ARCH_C_FLAGS}")
set(ARCH_CXX_FLAGS "-${ARCH_FLAG}=${GNUCC_ARCH} -mtune=${TUNE_FLAG} ${ARCH_CXX_FLAGS}")
endif()
#if (ARCH_IA32 OR ARCH_X86_64 OR ARCH_ARM32 OR ARCH_AARCH64)
# if (NOT CMAKE_C_FLAGS MATCHES .*march.* AND NOT CMAKE_C_FLAGS MATCHES .*mtune.*)
# set(ARCH_C_FLAGS "-march=${GNUCC_ARCH} -mtune=${TUNE_FLAG}")
# endif()
# if (NOT CMAKE_CXX_FLAGS MATCHES .*march.* AND NOT CMAKE_CXX_FLAGS MATCHES .*mtune.*)
# set(ARCH_CXX_FLAGS "-march=${GNUCC_ARCH} -mtune=${TUNE_FLAG}")
# endif()
#endif()
#if(ARCH_PPC64EL)
# if (NOT CMAKE_C_FLAGS MATCHES .*march.* AND NOT CMAKE_C_FLAGS MATCHES .*mtune.*)
# set(ARCH_C_FLAGS "-mtune=${TUNE_FLAG}")
# endif()
# if (NOT CMAKE_CXX_FLAGS MATCHES .*march.* AND NOT CMAKE_CXX_FLAGS MATCHES .*mtune.*)
# set(ARCH_CXX_FLAGS "-mtune=${TUNE_FLAG}")
# endif()
#endif()
# compiler version checks TODO: test more compilers
if (CMAKE_COMPILER_IS_GNUCXX)
set(GNUCXX_MINVER "9")
message(STATUS "g++ version ${CMAKE_CXX_COMPILER_VERSION}")
if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS GNUCXX_MINVER)
message(FATAL_ERROR "A minimum of g++ ${GNUCXX_MINVER} is required for C++17 support")
endif()
endif()
if(RELEASE_BUILD)
if (NOT CMAKE_BUILD_TYPE MATCHES MINSIZEREL)
set(OPT_C_FLAG "-O3")
set(OPT_CXX_FLAG "-O3")
else ()
set(OPT_C_FLAG "-Os")
set(OPT_CXX_FLAG "-Os")
endif ()
else()
set(OPT_C_FLAG "-O0")
set(OPT_CXX_FLAG "-O0")
endif(RELEASE_BUILD)
# set compiler flags - more are tested and added later
set(EXTRA_C_FLAGS "${OPT_C_FLAG} -std=c17 -Wall -Wextra -Wshadow -Wcast-qual -fno-strict-aliasing")
set(EXTRA_CXX_FLAGS "${OPT_CXX_FLAG} -std=c++17 -Wall -Wextra -Wshadow -Wswitch -Wreturn-type -Wcast-qual -Wno-deprecated -Wnon-virtual-dtor -fno-strict-aliasing -fno-new-ttp-matching")
if (NOT RELEASE_BUILD)
# -Werror is most useful during development, don't potentially break
# release builds
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -Werror")
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -Werror")
endif()
if (DISABLE_ASSERTS)
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -DNDEBUG")
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -DNDEBUG")
endif()
if (NOT CMAKE_C_FLAGS MATCHES .*march.* AND NOT CMAKE_C_FLAGS MATCHES .*mtune.*)
set(ARCH_C_FLAGS "-march=${GNUCC_ARCH} -mtune=${TUNE_FLAG}")
endif()
if (NOT CMAKE_CXX_FLAGS MATCHES .*march.* AND NOT CMAKE_CXX_FLAGS MATCHES .*mtune.*)
set(ARCH_CXX_FLAGS "-march=${GNUCC_ARCH} -mtune=${TUNE_FLAG}")
endif()
if(CMAKE_COMPILER_IS_GNUCC)
# spurious warnings?
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -Wno-array-bounds -Wno-maybe-uninitialized")
endif()
if(CMAKE_COMPILER_IS_GNUCXX)
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -Wno-maybe-uninitialized")
if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 5.0)
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -fabi-version=0")
endif ()
# don't complain about abi
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -Wno-abi")
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -Wno-abi")
endif()
if (NOT(ARCH_IA32 AND RELEASE_BUILD))
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -fno-omit-frame-pointer")
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -fno-omit-frame-pointer")
endif()
if (CMAKE_C_COMPILER_ID MATCHES "Intel")
set(SKYLAKE_FLAG "-xCORE-AVX512")
if(RELEASE_BUILD)
if (NOT CMAKE_BUILD_TYPE MATCHES MINSIZEREL)
set(OPT_C_FLAG "-O3")
set(OPT_CXX_FLAG "-O3")
else ()
set(SKYLAKE_FLAG "-march=skylake-avx512")
set(ICELAKE_FLAG "-march=icelake-server")
set(OPT_C_FLAG "-Os")
set(OPT_CXX_FLAG "-Os")
endif ()
else()
set(OPT_C_FLAG "-O0")
set(OPT_CXX_FLAG "-O0")
endif(RELEASE_BUILD)
# set compiler flags - more are tested and added later
set(EXTRA_C_FLAGS "${OPT_C_FLAG} -std=c17 -Wall -Wextra -Wshadow -Wcast-qual -fno-strict-aliasing")
set(EXTRA_CXX_FLAGS "${OPT_CXX_FLAG} -std=c++17 -Wall -Wextra -Wshadow -Wswitch -Wreturn-type -Wcast-qual -Wno-deprecated -Wnon-virtual-dtor -fno-strict-aliasing")
if (NOT CMAKE_COMPILER_IS_CLANG)
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -fno-new-ttp-matching")
endif()
if (NOT RELEASE_BUILD)
# -Werror is most useful during development, don't potentially break
# release builds
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -Werror")
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -Werror")
endif()
if (DISABLE_ASSERTS)
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -DNDEBUG")
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -DNDEBUG")
endif()
if(CMAKE_COMPILER_IS_GNUCC)
# spurious warnings?
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -Wno-array-bounds -Wno-maybe-uninitialized")
endif()
if(CMAKE_COMPILER_IS_GNUCXX)
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -Wno-maybe-uninitialized")
if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 5.0)
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -fabi-version=0")
endif ()
# don't complain about abi
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -Wno-abi")
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -Wno-abi")
endif()
if (NOT(ARCH_IA32 AND RELEASE_BUILD))
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -fno-omit-frame-pointer")
set(EXTRA_CXX_FLAGS "${EXTRA_CXX_FLAGS} -fno-omit-frame-pointer")
endif()
CHECK_INCLUDE_FILES(unistd.h HAVE_UNISTD_H)
if (ARCH_IA32 OR ARCH_X86_64)
@ -277,8 +338,8 @@ elseif (ARCH_ARM32 OR ARCH_AARCH64)
message(FATAL_ERROR "arm_sve.h is required to build for SVE.")
endif()
endif()
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -flax-vector-conversions")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -flax-vector-conversions")
elseif (ARCH_PPC64EL)
CHECK_INCLUDE_FILE_CXX(altivec.h HAVE_C_PPC64EL_ALTIVEC_H)
endif()
CHECK_FUNCTION_EXISTS(posix_memalign HAVE_POSIX_MEMALIGN)
@ -304,8 +365,7 @@ if (CMAKE_SYSTEM_NAME MATCHES "Linux")
# This is a Linux-only feature for now - requires platform support
# elsewhere
message(STATUS "generator is ${CMAKE_GENERATOR}")
if (CMAKE_C_COMPILER_ID MATCHES "Clang" AND
CMAKE_C_COMPILER_VERSION VERSION_LESS "3.9")
if (CMAKE_C_COMPILER_IS_CLANG AND CMAKE_C_COMPILER_VERSION VERSION_LESS "3.9")
message (STATUS "Clang v3.9 or higher required for fat runtime, cannot build fat runtime")
set (FAT_RUNTIME_REQUISITES FALSE)
elseif (NOT (CMAKE_GENERATOR MATCHES "Unix Makefiles" OR
@ -329,7 +389,10 @@ include (${CMAKE_MODULE_PATH}/arch.cmake)
# testing a builtin takes a little more work
CHECK_C_SOURCE_COMPILES("void *aa_test(void *x) { return __builtin_assume_aligned(x, 16);}\nint main(void) { return 0; }" HAVE_CC_BUILTIN_ASSUME_ALIGNED)
CHECK_CXX_SOURCE_COMPILES("void *aa_test(void *x) { return __builtin_assume_aligned(x, 16);}\nint main(void) { return 0; }" HAVE_CXX_BUILTIN_ASSUME_ALIGNED)
CHECK_C_SOURCE_COMPILES("int main(void) { __builtin_constant_p(0); }" HAVE__BUILTIN_CONSTANT_P)
# Clang does not use __builtin_constant_p() the same way as gcc
if (NOT CMAKE_COMPILER_IS_CLANG)
CHECK_C_SOURCE_COMPILES("int main(void) { __builtin_constant_p(0); }" HAVE__BUILTIN_CONSTANT_P)
endif()
set(C_FLAGS_TO_CHECK
# Variable length arrays are way bad, most especially at run time
@ -428,19 +491,22 @@ if(CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
set(FREEBSD true)
endif(CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
if (NOT FAT_RUNTIME)
if (CROSS_COMPILE_AARCH64)
if (FAT_RUNTIME)
if (NOT (ARCH_IA32 OR ARCH_X86_64))
message(FATAL_ERROR "Fat runtime is not supported on non-Intel architectures")
else()
message(STATUS "Building runtime for multiple microarchitectures")
endif()
else()
if (CROSS_COMPILE)
message(STATUS "Building for target CPU: ${ARCH_C_FLAGS}")
else()
message(STATUS "Building for current host CPU: ${ARCH_C_FLAGS}")
endif()
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${ARCH_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${ARCH_CXX_FLAGS}")
else()
message(STATUS "Building runtime for multiple microarchitectures")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}")
endif()
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${ARCH_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${ARCH_CXX_FLAGS}")
add_subdirectory(util)
add_subdirectory(doc/dev-reference)
@ -522,7 +588,7 @@ set (hs_exec_common_SRCS
${hs_exec_common_SRCS}
src/util/arch/x86/cpuid_flags.c
)
elseif (ARCH_ARM32 OR ARCH_AARCH64)
elseif (ARCH_ARM32 OR ARCH_AARCH64 OR ARCH_PPC64EL)
set (hs_exec_common_SRCS
${hs_exec_common_SRCS}
src/util/arch/arm/cpuid_flags.c
@ -618,9 +684,8 @@ set (hs_exec_SRCS
src/nfa/tamarama_internal.h
src/nfa/truffle.cpp
src/nfa/truffle.h
src/nfa/vermicelli.h
src/nfa/vermicelli.hpp
src/nfa/vermicelli_run.h
src/nfa/vermicelli_sse.h
src/som/som.h
src/som/som_operation.h
src/som/som_runtime.h
@ -681,9 +746,19 @@ elseif (ARCH_ARM32 OR ARCH_AARCH64)
set (hs_exec_SRCS
${hs_exec_SRCS}
src/util/supervector/arch/arm/impl.cpp)
elseif (ARCH_PPC64EL)
set (hs_exec_SRCS
${hs_exec_SRCS}
src/util/supervector/arch/ppc64el/impl.cpp)
endif ()
endif()
if (NOT BUILD_SVE2)
set (hs_exec_SRCS
${hs_exec_SRCS}
src/nfa/vermicelli_simd.cpp)
endif()
set (hs_exec_avx2_SRCS
src/fdr/teddy_avx2.c
src/util/arch/x86/masked_move.c
@ -1148,10 +1223,6 @@ if (NOT FAT_RUNTIME)
set_target_properties(hs_runtime PROPERTIES LINKER_LANGUAGE C)
add_library(hs_compile OBJECT ${hs_compile_SRCS})
if (ARCH_IA32)
set_target_properties(hs_compile PROPERTIES COMPILE_FLAGS "-mssse3")
endif (ARCH_IA32)
add_library(hs STATIC
src/hs_version.c
src/hs_valid_platform.c
@ -1182,14 +1253,14 @@ else (FAT_RUNTIME)
add_library(hs_exec_core2 OBJECT ${hs_exec_SRCS})
list(APPEND RUNTIME_LIBS $<TARGET_OBJECTS:hs_exec_core2>)
set_target_properties(hs_exec_core2 PROPERTIES
COMPILE_FLAGS "-march=core2"
COMPILE_FLAGS "-march=core2 -msse4.2"
RULE_LAUNCH_COMPILE "${BUILD_WRAPPER} core2 ${CMAKE_MODULE_PATH}/keep.syms.in"
)
add_library(hs_exec_corei7 OBJECT ${hs_exec_SRCS})
list(APPEND RUNTIME_LIBS $<TARGET_OBJECTS:hs_exec_corei7>)
set_target_properties(hs_exec_corei7 PROPERTIES
COMPILE_FLAGS "-march=corei7 -mssse3"
COMPILE_FLAGS "-march=corei7 -msse4.2"
RULE_LAUNCH_COMPILE "${BUILD_WRAPPER} corei7 ${CMAKE_MODULE_PATH}/keep.syms.in"
)
@ -1231,10 +1302,6 @@ else (FAT_RUNTIME)
${RUNTIME_LIBS})
set_target_properties(hs_runtime PROPERTIES LINKER_LANGUAGE C)
add_library(hs_compile OBJECT ${hs_compile_SRCS})
if (ARCH_IA32 OR ARCH_X86_64)
set_target_properties(hs_exec_common PROPERTIES COMPILE_FLAGS "-mssse3")
set_target_properties(hs_compile PROPERTIES COMPILE_FLAGS "-mssse3")
endif ()
# we want the static lib for testing
add_library(hs STATIC src/hs_version.c src/hs_valid_platform.c
@ -1251,14 +1318,14 @@ else (FAT_RUNTIME)
add_library(hs_exec_shared_core2 OBJECT ${hs_exec_SRCS})
list(APPEND RUNTIME_SHLIBS $<TARGET_OBJECTS:hs_exec_shared_core2>)
set_target_properties(hs_exec_shared_core2 PROPERTIES
COMPILE_FLAGS "-march=core2"
COMPILE_FLAGS "-march=core2 -msse4.2"
POSITION_INDEPENDENT_CODE TRUE
RULE_LAUNCH_COMPILE "${BUILD_WRAPPER} core2 ${CMAKE_MODULE_PATH}/keep.syms.in"
)
add_library(hs_exec_shared_corei7 OBJECT ${hs_exec_SRCS})
list(APPEND RUNTIME_SHLIBS $<TARGET_OBJECTS:hs_exec_shared_corei7>)
set_target_properties(hs_exec_shared_corei7 PROPERTIES
COMPILE_FLAGS "-march=corei7 -mssse3"
COMPILE_FLAGS "-march=corei7 -msse4.2"
POSITION_INDEPENDENT_CODE TRUE
RULE_LAUNCH_COMPILE "${BUILD_WRAPPER} corei7 ${CMAKE_MODULE_PATH}/keep.syms.in"
)

View File

@ -191,6 +191,34 @@ int main(){
);
}
for (size_t i = 0; i < std::size(sizes); i++) {
MicroBenchmark bench("Vermicelli", sizes[i]);
run_benchmarks(sizes[i], MAX_LOOPS / sizes[i], matches[m], false, bench,
[&](MicroBenchmark &b) {
b.chars.set('a');
ue2::truffleBuildMasks(b.chars, (u8 *)&b.lo, (u8 *)&b.hi);
memset(b.buf.data(), 'b', b.size);
},
[&](MicroBenchmark &b) {
return vermicelliExec('a', 'b', b.buf.data(), b.buf.data() + b.size);
}
);
}
for (size_t i = 0; i < std::size(sizes); i++) {
MicroBenchmark bench("Reverse Vermicelli", sizes[i]);
run_benchmarks(sizes[i], MAX_LOOPS / sizes[i], matches[m], true, bench,
[&](MicroBenchmark &b) {
b.chars.set('a');
ue2::truffleBuildMasks(b.chars, (u8 *)&b.lo, (u8 *)&b.hi);
memset(b.buf.data(), 'b', b.size);
},
[&](MicroBenchmark &b) {
return rvermicelliExec('a', 'b', b.buf.data(), b.buf.data() + b.size);
}
);
}
for (size_t i = 0; i < std::size(sizes); i++) {
//we imitate the noodle unit tests
std::string str;

View File

@ -30,6 +30,7 @@
#include "nfa/shufticompile.h"
#include "nfa/truffle.h"
#include "nfa/trufflecompile.h"
#include "nfa/vermicelli.hpp"
#include "hwlm/noodle_build.h"
#include "hwlm/noodle_engine.h"
#include "hwlm/noodle_internal.h"

View File

@ -9,6 +9,9 @@ elseif (HAVE_C_INTRIN_H)
elseif (HAVE_C_ARM_NEON_H)
set (INTRIN_INC_H "arm_neon.h")
set (FAT_RUNTIME OFF)
elseif (HAVE_C_PPC64EL_ALTIVEC_H)
set (INTRIN_INC_H "altivec.h")
set (FAT_RUNTIME OFF)
else()
message (FATAL_ERROR "No intrinsics header found")
endif ()
@ -85,7 +88,7 @@ if (FAT_RUNTIME)
set (CMAKE_REQUIRED_FLAGS "${CMAKE_C_FLAGS} ${EXTRA_C_FLAGS} ${SKYLAKE_FLAG}")
endif (BUILD_AVX512VBMI)
elseif (BUILD_AVX2)
set (CMAKE_REQUIRED_FLAGS "${CMAKE_C_FLAGS} ${EXTRA_C_FLAGS} -march=core-avx2 -mavx")
set (CMAKE_REQUIRED_FLAGS "${CMAKE_C_FLAGS} ${EXTRA_C_FLAGS} -march=core-avx2 -mavx2")
elseif ()
set (CMAKE_REQUIRED_FLAGS "${CMAKE_C_FLAGS} ${EXTRA_C_FLAGS} -march=core-i7 -mssse3")
endif ()
@ -95,12 +98,12 @@ else (NOT FAT_RUNTIME)
endif ()
if (ARCH_IA32 OR ARCH_X86_64)
# ensure we have the minimum of SSSE3 - call a SSSE3 intrinsic
# ensure we have the minimum of SSE4.2 - call a SSE4.2 intrinsic
CHECK_C_SOURCE_COMPILES("#include <${INTRIN_INC_H}>
int main() {
__m128i a = _mm_set1_epi8(1);
(void)_mm_shuffle_epi8(a, a);
}" HAVE_SSSE3)
}" HAVE_SSE42)
# now look for AVX2
CHECK_C_SOURCE_COMPILES("#include <${INTRIN_INC_H}>
@ -136,13 +139,26 @@ int main(){
(void)_mm512_permutexvar_epi8(idx, a);
}" HAVE_AVX512VBMI)
elseif (!ARCH_ARM32 AND !ARCH_AARCH64)
elseif (ARCH_ARM32 OR ARCH_AARCH64)
CHECK_C_SOURCE_COMPILES("#include <${INTRIN_INC_H}>
int main() {
int32x4_t a = vdupq_n_s32(1);
(void)a;
}" HAVE_NEON)
elseif (ARCH_PPC64EL)
CHECK_C_SOURCE_COMPILES("#include <${INTRIN_INC_H}>
int main() {
vector int a = vec_splat_s32(1);
(void)a;
}" HAVE_VSX)
else ()
message (FATAL_ERROR "Unsupported architecture")
endif ()
if (FAT_RUNTIME)
if ((ARCH_IA32 OR ARCH_X86_64) AND NOT HAVE_SSSE3)
message(FATAL_ERROR "SSSE3 support required to build fat runtime")
if ((ARCH_IA32 OR ARCH_X86_64) AND NOT HAVE_SSE42)
message(FATAL_ERROR "SSE4.2 support required to build fat runtime")
endif ()
if ((ARCH_IA32 OR ARCH_X86_64) AND BUILD_AVX2 AND NOT HAVE_AVX2)
message(FATAL_ERROR "AVX2 support required to build fat runtime")
@ -163,12 +179,16 @@ else (NOT FAT_RUNTIME)
if ((ARCH_IA32 OR ARCH_X86_64) AND NOT HAVE_AVX512VBMI)
message(STATUS "Building without AVX512VBMI support")
endif ()
if ((ARCH_IA32 OR ARCH_X86_64) AND NOT HAVE_SSSE3)
message(FATAL_ERROR "A minimum of SSSE3 compiler support is required")
if ((ARCH_IA32 OR ARCH_X86_64) AND NOT HAVE_SSE42)
message(FATAL_ERROR "A minimum of SSE4.2 compiler support is required")
endif ()
if ((ARCH_ARM32 OR ARCH_AARCH64) AND NOT HAVE_NEON)
message(FATAL_ERROR "NEON support required for ARM support")
endif ()
if (ARCH_PPPC64EL AND NOT HAVE_VSX)
message(FATAL_ERROR "VSX support required for Power support")
endif ()
endif ()
unset (PREV_FLAGS)

View File

@ -21,6 +21,9 @@
/* "Define if building for AARCH64" */
#cmakedefine ARCH_AARCH64
/* "Define if building for PPC64EL" */
#cmakedefine ARCH_PPC64EL
/* "Define if cross compiling for AARCH64" */
#cmakedefine CROSS_COMPILE_AARCH64
@ -75,6 +78,9 @@
/* C compiler has arm_sve.h */
#cmakedefine HAVE_C_ARM_SVE_H
/* C compiler has arm_neon.h */
#cmakedefine HAVE_C_PPC64EL_ALTIVEC_H
/* Define to 1 if you have the declaration of `pthread_setaffinity_np', and to
0 if you don't. */
#cmakedefine HAVE_DECL_PTHREAD_SETAFFINITY_NP

View File

@ -1,3 +1,8 @@
# determine compiler
if (CMAKE_CXX_COMPILER_ID MATCHES "Clang")
set(CMAKE_COMPILER_IS_CLANG TRUE)
endif()
# determine the target arch
if (CROSS_COMPILE_AARCH64)
@ -7,13 +12,11 @@ if (CROSS_COMPILE_AARCH64)
else()
# really only interested in the preprocessor here
CHECK_C_SOURCE_COMPILES("#if !(defined(__x86_64__) || defined(_M_X64))\n#error not 64bit\n#endif\nint main(void) { return 0; }" ARCH_X86_64)
CHECK_C_SOURCE_COMPILES("#if !(defined(__i386__) || defined(_M_IX86))\n#error not 32bit\n#endif\nint main(void) { return 0; }" ARCH_IA32)
CHECK_C_SOURCE_COMPILES("#if !defined(__ARM_ARCH_ISA_A64)\n#error not 64bit\n#endif\nint main(void) { return 0; }" ARCH_AARCH64)
CHECK_C_SOURCE_COMPILES("#if !defined(__ARM_ARCH_ISA_ARM)\n#error not 32bit\n#endif\nint main(void) { return 0; }" ARCH_ARM32)
if (ARCH_X86_64 OR ARCH_AARCH64)
CHECK_C_SOURCE_COMPILES("#if !defined(__PPC64__) && !(defined(__LITTLE_ENDIAN__) && defined(__VSX__))\n#error not ppc64el\n#endif\nint main(void) { return 0; }" ARCH_PPC64EL)
if (ARCH_X86_64 OR ARCH_AARCH64 OR ARCH_PPC64EL)
set(ARCH_64_BIT TRUE)
else()
set(ARCH_32_BIT TRUE)

View File

@ -112,6 +112,7 @@
*
*/
#include <random>
#include <algorithm>
#include <cstring>
#include <chrono>
@ -151,6 +152,8 @@ using std::set;
using std::min;
using std::max;
using std::copy;
using std::random_device;
using std::mt19937;
enum Criterion {
CRITERION_THROUGHPUT,
@ -731,7 +734,9 @@ int main(int argc, char **argv) {
count++;
cout << "." << std::flush;
vector<unsigned> sv(s.begin(), s.end());
random_shuffle(sv.begin(), sv.end());
random_device rng;
mt19937 urng(rng());
shuffle(sv.begin(), sv.end(), urng);
unsigned groups = factor_max + 1;
for (unsigned current_group = 0; current_group < groups;
current_group++) {

View File

@ -893,10 +893,10 @@ do { \
#define CONFIRM_TEDDY(var, bucket, offset, reason, conf_fn) \
do { \
if (unlikely(diff128(var, ones128()))) { \
u64a __attribute__((aligned(16))) vector[2]; \
store128(vector, var); \
u64a lo = vector[0]; \
u64a hi = vector[1]; \
u64a __attribute__((aligned(16))) vec[2]; \
store128(vec, var); \
u64a lo = vec[0]; \
u64a hi = vec[1]; \
CONF_CHUNK_64(lo, bucket, offset, reason, conf_fn); \
CONF_CHUNK_64(hi, bucket, offset + 8, reason, conf_fn); \
} \

View File

@ -44,5 +44,7 @@ hs_error_t HS_CDECL hs_valid_platform(void) {
}
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
return HS_SUCCESS;
#elif defined(ARCH_PPC64EL)
return HS_SUCCESS;
#endif
}

View File

@ -39,7 +39,7 @@
#include "nfa/accel.h"
#include "nfa/shufti.h"
#include "nfa/truffle.h"
#include "nfa/vermicelli.h"
#include "nfa/vermicelli.hpp"
#include <string.h>
#define MIN_ACCEL_LEN_BLOCK 16

View File

@ -30,26 +30,7 @@
/* SIMD engine agnostic noodle scan parts */
#include "util/supervector/supervector.hpp"
static u8 CASEMASK[] = { 0xff, 0xdf };
static really_inline
u8 caseClear8(u8 x, bool noCase)
{
return static_cast<u8>(x & CASEMASK[(u8)noCase]);
}
template<uint16_t S>
static really_inline SuperVector<S> getMask(u8 c, bool noCase) {
u8 k = caseClear8(c, noCase);
return SuperVector<S>(k);
}
template<uint16_t S>
static really_inline SuperVector<S> getCaseMask(void) {
return SuperVector<S>(CASEMASK[1]);
}
#include "util/supervector/casemask.hpp"
static really_really_inline
hwlm_error_t single_zscan(const struct noodTable *n,const u8 *d, const u8 *buf,

View File

@ -170,7 +170,7 @@ hwlm_error_t scanDoubleOnce(const struct noodTable *n, const u8 *buf,
svbool_t pg = svwhilelt_b8_s64(0, e - d);
svbool_t pg_rot = svwhilelt_b8_s64(0, e - d + 1);
svbool_t matched, matched_rot;
svbool_t any = doubleMatched(chars, d, pg, pg_rot, &matched, &matched_rot);
svbool_t any = doubleMatched(svreinterpret_u16(chars), d, pg, pg_rot, &matched, &matched_rot);
return doubleCheckMatched(n, buf, len, cbi, d, matched, matched_rot, any);
}
@ -187,7 +187,7 @@ hwlm_error_t scanDoubleLoop(const struct noodTable *n, const u8 *buf,
for (size_t i = 0; i < loops; i++, d += svcntb()) {
DEBUG_PRINTF("d %p \n", d);
svbool_t matched, matched_rot;
svbool_t any = doubleMatched(chars, d, svptrue_b8(), svptrue_b8(),
svbool_t any = doubleMatched(svreinterpret_u16(chars), d, svptrue_b8(), svptrue_b8(),
&matched, &matched_rot);
hwlm_error_t rv = doubleCheckMatched(n, buf, len, cbi, d,
matched, matched_rot, any);
@ -220,7 +220,7 @@ hwlm_error_t scanDouble(const struct noodTable *n, const u8 *buf, size_t len,
}
++d;
svuint16_t chars = getCharMaskDouble(n->key0, n->key1, noCase);
svuint8_t chars = svreinterpret_u8(getCharMaskDouble(n->key0, n->key1, noCase));
if (scan_len <= svcntb()) {
return scanDoubleOnce(n, buf, len, cbi, chars, d, e);

View File

@ -30,7 +30,7 @@
#include "accel.h"
#include "shufti.h"
#include "truffle.h"
#include "vermicelli.h"
#include "vermicelli.hpp"
#include "ue2common.h"
const u8 *run_accel(const union AccelAux *accel, const u8 *c, const u8 *c_end) {

View File

@ -1,7 +1,6 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
* Copyright (c) 2021, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@ -30,7 +29,6 @@
/** \file
* \brief Shufti: character class acceleration.
*
*/
template <uint16_t S>

125
src/nfa/arm/vermicelli.hpp Normal file
View File

@ -0,0 +1,125 @@
/*
* Copyright (c) 2015-2020, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Vermicelli: single-byte and double-byte acceleration.
*/
template <uint16_t S>
static really_inline
const u8 *vermicelliBlock(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len) {
SuperVector<S> mask = chars.eq(casemask & data);
return first_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *vermicelliBlockNeg(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len) {
SuperVector<S> mask = !chars.eq(casemask & data);
return first_zero_match_inverted<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *rvermicelliBlock(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len) {
SuperVector<S> mask = chars.eq(casemask & data);
return last_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *rvermicelliBlockNeg(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, const u8 *buf, u16 const len) {
data.print8("data");
chars.print8("chars");
casemask.print8("casemask");
SuperVector<S> mask = !chars.eq(casemask & data);
mask.print8("mask");
return last_zero_match_inverted<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *vermicelliDoubleBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2, SuperVector<S> const casemask,
u8 const c1, u8 const c2, u8 const casechar, u8 const *buf, u16 const len) {
SuperVector<S> v = casemask & data;
SuperVector<S> mask1 = chars1.eq(v);
SuperVector<S> mask2 = chars2.eq(v);
SuperVector<S> mask = mask1 & (mask2 >> 1);
DEBUG_PRINTF("rv[0] = %02hhx, rv[-1] = %02hhx\n", buf[0], buf[-1]);
bool partial_match = (((buf[0] & casechar) == c2) && ((buf[-1] & casechar) == c1));
DEBUG_PRINTF("partial = %d\n", partial_match);
if (partial_match) return buf - 1;
return first_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *rvermicelliDoubleBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2, SuperVector<S> const casemask,
u8 const c1, u8 const c2, u8 const casechar, u8 const *buf, u16 const len) {
SuperVector<S> v = casemask & data;
SuperVector<S> mask1 = chars1.eq(v);
SuperVector<S> mask2 = chars2.eq(v);
SuperVector<S> mask = (mask1 << 1)& mask2;
DEBUG_PRINTF("buf[0] = %02hhx, buf[-1] = %02hhx\n", buf[0], buf[-1]);
bool partial_match = (((buf[0] & casechar) == c2) && ((buf[-1] & casechar) == c1));
DEBUG_PRINTF("partial = %d\n", partial_match);
if (partial_match) {
mask = mask | (SuperVector<S>::Ones() >> (S-1));
}
return last_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *vermicelliDoubleMaskedBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2,
SuperVector<S> const mask1, SuperVector<S> const mask2,
u8 const c1, u8 const c2, u8 const m1, u8 const m2, u8 const *buf, u16 const len) {
SuperVector<S> v1 = chars1.eq(data & mask1);
SuperVector<S> v2 = chars2.eq(data & mask2);
SuperVector<S> mask = v1 & (v2 >> 1);
DEBUG_PRINTF("rv[0] = %02hhx, rv[-1] = %02hhx\n", buf[0], buf[-1]);
bool partial_match = (((buf[0] & m1) == c2) && ((buf[-1] & m2) == c1));
DEBUG_PRINTF("partial = %d\n", partial_match);
if (partial_match) return buf - 1;
return first_non_zero_match<S>(buf, mask, len);
}

View File

@ -40,7 +40,7 @@
#include "repeat.h"
#include "shufti.h"
#include "truffle.h"
#include "vermicelli.h"
#include "vermicelli.hpp"
#include "util/bitutils.h"
#include "util/multibit.h"
#include "util/partial_store.h"

View File

@ -40,7 +40,7 @@
#include "repeat_internal.h"
#include "shufti.h"
#include "truffle.h"
#include "vermicelli.h"
#include "vermicelli.hpp"
#include "util/partial_store.h"
#include "util/unaligned.h"

View File

@ -40,7 +40,7 @@
#include "shufti.h"
#include "truffle.h"
#include "ue2common.h"
#include "vermicelli.h"
#include "vermicelli.hpp"
#include "util/arch.h"
#include "util/bitutils.h"
#include "util/simd_utils.h"

View File

@ -36,7 +36,7 @@
#include "shufti.h"
#include "truffle.h"
#include "ue2common.h"
#include "vermicelli.h"
#include "vermicelli.hpp"
#include "vermicelli_run.h"
#include "util/multibit.h"
#include "util/partial_store.h"

View File

@ -35,7 +35,7 @@
#include "accel.h"
#include "nfa_internal.h"
#include "vermicelli.h"
#include "vermicelli.hpp"
#include "util/unaligned.h"
static really_inline

View File

@ -0,0 +1,76 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
* Copyright (c) 2021, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Shufti: character class acceleration.
*
*/
template <uint16_t S>
static really_inline
const SuperVector<S> blockSingleMask(SuperVector<S> mask_lo, SuperVector<S> mask_hi, SuperVector<S> chars) {
const SuperVector<S> low4bits = SuperVector<S>::dup_u8(0xf);
SuperVector<S> c_lo = chars & low4bits;
SuperVector<S> c_hi = chars.template vshr_8_imm<4>();
c_lo = mask_lo.template pshufb<false>(c_lo);
c_hi = mask_hi.template pshufb<false>(c_hi);
return (c_lo & c_hi).eq(SuperVector<S>::Zeroes());
}
template <uint16_t S>
static really_inline
SuperVector<S> blockDoubleMask(SuperVector<S> mask1_lo, SuperVector<S> mask1_hi, SuperVector<S> mask2_lo, SuperVector<S> mask2_hi, SuperVector<S> chars) {
const SuperVector<S> low4bits = SuperVector<S>::dup_u8(0xf);
SuperVector<S> chars_lo = chars & low4bits;
chars_lo.print8("chars_lo");
SuperVector<S> chars_hi = chars.template vshr_64_imm<4>() & low4bits;
chars_hi.print8("chars_hi");
SuperVector<S> c1_lo = mask1_lo.template pshufb<true>(chars_lo);
c1_lo.print8("c1_lo");
SuperVector<S> c1_hi = mask1_hi.template pshufb<true>(chars_hi);
c1_hi.print8("c1_hi");
SuperVector<S> t1 = c1_lo | c1_hi;
t1.print8("t1");
SuperVector<S> c2_lo = mask2_lo.template pshufb<true>(chars_lo);
c2_lo.print8("c2_lo");
SuperVector<S> c2_hi = mask2_hi.template pshufb<true>(chars_hi);
c2_hi.print8("c2_hi");
SuperVector<S> t2 = c2_lo | c2_hi;
t2.print8("t2");
t2.template vshr_128_imm<1>().print8("t2.vshr_128(1)");
SuperVector<S> t = t1 | (t2.template vshr_128_imm<1>());
t.print8("t");
return t.eq(SuperVector<S>::Ones());
}

View File

@ -0,0 +1,62 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Truffle: character class acceleration.
*
*/
template <uint16_t S>
static really_inline
const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, SuperVector<S> shuf_mask_lo_highset, SuperVector<S> chars) {
chars.print8("chars");
shuf_mask_lo_highclear.print8("shuf_mask_lo_highclear");
shuf_mask_lo_highset.print8("shuf_mask_lo_highset");
SuperVector<S> highconst = SuperVector<S>::dup_u8(0x80);
highconst.print8("highconst");
SuperVector<S> shuf_mask_hi = SuperVector<S>::dup_u64(0x8040201008040201);
shuf_mask_hi.print8("shuf_mask_hi");
SuperVector<S> shuf1 = shuf_mask_lo_highclear.pshufb(chars);
shuf1.print8("shuf1");
SuperVector<S> t1 = chars ^ highconst;
t1.print8("t1");
SuperVector<S> shuf2 = shuf_mask_lo_highset.pshufb(t1);
shuf2.print8("shuf2");
SuperVector<S> t2 = highconst.opandnot(chars.template vshr_64_imm<4>());
t2.print8("t2");
SuperVector<S> shuf3 = shuf_mask_hi.pshufb(t2);
shuf3.print8("shuf3");
SuperVector<S> res = (shuf1 | shuf2) & shuf3;
res.print8("(shuf1 | shuf2) & shuf3");
return res.eq(SuperVector<S>::Zeroes());
}

View File

@ -0,0 +1,126 @@
/*
* Copyright (c) 2015-2020, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Vermicelli: single-byte and double-byte acceleration.
*/
template <uint16_t S>
static really_inline
const u8 *vermicelliBlock(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len) {
SuperVector<S> mask = chars.eq(casemask & data);
return first_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *vermicelliBlockNeg(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len) {
SuperVector<S> mask = chars.eq(casemask & data);
return first_zero_match_inverted<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *rvermicelliBlock(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len) {
SuperVector<S> mask = chars.eq(casemask & data);
return last_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *rvermicelliBlockNeg(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, const u8 *buf, u16 const len) {
data.print8("data");
chars.print8("chars");
casemask.print8("casemask");
SuperVector<S> mask = chars.eq(casemask & data);
mask.print8("mask");
return last_zero_match_inverted<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *vermicelliDoubleBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2, SuperVector<S> const casemask,
u8 const c1, u8 const c2, u8 const casechar, u8 const *buf, u16 const len) {
SuperVector<S> v = casemask & data;
SuperVector<S> mask1 = chars1.eq(v);
SuperVector<S> mask2 = chars2.eq(v);
SuperVector<S> mask = mask1 & (mask2 >> 1);
DEBUG_PRINTF("rv[0] = %02hhx, rv[-1] = %02hhx\n", buf[0], buf[-1]);
bool partial_match = (((buf[0] & casechar) == c2) && ((buf[-1] & casechar) == c1));
DEBUG_PRINTF("partial = %d\n", partial_match);
if (partial_match) return buf - 1;
return first_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *rvermicelliDoubleBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2, SuperVector<S> const casemask,
u8 const c1, u8 const c2, u8 const casechar, u8 const *buf, u16 const len) {
SuperVector<S> v = casemask & data;
SuperVector<S> mask1 = chars1.eq(v);
SuperVector<S> mask2 = chars2.eq(v);
SuperVector<S> mask = (mask1 << 1)& mask2;
DEBUG_PRINTF("buf[0] = %02hhx, buf[-1] = %02hhx\n", buf[0], buf[-1]);
bool partial_match = (((buf[0] & casechar) == c2) && ((buf[-1] & casechar) == c1));
DEBUG_PRINTF("partial = %d\n", partial_match);
if (partial_match) {
mask = mask | (SuperVector<S>::Ones() >> (S-1));
}
return last_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *vermicelliDoubleMaskedBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2,
SuperVector<S> const mask1, SuperVector<S> const mask2,
u8 const c1, u8 const c2, u8 const m1, u8 const m2, u8 const *buf, u16 const len) {
SuperVector<S> v1 = chars1.eq(data & mask1);
SuperVector<S> v2 = chars2.eq(data & mask2);
SuperVector<S> mask = v1 & (v2 >> 1);
DEBUG_PRINTF("rv[0] = %02hhx, rv[-1] = %02hhx\n", buf[0], buf[-1]);
bool partial_match = (((buf[0] & m1) == c2) && ((buf[-1] & m2) == c1));
DEBUG_PRINTF("partial = %d\n", partial_match);
if (partial_match) return buf - 1;
return first_non_zero_match<S>(buf, mask, len);
}

View File

@ -56,6 +56,8 @@ SuperVector<S> blockDoubleMask(SuperVector<S> mask1_lo, SuperVector<S> mask1_hi,
#include "x86/shufti.hpp"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "arm/shufti.hpp"
#elif defined(ARCH_PPC64EL)
#include "ppc64el/shufti.hpp"
#endif
template <uint16_t S>
@ -63,7 +65,7 @@ static really_inline
const u8 *fwdBlock(SuperVector<S> mask_lo, SuperVector<S> mask_hi, SuperVector<S> chars, const u8 *buf) {
SuperVector<S> v = blockSingleMask(mask_lo, mask_hi, chars);
return firstMatch<S>(buf, v);
return first_zero_match_inverted<S>(buf, v);
}
template <uint16_t S>
@ -71,7 +73,7 @@ static really_inline
const u8 *revBlock(SuperVector<S> mask_lo, SuperVector<S> mask_hi, SuperVector<S> chars, const u8 *buf) {
SuperVector<S> v = blockSingleMask(mask_lo, mask_hi, chars);
return lastMatch<S>(buf, v);
return last_zero_match_inverted<S>(buf, v);
}
template <uint16_t S>
@ -80,7 +82,7 @@ const u8 *fwdBlockDouble(SuperVector<S> mask1_lo, SuperVector<S> mask1_hi, Super
SuperVector<S> mask = blockDoubleMask(mask1_lo, mask1_hi, mask2_lo, mask2_hi, chars);
return firstMatch<S>(buf, mask);
return first_zero_match_inverted<S>(buf, mask);
}
template <uint16_t S>

View File

@ -49,14 +49,15 @@ const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, Supe
#include "x86/truffle.hpp"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "arm/truffle.hpp"
#elif defined(ARCH_PPC64EL)
#include "ppc64el/truffle.hpp"
#endif
template <uint16_t S>
static really_inline
const u8 *fwdBlock(SuperVector<S> shuf_mask_lo_highclear, SuperVector<S> shuf_mask_lo_highset, SuperVector<S> chars, const u8 *buf) {
SuperVector<S> res = blockSingleMask(shuf_mask_lo_highclear, shuf_mask_lo_highset, chars);
return firstMatch<S>(buf, res);
return first_zero_match_inverted<S>(buf, res);
}
template <uint16_t S>
@ -120,7 +121,7 @@ static really_inline
const u8 *revBlock(SuperVector<S> shuf_mask_lo_highclear, SuperVector<S> shuf_mask_lo_highset, SuperVector<S> v,
const u8 *buf) {
SuperVector<S> res = blockSingleMask(shuf_mask_lo_highclear, shuf_mask_lo_highset, v);
return lastMatch<S>(buf, res);
return last_zero_match_inverted<S>(buf, res);
}
template <uint16_t S>

View File

@ -1,121 +0,0 @@
/*
* Copyright (c) 2015-2020, Intel Corporation
* Copyright (c) 2021, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Vermicelli: single-byte and double-byte acceleration.
*/
#ifndef VERMICELLI_H
#define VERMICELLI_H
#include "util/bitutils.h"
#include "util/simd_utils.h"
#include "util/unaligned.h"
#if !defined(HAVE_AVX512)
#include "vermicelli_common.h"
#endif
#ifdef HAVE_SVE2
#include "vermicelli_sve.h"
#else
#include "vermicelli_sse.h"
#endif
static really_inline
const u8 *vermicelliDoubleMaskedExec(char c1, char c2, char m1, char m2,
const u8 *buf, const u8 *buf_end) {
DEBUG_PRINTF("double verm scan (\\x%02hhx&\\x%02hhx)(\\x%02hhx&\\x%02hhx) "
"over %zu bytes\n", c1, m1, c2, m2, (size_t)(buf_end - buf));
assert(buf < buf_end);
VERM_TYPE chars1 = VERM_SET_FN(c1);
VERM_TYPE chars2 = VERM_SET_FN(c2);
VERM_TYPE mask1 = VERM_SET_FN(m1);
VERM_TYPE mask2 = VERM_SET_FN(m2);
#ifdef HAVE_AVX512
if (buf_end - buf <= VERM_BOUNDARY) {
const u8 *ptr = dvermMiniMasked(chars1, chars2, mask1, mask2, buf,
buf_end);
if (ptr) {
return ptr;
}
/* check for partial match at end */
if ((buf_end[-1] & m1) == (u8)c1) {
DEBUG_PRINTF("partial!!!\n");
return buf_end - 1;
}
return buf_end;
}
#endif
assert((buf_end - buf) >= VERM_BOUNDARY);
uintptr_t min = (uintptr_t)buf % VERM_BOUNDARY;
if (min) {
// Input isn't aligned, so we need to run one iteration with an
// unaligned load, then skip buf forward to the next aligned address.
// There's some small overlap here, but we don't mind scanning it twice
// if we can do it quickly, do we?
const u8 *p = dvermPreconditionMasked(chars1, chars2, mask1, mask2, buf);
if (p) {
return p;
}
buf += VERM_BOUNDARY - min;
assert(buf < buf_end);
}
// Aligned loops from here on in
const u8 *ptr = dvermSearchAlignedMasked(chars1, chars2, mask1, mask2, c1,
c2, m1, m2, buf, buf_end);
if (ptr) {
return ptr;
}
// Tidy up the mess at the end
ptr = dvermPreconditionMasked(chars1, chars2, mask1, mask2,
buf_end - VERM_BOUNDARY);
if (ptr) {
return ptr;
}
/* check for partial match at end */
if ((buf_end[-1] & m1) == (u8)c1) {
DEBUG_PRINTF("partial!!!\n");
return buf_end - 1;
}
return buf_end;
}
#endif /* VERMICELLI_H */

View File

@ -1,5 +1,6 @@
/*
* Copyright (c) 2015-2020, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
* Copyright (c) 2021, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
@ -28,52 +29,74 @@
*/
/** \file
* \brief Vermicelli: Implementation shared between architectures.
*
* (users should include vermicelli.h instead of this)
* \brief Vermicelli: single-byte and double-byte acceleration.
*/
#define VERM_BOUNDARY 16
#define VERM_TYPE m128
#define VERM_SET_FN set1_16x8
#ifndef VERMICELLI_HPP
#define VERMICELLI_HPP
// returns NULL if not found
static really_inline
const u8 *dvermPreconditionMasked(m128 chars1, m128 chars2,
m128 mask1, m128 mask2, const u8 *buf) {
m128 data = loadu128(buf); // unaligned
m128 v1 = eq128(chars1, and128(data, mask1));
m128 v2 = eq128(chars2, and128(data, mask2));
u32 z = movemask128(and128(v1, rshiftbyte_m128(v2, 1)));
#include "util/bitutils.h"
/* no fixup of the boundary required - the aligned run will pick it up */
if (unlikely(z)) {
u32 pos = ctz32(z);
return buf + pos;
}
return NULL;
#ifdef HAVE_SVE2
#include "vermicelli_sve.h"
#else
#ifdef __cplusplus
extern "C" {
#endif
const u8 *vermicelliExec(char c, char noCase, const u8 *buf, const u8 *buf_end);
#ifdef __cplusplus
}
#endif
static really_inline
const u8 *dvermSearchAlignedMasked(m128 chars1, m128 chars2,
m128 mask1, m128 mask2, u8 c1, u8 c2, u8 m1,
u8 m2, const u8 *buf, const u8 *buf_end) {
assert((size_t)buf % 16 == 0);
for (; buf + 16 < buf_end; buf += 16) {
m128 data = load128(buf);
m128 v1 = eq128(chars1, and128(data, mask1));
m128 v2 = eq128(chars2, and128(data, mask2));
u32 z = movemask128(and128(v1, rshiftbyte_m128(v2, 1)));
if ((buf[15] & m1) == c1 && (buf[16] & m2) == c2) {
z |= (1 << 15);
}
if (unlikely(z)) {
u32 pos = ctz32(z);
return buf + pos;
}
}
return NULL;
#ifdef __cplusplus
extern "C" {
#endif
const u8 *nvermicelliExec(char c, char noCase, const u8 *buf, const u8 *buf_end);
#ifdef __cplusplus
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
const u8 *rvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end);
#ifdef __cplusplus
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
const u8 *rnvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end);
#ifdef __cplusplus
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
const u8 *vermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf, const u8 *buf_end);
#ifdef __cplusplus
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
const u8 *rvermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf, const u8 *buf_end);
#ifdef __cplusplus
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
const u8 *vermicelliDoubleMaskedExec(char c1, char c2, char m1, char m2, const u8 *buf, const u8 *buf_end);
#ifdef __cplusplus
}
#endif
#endif
#endif /* VERMICELLI_HPP */

View File

@ -26,7 +26,10 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "vermicelli.h"
#include "vermicelli.hpp"
#define VERM_BOUNDARY 16
#define VERM_TYPE m128
static really_inline
const u8 *find_xverm_run(char c, char nocase, u32 repeat, UNUSED const u8 *buf,

551
src/nfa/vermicelli_simd.cpp Normal file
View File

@ -0,0 +1,551 @@
/*
* Copyright (c) 2015-2020, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
* Copyright (c) 2021, Arm Limited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Vermicelli: single-byte and double-byte acceleration.
*/
#include "util/bitutils.h"
#include "util/simd_utils.h"
#include "vermicelli.hpp"
#include "util/supervector/casemask.hpp"
#include "util/match.hpp"
template <uint16_t S>
static really_inline
const u8 *vermicelliBlock(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len);
template <uint16_t S>
static really_inline
const u8 *vermicelliBlockNeg(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len);
template <uint16_t S>
static really_inline
const u8 *rvermicelliBlock(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len);
template <uint16_t S>
static really_inline
const u8 *rvermicelliBlockNeg(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, const u8 *buf, u16 const len);
template <uint16_t S>
static really_inline
const u8 *vermicelliDoubleBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2, SuperVector<S> const casemask,
u8 const c1, u8 const c2, u8 const casechar, u8 const *buf, u16 const len);
template <uint16_t S>
static really_inline
const u8 *rvermicelliDoubleBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2, SuperVector<S> const casemask,
u8 const c1, u8 const c2, u8 const casechar, u8 const *buf, u16 const len);
template <uint16_t S>
static really_inline
const u8 *vermicelliDoubleMaskedBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2,
SuperVector<S> const mask1, SuperVector<S> const mask2,
u8 const c1, u8 const c2, u8 const m1, u8 const m2, u8 const *buf, u16 const len);
#if defined(ARCH_IA32) || defined(ARCH_X86_64)
#include "x86/vermicelli.hpp"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "arm/vermicelli.hpp"
#elif defined(ARCH_PPC64EL)
#include "ppc64el/vermicelli.hpp"
#endif
template <uint16_t S>
static const u8 *vermicelliExecReal(SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u8 const *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("verm %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const u8 *d = buf;
const u8 *rv;
__builtin_prefetch(d + 64);
__builtin_prefetch(d + 2*64);
__builtin_prefetch(d + 3*64);
__builtin_prefetch(d + 4*64);
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
assert(d < buf_end);
if (d + S <= buf_end) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
u8 const *d1 = ROUNDUP_PTR(d, S);
SuperVector<S> data = SuperVector<S>::loadu(d);
rv = vermicelliBlock(data, chars, casemask, d, S);
if (rv) return rv;
d = d1;
}
while(d + S <= buf_end) {
__builtin_prefetch(d + 64);
DEBUG_PRINTF("d %p \n", d);
SuperVector<S> data = SuperVector<S>::load(d);
rv = vermicelliBlock(data, chars, casemask, d, S);
if (rv) return rv;
d += S;
}
}
DEBUG_PRINTF("d %p e %p \n", d, buf_end);
// finish off tail
if (d != buf_end) {
SuperVector<S> data = SuperVector<S>::loadu_maskz(d, buf_end - d);
rv = vermicelliBlock(data, chars, casemask, d, buf_end - d);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
return buf_end;
}
template <uint16_t S>
static const u8 *nvermicelliExecReal(SuperVector<S> const chars, SuperVector<S> const casemask, const u8 *buf, const u8 *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("verm %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const u8 *d = buf;
const u8 *rv;
__builtin_prefetch(d + 64);
__builtin_prefetch(d + 2*64);
__builtin_prefetch(d + 3*64);
__builtin_prefetch(d + 4*64);
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
assert(d < buf_end);
if (d + S <= buf_end) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
u8 const *d1 = ROUNDUP_PTR(d, S);
SuperVector<S> data = SuperVector<S>::loadu(d);
rv = vermicelliBlockNeg(data, chars, casemask, d, S);
if (rv) return rv;
d = d1;
}
while(d + S <= buf_end) {
__builtin_prefetch(d + 64);
DEBUG_PRINTF("d %p \n", d);
SuperVector<S> data = SuperVector<S>::load(d);
rv = vermicelliBlockNeg(data, chars, casemask, d, S);
if (rv) return rv;
d += S;
}
}
DEBUG_PRINTF("d %p e %p \n", d, buf_end);
// finish off tail
if (d != buf_end) {
SuperVector<S> data = SuperVector<S>::loadu_maskz(d, buf_end - d);
rv = vermicelliBlockNeg(data, chars, casemask, d, buf_end - d);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
return buf_end;
}
// Reverse vermicelli scan. Provides exact semantics and returns (buf - 1) if
// character not found.
template <uint16_t S>
const u8 *rvermicelliExecReal(SuperVector<S> const chars, SuperVector<S> const casemask, const u8 *buf, const u8 *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("rverm %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const u8 *d = buf_end;
const u8 *rv;
__builtin_prefetch(d - 64);
__builtin_prefetch(d - 2*64);
__builtin_prefetch(d - 3*64);
__builtin_prefetch(d - 4*64);
DEBUG_PRINTF("start %p end %p \n", buf, d);
assert(d > buf);
if (d - S >= buf) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDDOWN_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
u8 const *d1 = ROUNDDOWN_PTR(d, S);
SuperVector<S> data = SuperVector<S>::loadu(d - S);
rv = rvermicelliBlock(data, chars, casemask, d - S, S);
DEBUG_PRINTF("rv %p \n", rv);
if (rv) return rv;
d = d1;
}
while (d - S >= buf) {
DEBUG_PRINTF("aligned %p \n", d);
// On large packet buffers, this prefetch appears to get us about 2%.
__builtin_prefetch(d - 64);
d -= S;
SuperVector<S> data = SuperVector<S>::load(d);
rv = rvermicelliBlock(data, chars, casemask, d, S);
if (rv) return rv;
}
}
DEBUG_PRINTF("tail d %p e %p \n", buf, d);
// finish off head
if (d != buf) {
SuperVector<S> data = SuperVector<S>::loadu(buf);
rv = rvermicelliBlock(data, chars, casemask, buf, d - buf);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
return buf - 1;
}
// Reverse vermicelli scan. Provides exact semantics and returns (buf - 1) if
// character not found.
template <uint16_t S>
const u8 *rnvermicelliExecReal(SuperVector<S> const chars, SuperVector<S> const casemask, const u8 *buf, const u8 *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("rverm %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const u8 *d = buf_end;
const u8 *rv;
__builtin_prefetch(d - 64);
__builtin_prefetch(d - 2*64);
__builtin_prefetch(d - 3*64);
__builtin_prefetch(d - 4*64);
DEBUG_PRINTF("start %p end %p \n", buf, d);
assert(d > buf);
if (d - S >= buf) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDDOWN_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
u8 const *d1 = ROUNDDOWN_PTR(d, S);
SuperVector<S> data = SuperVector<S>::loadu(d - S);
rv = rvermicelliBlockNeg(data, chars, casemask, d - S, S);
DEBUG_PRINTF("rv %p \n", rv);
if (rv) return rv;
d = d1;
}
while (d - S >= buf) {
DEBUG_PRINTF("aligned %p \n", d);
// On large packet buffers, this prefetch appears to get us about 2%.
__builtin_prefetch(d - 64);
d -= S;
SuperVector<S> data = SuperVector<S>::load(d);
rv = rvermicelliBlockNeg(data, chars, casemask, d, S);
if (rv) return rv;
}
}
DEBUG_PRINTF("tail d %p e %p \n", buf, d);
// finish off head
if (d != buf) {
SuperVector<S> data = SuperVector<S>::loadu(buf);
rv = rvermicelliBlockNeg(data, chars, casemask, buf, d - buf);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
return buf - 1;
}
template <uint16_t S>
static const u8 *vermicelliDoubleExecReal(u8 const c1, u8 const c2, SuperVector<S> const casemask,
const u8 *buf, const u8 *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("verm %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const u8 *d = buf;
const u8 *rv;
// SuperVector<S> lastmask1{0};
const SuperVector<VECTORSIZE> chars1 = SuperVector<VECTORSIZE>::dup_u8(c1);
const SuperVector<VECTORSIZE> chars2 = SuperVector<VECTORSIZE>::dup_u8(c2);
const u8 casechar = casemask.u.u8[0];
__builtin_prefetch(d + 64);
__builtin_prefetch(d + 2*64);
__builtin_prefetch(d + 3*64);
__builtin_prefetch(d + 4*64);
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
assert(d < buf_end);
if (d + S <= buf_end) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
u8 const *d1 = ROUNDUP_PTR(d, S);
SuperVector<S> data = SuperVector<S>::loadu(d);
rv = vermicelliDoubleBlock(data, chars1, chars2, casemask, c1, c2, casechar, d, S);
if (rv) return rv;
d = d1;
}
while(d + S <= buf_end) {
__builtin_prefetch(d + 64);
DEBUG_PRINTF("d %p \n", d);
SuperVector<S> data = SuperVector<S>::load(d);
rv = vermicelliDoubleBlock(data, chars1, chars2, casemask, c1, c2, casechar, d, S);
if (rv) return rv;
d += S;
}
}
DEBUG_PRINTF("tail d %p e %p \n", d, buf_end);
// finish off tail
if (d != buf_end) {
SuperVector<S> data = SuperVector<S>::loadu_maskz(d, buf_end - d);
rv = vermicelliDoubleBlock(data, chars1, chars2, casemask, c1, c2, casechar, d, buf_end - d);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
DEBUG_PRINTF("real tail d %p e %p \n", d, buf_end);
/* check for partial match at end */
u8 mask = casemask.u.u8[0];
if ((buf_end[-1] & mask) == (u8)c1) {
DEBUG_PRINTF("partial!!!\n");
return buf_end - 1;
}
return buf_end;
}
// /* returns highest offset of c2 (NOTE: not c1) */
template <uint16_t S>
const u8 *rvermicelliDoubleExecReal(char c1, char c2, SuperVector<S> const casemask, const u8 *buf, const u8 *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("rverm %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
char s[255];
snprintf(s, buf_end - buf + 1, "%s", buf);
DEBUG_PRINTF("b %s\n", s);
const u8 *d = buf_end;
const u8 *rv;
const SuperVector<VECTORSIZE> chars1 = SuperVector<VECTORSIZE>::dup_u8(c1);
const SuperVector<VECTORSIZE> chars2 = SuperVector<VECTORSIZE>::dup_u8(c2);
const u8 casechar = casemask.u.u8[0];
__builtin_prefetch(d - 64);
__builtin_prefetch(d - 2*64);
__builtin_prefetch(d - 3*64);
__builtin_prefetch(d - 4*64);
DEBUG_PRINTF("start %p end %p \n", buf, d);
assert(d > buf);
if (d - S >= buf) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDDOWN_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
u8 const *d1 = ROUNDDOWN_PTR(d, S);
SuperVector<S> data = SuperVector<S>::loadu(d - S);
rv = rvermicelliDoubleBlock(data, chars1, chars2, casemask, c1, c2, casechar, d - S, S);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
d = d1;
}
while (d - S >= buf) {
DEBUG_PRINTF("aligned %p \n", d);
// On large packet buffers, this prefetch appears to get us about 2%.
__builtin_prefetch(d - 64);
d -= S;
SuperVector<S> data = SuperVector<S>::load(d);
rv = rvermicelliDoubleBlock(data, chars1, chars2, casemask, c1, c2, casechar, d, S);
if (rv) return rv;
}
}
DEBUG_PRINTF("tail d %p e %p \n", buf, d);
// finish off head
if (d != buf) {
SuperVector<S> data = SuperVector<S>::loadu(buf);
rv = rvermicelliDoubleBlock(data, chars1, chars2, casemask, c1, c2, casechar, buf, d - buf);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
return buf - 1;
}
template <uint16_t S>
static const u8 *vermicelliDoubleMaskedExecReal(u8 const c1, u8 const c2, u8 const m1, u8 const m2,
const u8 *buf, const u8 *buf_end) {
assert(buf && buf_end);
assert(buf < buf_end);
DEBUG_PRINTF("verm %p len %zu\n", buf, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
const u8 *d = buf;
const u8 *rv;
// SuperVector<S> lastmask1{0};
const SuperVector<VECTORSIZE> chars1 = SuperVector<VECTORSIZE>::dup_u8(c1);
const SuperVector<VECTORSIZE> chars2 = SuperVector<VECTORSIZE>::dup_u8(c2);
const SuperVector<VECTORSIZE> mask1 = SuperVector<VECTORSIZE>::dup_u8(m1);
const SuperVector<VECTORSIZE> mask2 = SuperVector<VECTORSIZE>::dup_u8(m2);
__builtin_prefetch(d + 64);
__builtin_prefetch(d + 2*64);
__builtin_prefetch(d + 3*64);
__builtin_prefetch(d + 4*64);
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
assert(d < buf_end);
if (d + S <= buf_end) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
u8 const *d1 = ROUNDUP_PTR(d, S);
SuperVector<S> data = SuperVector<S>::loadu(d);
rv = vermicelliDoubleMaskedBlock(data, chars1, chars2, mask1, mask2, c1, c2, m1, m2, d, S);
if (rv) return rv;
d = d1;
}
while(d + S <= buf_end) {
__builtin_prefetch(d + 64);
DEBUG_PRINTF("d %p \n", d);
SuperVector<S> data = SuperVector<S>::load(d);
rv = vermicelliDoubleMaskedBlock(data, chars1, chars2, mask1, mask2, c1, c2, m1, m2, d, S);
if (rv) return rv;
d += S;
}
}
DEBUG_PRINTF("tail d %p e %p \n", d, buf_end);
// finish off tail
if (d != buf_end) {
SuperVector<S> data = SuperVector<S>::loadu_maskz(d, buf_end - d);
rv = vermicelliDoubleMaskedBlock(data, chars1, chars2, mask1, mask2, c1, c2, m1, m2, d, buf_end - d);
DEBUG_PRINTF("rv %p \n", rv);
if (rv && rv < buf_end) return rv;
}
DEBUG_PRINTF("real tail d %p e %p \n", d, buf_end);
/* check for partial match at end */
if ((buf_end[-1] & m1) == (u8)c1) {
DEBUG_PRINTF("partial!!!\n");
return buf_end - 1;
}
return buf_end;
}
extern "C" const u8 *vermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) {
DEBUG_PRINTF("verm scan %s\\x%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
assert(buf < buf_end);
const SuperVector<VECTORSIZE> chars = SuperVector<VECTORSIZE>::dup_u8(c);
const SuperVector<VECTORSIZE> casemask{nocase ? getCaseMask<VECTORSIZE>() : SuperVector<VECTORSIZE>::Ones()};
return vermicelliExecReal<VECTORSIZE>(chars, casemask, buf, buf_end);
}
/* like vermicelliExec except returns the address of the first character which
* is not c */
extern "C" const u8 *nvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) {
DEBUG_PRINTF("nverm scan %s\\x%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
assert(buf < buf_end);
const SuperVector<VECTORSIZE> chars = SuperVector<VECTORSIZE>::dup_u8(c);
const SuperVector<VECTORSIZE> casemask{nocase ? getCaseMask<VECTORSIZE>() : SuperVector<VECTORSIZE>::Ones()};
return nvermicelliExecReal<VECTORSIZE>(chars, casemask, buf, buf_end);
}
extern "C" const u8 *rvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) {
DEBUG_PRINTF("rev verm scan %s\\x%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
assert(buf < buf_end);
const SuperVector<VECTORSIZE> chars = SuperVector<VECTORSIZE>::dup_u8(c);
const SuperVector<VECTORSIZE> casemask{nocase ? getCaseMask<VECTORSIZE>() : SuperVector<VECTORSIZE>::Ones()};
return rvermicelliExecReal<VECTORSIZE>(chars, casemask, buf, buf_end);
}
extern "C" const u8 *rnvermicelliExec(char c, char nocase, const u8 *buf, const u8 *buf_end) {
DEBUG_PRINTF("rev verm scan %s\\x%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c, (size_t)(buf_end - buf));
assert(buf < buf_end);
const SuperVector<VECTORSIZE> chars = SuperVector<VECTORSIZE>::dup_u8(c);
const SuperVector<VECTORSIZE> casemask{nocase ? getCaseMask<VECTORSIZE>() : SuperVector<VECTORSIZE>::Ones()};
return rnvermicelliExecReal<VECTORSIZE>(chars, casemask, buf, buf_end);
}
extern "C" const u8 *vermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf, const u8 *buf_end) {
DEBUG_PRINTF("double verm scan %s\\x%02hhx%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c1, c2, (size_t)(buf_end - buf));
assert(buf < buf_end);
const SuperVector<VECTORSIZE> casemask{nocase ? getCaseMask<VECTORSIZE>() : SuperVector<VECTORSIZE>::Ones()};
return vermicelliDoubleExecReal<VECTORSIZE>(c1, c2, casemask, buf, buf_end);
}
extern "C" const u8 *rvermicelliDoubleExec(char c1, char c2, char nocase, const u8 *buf, const u8 *buf_end) {
DEBUG_PRINTF("rev double verm scan %s\\x%02hhx%02hhx over %zu bytes\n",
nocase ? "nocase " : "", c1, c2, (size_t)(buf_end - buf));
assert(buf < buf_end);
const SuperVector<VECTORSIZE> casemask{nocase ? getCaseMask<VECTORSIZE>() : SuperVector<VECTORSIZE>::Ones()};
return rvermicelliDoubleExecReal<VECTORSIZE>(c1, c2, casemask, buf, buf_end);
}
extern "C" const u8 *vermicelliDoubleMaskedExec(char c1, char c2, char m1, char m2,
const u8 *buf, const u8 *buf_end) {
DEBUG_PRINTF("double verm scan (\\x%02hhx&\\x%02hhx)(\\x%02hhx&\\x%02hhx) "
"over %zu bytes\n", c1, m1, c2, m2, (size_t)(buf_end - buf));
assert(buf < buf_end);
return vermicelliDoubleMaskedExecReal<VECTORSIZE>(c1, c2, m1, m2, buf, buf_end);
}

File diff suppressed because it is too large Load Diff

View File

@ -270,25 +270,24 @@ static really_inline
const u8 *dvermSearch(svuint8_t chars, const u8 *buf, const u8 *buf_end) {
size_t len = buf_end - buf;
if (len <= svcntb()) {
return dvermSearchOnce(chars, buf, buf_end);
return dvermSearchOnce(svreinterpret_u16(chars), buf, buf_end);
}
// peel off first part to align to the vector size
const u8 *aligned_buf = ROUNDUP_PTR(buf, svcntb_pat(SV_POW2));
assert(aligned_buf < buf_end);
if (buf != aligned_buf) {
const u8 *ptr = dvermSearchLoopBody(chars, buf);
const u8 *ptr = dvermSearchLoopBody(svreinterpret_u16(chars), buf);
if (ptr) return ptr;
}
buf = aligned_buf;
size_t loops = (buf_end - buf) / svcntb();
DEBUG_PRINTF("loops %zu \n", loops);
for (size_t i = 0; i < loops; i++, buf += svcntb()) {
const u8 *ptr = dvermSearchLoopBody(chars, buf);
const u8 *ptr = dvermSearchLoopBody(svreinterpret_u16(chars), buf);
if (ptr) return ptr;
}
DEBUG_PRINTF("buf %p buf_end %p \n", buf, buf_end);
return buf == buf_end ? NULL : dvermSearchLoopBody(chars,
buf_end - svcntb());
return buf == buf_end ? NULL : dvermSearchLoopBody(svreinterpret_u16(chars), buf_end - svcntb());
}
static really_inline
@ -372,7 +371,7 @@ const u8 *vermicelliDoubleExec(char c1, char c2, bool nocase, const u8 *buf,
assert(buf < buf_end);
if (buf_end - buf > 1) {
++buf;
svuint16_t chars = getCharMaskDouble(c1, c2, nocase);
svuint8_t chars = svreinterpret_u8(getCharMaskDouble(c1, c2, nocase));
const u8 *ptr = dvermSearch(chars, buf, buf_end);
if (ptr) {
return ptr;
@ -459,7 +458,7 @@ const u8 *vermicelliDouble16Exec(const m128 mask, const u64a firsts,
DEBUG_PRINTF("double verm16 scan over %td bytes\n", buf_end - buf);
if (buf_end - buf > 1) {
++buf;
svuint16_t chars = svreinterpret_u16(getDupSVEMaskFrom128(mask));
svuint8_t chars = svreinterpret_u8(getDupSVEMaskFrom128(mask));
const u8 *ptr = dvermSearch(chars, buf, buf_end);
if (ptr) {
return ptr;
@ -480,7 +479,7 @@ const u8 *vermicelliDoubleMasked16Exec(const m128 mask, char c1, char m1,
DEBUG_PRINTF("double verm16 masked scan over %td bytes\n", buf_end - buf);
if (buf_end - buf > 1) {
++buf;
svuint16_t chars = svreinterpret_u16(getDupSVEMaskFrom128(mask));
svuint8_t chars = getDupSVEMaskFrom128(mask);
const u8 *ptr = dvermSearch(chars, buf, buf_end);
if (ptr) {
return ptr;
@ -494,3 +493,96 @@ const u8 *vermicelliDoubleMasked16Exec(const m128 mask, char c1, char m1,
return buf_end;
}
// returns NULL if not found
static really_inline
const u8 *dvermPreconditionMasked(m128 chars1, m128 chars2,
m128 mask1, m128 mask2, const u8 *buf) {
m128 data = loadu128(buf); // unaligned
m128 v1 = eq128(chars1, and128(data, mask1));
m128 v2 = eq128(chars2, and128(data, mask2));
u32 z = movemask128(and128(v1, rshiftbyte_m128(v2, 1)));
/* no fixup of the boundary required - the aligned run will pick it up */
if (unlikely(z)) {
u32 pos = ctz32(z);
return buf + pos;
}
return NULL;
}
static really_inline
const u8 *dvermSearchAlignedMasked(m128 chars1, m128 chars2,
m128 mask1, m128 mask2, u8 c1, u8 c2, u8 m1,
u8 m2, const u8 *buf, const u8 *buf_end) {
assert((size_t)buf % 16 == 0);
for (; buf + 16 < buf_end; buf += 16) {
m128 data = load128(buf);
m128 v1 = eq128(chars1, and128(data, mask1));
m128 v2 = eq128(chars2, and128(data, mask2));
u32 z = movemask128(and128(v1, rshiftbyte_m128(v2, 1)));
if ((buf[15] & m1) == c1 && (buf[16] & m2) == c2) {
z |= (1 << 15);
}
if (unlikely(z)) {
u32 pos = ctz32(z);
return buf + pos;
}
}
return NULL;
}
static really_inline
const u8 *vermicelliDoubleMaskedExec(char c1, char c2, char m1, char m2,
const u8 *buf, const u8 *buf_end) {
DEBUG_PRINTF("double verm scan (\\x%02hhx&\\x%02hhx)(\\x%02hhx&\\x%02hhx) "
"over %zu bytes\n", c1, m1, c2, m2, (size_t)(buf_end - buf));
assert(buf < buf_end);
m128 chars1 = set1_16x8(c1);
m128 chars2 = set1_16x8(c2);
m128 mask1 = set1_16x8(m1);
m128 mask2 = set1_16x8(m2);
assert((buf_end - buf) >= 16);
uintptr_t min = (uintptr_t)buf % 16;
if (min) {
// Input isn't aligned, so we need to run one iteration with an
// unaligned load, then skip buf forward to the next aligned address.
// There's some small overlap here, but we don't mind scanning it twice
// if we can do it quickly, do we?
const u8 *p = dvermPreconditionMasked(chars1, chars2, mask1, mask2, buf);
if (p) {
return p;
}
buf += 16 - min;
assert(buf < buf_end);
}
// Aligned loops from here on in
const u8 *ptr = dvermSearchAlignedMasked(chars1, chars2, mask1, mask2, c1,
c2, m1, m2, buf, buf_end);
if (ptr) {
return ptr;
}
// Tidy up the mess at the end
ptr = dvermPreconditionMasked(chars1, chars2, mask1, mask2,
buf_end - 16);
if (ptr) {
return ptr;
}
/* check for partial match at end */
if ((buf_end[-1] & m1) == (u8)c1) {
DEBUG_PRINTF("partial!!!\n");
return buf_end - 1;
}
return buf_end;
}

View File

@ -31,12 +31,6 @@
* \brief Shufti: character class acceleration.
*/
#ifndef SHUFTI_SIMD_X86_HPP
#define SHUFTI_SIMD_X86_HPP
#include "util/supervector/supervector.hpp"
#include "util/match.hpp"
template <uint16_t S>
static really_inline
const SuperVector<S> blockSingleMask(SuperVector<S> mask_lo, SuperVector<S> mask_hi, SuperVector<S> chars) {
@ -44,12 +38,10 @@ const SuperVector<S> blockSingleMask(SuperVector<S> mask_lo, SuperVector<S> mask
SuperVector<S> c_lo = chars & low4bits;
SuperVector<S> c_hi = chars.template vshr_64_imm<4>() & low4bits;
c_lo = mask_lo.template pshufb(c_lo);
c_hi = mask_hi.template pshufb(c_hi);
c_lo = mask_lo.pshufb(c_lo);
c_hi = mask_hi.pshufb(c_hi);
SuperVector c = c_lo & c_hi;
return c.eq(SuperVector<S>::Zeroes());
return (c_lo & c_hi).eq(SuperVector<S>::Zeroes());
}
template <uint16_t S>
@ -80,5 +72,3 @@ SuperVector<S> blockDoubleMask(SuperVector<S> mask1_lo, SuperVector<S> mask1_hi,
return c.eq(SuperVector<S>::Ones());
}
#endif // SHUFTI_SIMD_X86_HPP

125
src/nfa/x86/vermicelli.hpp Normal file
View File

@ -0,0 +1,125 @@
/*
* Copyright (c) 2015-2020, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Vermicelli: single-byte and double-byte acceleration.
*/
template <uint16_t S>
static really_inline
const u8 *vermicelliBlock(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len) {
SuperVector<S> mask = chars.eq(casemask & data);
return first_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *vermicelliBlockNeg(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len) {
SuperVector<S> mask = chars.eq(casemask & data);
return first_zero_match_inverted<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *rvermicelliBlock(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, u8 const *buf, u16 const len) {
SuperVector<S> mask = chars.eq(casemask & data);
return last_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *rvermicelliBlockNeg(SuperVector<S> const data, SuperVector<S> const chars, SuperVector<S> const casemask, const u8 *buf, u16 const len) {
data.print8("data");
chars.print8("chars");
casemask.print8("casemask");
SuperVector<S> mask = chars.eq(casemask & data);
mask.print8("mask");
return last_zero_match_inverted<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *vermicelliDoubleBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2, SuperVector<S> const casemask,
u8 const c1, u8 const c2, u8 const casechar, u8 const *buf, u16 const len) {
SuperVector<S> v = casemask & data;
SuperVector<S> mask1 = chars1.eq(v);
SuperVector<S> mask2 = chars2.eq(v);
SuperVector<S> mask = mask1 & (mask2 >> 1);
DEBUG_PRINTF("rv[0] = %02hhx, rv[-1] = %02hhx\n", buf[0], buf[-1]);
bool partial_match = (((buf[0] & casechar) == c2) && ((buf[-1] & casechar) == c1));
DEBUG_PRINTF("partial = %d\n", partial_match);
if (partial_match) return buf - 1;
return first_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *rvermicelliDoubleBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2, SuperVector<S> const casemask,
u8 const c1, u8 const c2, u8 const casechar, u8 const *buf, u16 const len) {
SuperVector<S> v = casemask & data;
SuperVector<S> mask1 = chars1.eq(v);
SuperVector<S> mask2 = chars2.eq(v);
SuperVector<S> mask = (mask1 << 1)& mask2;
DEBUG_PRINTF("buf[0] = %02hhx, buf[-1] = %02hhx\n", buf[0], buf[-1]);
bool partial_match = (((buf[0] & casechar) == c2) && ((buf[-1] & casechar) == c1));
DEBUG_PRINTF("partial = %d\n", partial_match);
if (partial_match) {
mask = mask | (SuperVector<S>::Ones() >> (S-1));
}
return last_non_zero_match<S>(buf, mask, len);
}
template <uint16_t S>
static really_inline
const u8 *vermicelliDoubleMaskedBlock(SuperVector<S> const data, SuperVector<S> const chars1, SuperVector<S> const chars2,
SuperVector<S> const mask1, SuperVector<S> const mask2,
u8 const c1, u8 const c2, u8 const m1, u8 const m2, u8 const *buf, u16 const len) {
SuperVector<S> v1 = chars1.eq(data & mask1);
SuperVector<S> v2 = chars2.eq(data & mask2);
SuperVector<S> mask = v1 & (v2 >> 1);
DEBUG_PRINTF("rv[0] = %02hhx, rv[-1] = %02hhx\n", buf[0], buf[-1]);
bool partial_match = (((buf[0] & m1) == c2) && ((buf[-1] & m2) == c1));
DEBUG_PRINTF("partial = %d\n", partial_match);
if (partial_match) return buf - 1;
return first_non_zero_match<S>(buf, mask, len);
}

View File

@ -39,6 +39,8 @@
#include "util/arch/x86/x86.h"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "util/arch/arm/arm.h"
#elif defined(ARCH_PPC64EL)
#include "util/arch/ppc64el/ppc64el.h"
#endif
#endif // UTIL_ARCH_X86_H_

View File

@ -29,9 +29,46 @@
template <>
really_really_inline
const u8 *firstMatch<16>(const u8 *buf, SuperVector<16> mask) {
uint32x4_t res_t = vreinterpretq_u32_u8(mask.u.v128[0]);
uint64_t vmax = vgetq_lane_u64 (vreinterpretq_u64_u32 (vpmaxq_u32(res_t, res_t)), 0);
const u8 *first_non_zero_match<16>(const u8 *buf, SuperVector<16> mask, u16 const UNUSED len) {
uint32x4_t m = mask.u.u32x4[0];
uint64_t vmax = vgetq_lane_u64 (vreinterpretq_u64_u32 (vpmaxq_u32(m, m)), 0);
if (vmax != 0) {
typename SuperVector<16>::movemask_type z = mask.movemask();
DEBUG_PRINTF("z %08x\n", z);
DEBUG_PRINTF("buf %p z %08x \n", buf, z);
u32 pos = ctz32(z & 0xffff);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos < 16);
DEBUG_PRINTF("buf + pos %p\n", buf + pos);
return buf + pos;
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *last_non_zero_match<16>(const u8 *buf, SuperVector<16> mask, u16 const UNUSED len) {
uint32x4_t m = mask.u.u32x4[0];
uint64_t vmax = vgetq_lane_u64 (vreinterpretq_u64_u32 (vpmaxq_u32(m, m)), 0);
if (vmax != 0) {
typename SuperVector<16>::movemask_type z = mask.movemask();
DEBUG_PRINTF("buf %p z %08x \n", buf, z);
DEBUG_PRINTF("z %08x\n", z);
u32 pos = clz32(z & 0xffff);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos >= 16 && pos < 32);
return buf + (31 - pos);
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *first_zero_match_inverted<16>(const u8 *buf, SuperVector<16> mask, u16 const UNUSED len) {
uint32x4_t m = mask.u.u32x4[0];
uint64_t vmax = vgetq_lane_u64 (vreinterpretq_u64_u32 (vpmaxq_u32(m, m)), 0);
if (vmax != 0) {
typename SuperVector<16>::movemask_type z = mask.movemask();
DEBUG_PRINTF("z %08x\n", z);
@ -48,9 +85,9 @@ const u8 *firstMatch<16>(const u8 *buf, SuperVector<16> mask) {
template <>
really_really_inline
const u8 *lastMatch<16>(const u8 *buf, SuperVector<16> mask) {
uint32x4_t res_t = vreinterpretq_u32_u8(mask.u.v128[0]);
uint64_t vmax = vgetq_lane_u64 (vreinterpretq_u64_u32 (vpmaxq_u32(res_t, res_t)), 0);
const u8 *last_zero_match_inverted<16>(const u8 *buf, SuperVector<16> mask, u16 const UNUSED len) {
uint32x4_t m = mask.u.u32x4[0];
uint64_t vmax = vgetq_lane_u64 (vreinterpretq_u64_u32 (vpmaxq_u32(m, m)), 0);
if (vmax != 0) {
typename SuperVector<16>::movemask_type z = mask.movemask();
DEBUG_PRINTF("buf %p z %08x \n", buf, z);

View File

@ -100,7 +100,7 @@ static really_inline int isnonzero128(m128 a) {
*/
static really_inline u32 diffrich128(m128 a, m128 b) {
static const uint32x4_t movemask = { 1, 2, 4, 8 };
return vaddvq_u32(vandq_u32(vmvnq_s32(vceqq_s32((int32x4_t)a, (int32x4_t)b)), movemask));
return vaddvq_u32(vandq_u32(vmvnq_u32(vceqq_u32((uint32x4_t)a, (uint32x4_t)b)), movemask));
}
/**
@ -109,53 +109,281 @@ static really_inline u32 diffrich128(m128 a, m128 b) {
*/
static really_inline u32 diffrich64_128(m128 a, m128 b) {
static const uint64x2_t movemask = { 1, 4 };
return vaddvq_u64(vandq_u64(vmvnq_s32(vceqq_s64((int64x2_t)a, (int64x2_t)b)), movemask));
return (u32) vaddvq_u64(vandq_u64((uint64x2_t)vmvnq_u32((uint32x4_t)vceqq_u64((uint64x2_t)a, (uint64x2_t)b)), movemask));
}
static really_really_inline
m128 add_2x64(m128 a, m128 b) {
return (m128) vaddq_u64((int64x2_t)a, (int64x2_t)b);
return (m128) vaddq_u64((uint64x2_t)a, (uint64x2_t)b);
}
static really_really_inline
m128 sub_2x64(m128 a, m128 b) {
return (m128) vsubq_u64((int64x2_t)a, (int64x2_t)b);
return (m128) vsubq_u64((uint64x2_t)a, (uint64x2_t)b);
}
static really_really_inline
static really_inline
m128 lshift_m128(m128 a, unsigned b) {
return (m128) vshlq_n_s32((int64x2_t)a, b);
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(b)) {
return (m128) vshlq_n_u32((uint32x4_t)a, b);
}
#endif
#define CASE_LSHIFT_m128(a, offset) case offset: return (m128)vshlq_n_u32((uint32x4_t)(a), (offset)); break;
switch (b) {
case 0: return a; break;
CASE_LSHIFT_m128(a, 1);
CASE_LSHIFT_m128(a, 2);
CASE_LSHIFT_m128(a, 3);
CASE_LSHIFT_m128(a, 4);
CASE_LSHIFT_m128(a, 5);
CASE_LSHIFT_m128(a, 6);
CASE_LSHIFT_m128(a, 7);
CASE_LSHIFT_m128(a, 8);
CASE_LSHIFT_m128(a, 9);
CASE_LSHIFT_m128(a, 10);
CASE_LSHIFT_m128(a, 11);
CASE_LSHIFT_m128(a, 12);
CASE_LSHIFT_m128(a, 13);
CASE_LSHIFT_m128(a, 14);
CASE_LSHIFT_m128(a, 15);
CASE_LSHIFT_m128(a, 16);
CASE_LSHIFT_m128(a, 17);
CASE_LSHIFT_m128(a, 18);
CASE_LSHIFT_m128(a, 19);
CASE_LSHIFT_m128(a, 20);
CASE_LSHIFT_m128(a, 21);
CASE_LSHIFT_m128(a, 22);
CASE_LSHIFT_m128(a, 23);
CASE_LSHIFT_m128(a, 24);
CASE_LSHIFT_m128(a, 25);
CASE_LSHIFT_m128(a, 26);
CASE_LSHIFT_m128(a, 27);
CASE_LSHIFT_m128(a, 28);
CASE_LSHIFT_m128(a, 29);
CASE_LSHIFT_m128(a, 30);
CASE_LSHIFT_m128(a, 31);
default: return zeroes128(); break;
}
#undef CASE_LSHIFT_m128
}
static really_really_inline
m128 rshift_m128(m128 a, unsigned b) {
return (m128) vshrq_n_s32((int64x2_t)a, b);
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(b)) {
return (m128) vshrq_n_u32((uint32x4_t)a, b);
}
#endif
#define CASE_RSHIFT_m128(a, offset) case offset: return (m128)vshrq_n_u32((uint32x4_t)(a), (offset)); break;
switch (b) {
case 0: return a; break;
CASE_RSHIFT_m128(a, 1);
CASE_RSHIFT_m128(a, 2);
CASE_RSHIFT_m128(a, 3);
CASE_RSHIFT_m128(a, 4);
CASE_RSHIFT_m128(a, 5);
CASE_RSHIFT_m128(a, 6);
CASE_RSHIFT_m128(a, 7);
CASE_RSHIFT_m128(a, 8);
CASE_RSHIFT_m128(a, 9);
CASE_RSHIFT_m128(a, 10);
CASE_RSHIFT_m128(a, 11);
CASE_RSHIFT_m128(a, 12);
CASE_RSHIFT_m128(a, 13);
CASE_RSHIFT_m128(a, 14);
CASE_RSHIFT_m128(a, 15);
CASE_RSHIFT_m128(a, 16);
CASE_RSHIFT_m128(a, 17);
CASE_RSHIFT_m128(a, 18);
CASE_RSHIFT_m128(a, 19);
CASE_RSHIFT_m128(a, 20);
CASE_RSHIFT_m128(a, 21);
CASE_RSHIFT_m128(a, 22);
CASE_RSHIFT_m128(a, 23);
CASE_RSHIFT_m128(a, 24);
CASE_RSHIFT_m128(a, 25);
CASE_RSHIFT_m128(a, 26);
CASE_RSHIFT_m128(a, 27);
CASE_RSHIFT_m128(a, 28);
CASE_RSHIFT_m128(a, 29);
CASE_RSHIFT_m128(a, 30);
CASE_RSHIFT_m128(a, 31);
default: return zeroes128(); break;
}
#undef CASE_RSHIFT_m128
}
static really_really_inline
m128 lshift64_m128(m128 a, unsigned b) {
return (m128) vshlq_n_s64((int64x2_t)a, b);
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(b)) {
return (m128) vshlq_n_u64((uint64x2_t)a, b);
}
#endif
#define CASE_LSHIFT64_m128(a, offset) case offset: return (m128)vshlq_n_u64((uint64x2_t)(a), (offset)); break;
switch (b) {
case 0: return a; break;
CASE_LSHIFT64_m128(a, 1);
CASE_LSHIFT64_m128(a, 2);
CASE_LSHIFT64_m128(a, 3);
CASE_LSHIFT64_m128(a, 4);
CASE_LSHIFT64_m128(a, 5);
CASE_LSHIFT64_m128(a, 6);
CASE_LSHIFT64_m128(a, 7);
CASE_LSHIFT64_m128(a, 8);
CASE_LSHIFT64_m128(a, 9);
CASE_LSHIFT64_m128(a, 10);
CASE_LSHIFT64_m128(a, 11);
CASE_LSHIFT64_m128(a, 12);
CASE_LSHIFT64_m128(a, 13);
CASE_LSHIFT64_m128(a, 14);
CASE_LSHIFT64_m128(a, 15);
CASE_LSHIFT64_m128(a, 16);
CASE_LSHIFT64_m128(a, 17);
CASE_LSHIFT64_m128(a, 18);
CASE_LSHIFT64_m128(a, 19);
CASE_LSHIFT64_m128(a, 20);
CASE_LSHIFT64_m128(a, 21);
CASE_LSHIFT64_m128(a, 22);
CASE_LSHIFT64_m128(a, 23);
CASE_LSHIFT64_m128(a, 24);
CASE_LSHIFT64_m128(a, 25);
CASE_LSHIFT64_m128(a, 26);
CASE_LSHIFT64_m128(a, 27);
CASE_LSHIFT64_m128(a, 28);
CASE_LSHIFT64_m128(a, 29);
CASE_LSHIFT64_m128(a, 30);
CASE_LSHIFT64_m128(a, 31);
CASE_LSHIFT64_m128(a, 32);
CASE_LSHIFT64_m128(a, 33);
CASE_LSHIFT64_m128(a, 34);
CASE_LSHIFT64_m128(a, 35);
CASE_LSHIFT64_m128(a, 36);
CASE_LSHIFT64_m128(a, 37);
CASE_LSHIFT64_m128(a, 38);
CASE_LSHIFT64_m128(a, 39);
CASE_LSHIFT64_m128(a, 40);
CASE_LSHIFT64_m128(a, 41);
CASE_LSHIFT64_m128(a, 42);
CASE_LSHIFT64_m128(a, 43);
CASE_LSHIFT64_m128(a, 44);
CASE_LSHIFT64_m128(a, 45);
CASE_LSHIFT64_m128(a, 46);
CASE_LSHIFT64_m128(a, 47);
CASE_LSHIFT64_m128(a, 48);
CASE_LSHIFT64_m128(a, 49);
CASE_LSHIFT64_m128(a, 50);
CASE_LSHIFT64_m128(a, 51);
CASE_LSHIFT64_m128(a, 52);
CASE_LSHIFT64_m128(a, 53);
CASE_LSHIFT64_m128(a, 54);
CASE_LSHIFT64_m128(a, 55);
CASE_LSHIFT64_m128(a, 56);
CASE_LSHIFT64_m128(a, 57);
CASE_LSHIFT64_m128(a, 58);
CASE_LSHIFT64_m128(a, 59);
CASE_LSHIFT64_m128(a, 60);
CASE_LSHIFT64_m128(a, 61);
CASE_LSHIFT64_m128(a, 62);
CASE_LSHIFT64_m128(a, 63);
default: return zeroes128(); break;
}
#undef CASE_LSHIFT64_m128
}
static really_really_inline
m128 rshift64_m128(m128 a, unsigned b) {
return (m128) vshrq_n_s64((int64x2_t)a, b);
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(b)) {
return (m128) vshrq_n_u64((uint64x2_t)a, b);
}
#endif
#define CASE_RSHIFT64_m128(a, offset) case offset: return (m128)vshrq_n_u64((uint64x2_t)(a), (offset)); break;
switch (b) {
case 0: return a; break;
CASE_RSHIFT64_m128(a, 1);
CASE_RSHIFT64_m128(a, 2);
CASE_RSHIFT64_m128(a, 3);
CASE_RSHIFT64_m128(a, 4);
CASE_RSHIFT64_m128(a, 5);
CASE_RSHIFT64_m128(a, 6);
CASE_RSHIFT64_m128(a, 7);
CASE_RSHIFT64_m128(a, 8);
CASE_RSHIFT64_m128(a, 9);
CASE_RSHIFT64_m128(a, 10);
CASE_RSHIFT64_m128(a, 11);
CASE_RSHIFT64_m128(a, 12);
CASE_RSHIFT64_m128(a, 13);
CASE_RSHIFT64_m128(a, 14);
CASE_RSHIFT64_m128(a, 15);
CASE_RSHIFT64_m128(a, 16);
CASE_RSHIFT64_m128(a, 17);
CASE_RSHIFT64_m128(a, 18);
CASE_RSHIFT64_m128(a, 19);
CASE_RSHIFT64_m128(a, 20);
CASE_RSHIFT64_m128(a, 21);
CASE_RSHIFT64_m128(a, 22);
CASE_RSHIFT64_m128(a, 23);
CASE_RSHIFT64_m128(a, 24);
CASE_RSHIFT64_m128(a, 25);
CASE_RSHIFT64_m128(a, 26);
CASE_RSHIFT64_m128(a, 27);
CASE_RSHIFT64_m128(a, 28);
CASE_RSHIFT64_m128(a, 29);
CASE_RSHIFT64_m128(a, 30);
CASE_RSHIFT64_m128(a, 31);
CASE_RSHIFT64_m128(a, 32);
CASE_RSHIFT64_m128(a, 33);
CASE_RSHIFT64_m128(a, 34);
CASE_RSHIFT64_m128(a, 35);
CASE_RSHIFT64_m128(a, 36);
CASE_RSHIFT64_m128(a, 37);
CASE_RSHIFT64_m128(a, 38);
CASE_RSHIFT64_m128(a, 39);
CASE_RSHIFT64_m128(a, 40);
CASE_RSHIFT64_m128(a, 41);
CASE_RSHIFT64_m128(a, 42);
CASE_RSHIFT64_m128(a, 43);
CASE_RSHIFT64_m128(a, 44);
CASE_RSHIFT64_m128(a, 45);
CASE_RSHIFT64_m128(a, 46);
CASE_RSHIFT64_m128(a, 47);
CASE_RSHIFT64_m128(a, 48);
CASE_RSHIFT64_m128(a, 49);
CASE_RSHIFT64_m128(a, 50);
CASE_RSHIFT64_m128(a, 51);
CASE_RSHIFT64_m128(a, 52);
CASE_RSHIFT64_m128(a, 53);
CASE_RSHIFT64_m128(a, 54);
CASE_RSHIFT64_m128(a, 55);
CASE_RSHIFT64_m128(a, 56);
CASE_RSHIFT64_m128(a, 57);
CASE_RSHIFT64_m128(a, 58);
CASE_RSHIFT64_m128(a, 59);
CASE_RSHIFT64_m128(a, 60);
CASE_RSHIFT64_m128(a, 61);
CASE_RSHIFT64_m128(a, 62);
CASE_RSHIFT64_m128(a, 63);
default: return zeroes128(); break;
}
#undef CASE_RSHIFT64_m128
}
static really_inline m128 eq128(m128 a, m128 b) {
return (m128) vceqq_s8((int8x16_t)a, (int8x16_t)b);
return (m128) vceqq_u8((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline m128 eq64_m128(m128 a, m128 b) {
return (m128) vceqq_u64((int64x2_t)a, (int64x2_t)b);
return (m128) vceqq_u64((uint64x2_t)a, (uint64x2_t)b);
}
static really_inline u32 movemask128(m128 a) {
static const uint8x16_t powers = { 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128 };
// Compute the mask from the input
uint64x2_t mask = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(vandq_u8((uint8x16_t)a, powers))));
uint64x2_t mask1 = (m128)vextq_s8(mask, zeroes128(), 7);
uint8x16_t mask = (uint8x16_t) vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(vandq_u8((uint8x16_t)a, powers))));
uint8x16_t mask1 = vextq_u8(mask, (uint8x16_t)zeroes128(), 7);
mask = vorrq_u8(mask, mask1);
// Get the resulting bytes
@ -187,13 +415,15 @@ static really_inline u64a movq(const m128 in) {
/* another form of movq */
static really_inline
m128 load_m128_from_u64a(const u64a *p) {
return (m128) vsetq_lane_u64(*p, zeroes128(), 0);
return (m128) vsetq_lane_u64(*p, (uint64x2_t) zeroes128(), 0);
}
static really_inline u32 extract32from128(const m128 in, unsigned imm) {
#if defined(HS_OPTIMIZE)
return vgetq_lane_u32((uint32x4_t) in, imm);
#else
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(imm)) {
return vgetq_lane_u32((uint32x4_t) in, imm);
}
#endif
switch (imm) {
case 0:
return vgetq_lane_u32((uint32x4_t) in, 0);
@ -211,33 +441,33 @@ static really_inline u32 extract32from128(const m128 in, unsigned imm) {
return 0;
break;
}
#endif
}
static really_inline u64a extract64from128(const m128 in, unsigned imm) {
#if defined(HS_OPTIMIZE)
return vgetq_lane_u64((uint64x2_t) in, imm);
#else
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(imm)) {
return vgetq_lane_u64((uint64x2_t) in, imm);
}
#endif
switch (imm) {
case 0:
return vgetq_lane_u64((uint32x4_t) in, 0);
return vgetq_lane_u64((uint64x2_t) in, 0);
break;
case 1:
return vgetq_lane_u64((uint32x4_t) in, 1);
return vgetq_lane_u64((uint64x2_t) in, 1);
break;
default:
return 0;
break;
}
#endif
}
static really_inline m128 low64from128(const m128 in) {
return vcombine_u64(vget_low_u64(in), vdup_n_u64(0));
return (m128) vcombine_u64(vget_low_u64((uint64x2_t)in), vdup_n_u64(0));
}
static really_inline m128 high64from128(const m128 in) {
return vcombine_u64(vget_high_u64(in), vdup_n_u64(0));
return (m128) vcombine_u64(vget_high_u64((uint64x2_t)in), vdup_n_u64(0));
}
static really_inline m128 add128(m128 a, m128 b) {
@ -257,7 +487,7 @@ static really_inline m128 or128(m128 a, m128 b) {
}
static really_inline m128 andnot128(m128 a, m128 b) {
return (m128) (m128) vandq_s8( vmvnq_s8(a), b);
return (m128) vandq_s8( vmvnq_s8((int8x16_t) a), (int8x16_t) b);
}
// aligned load
@ -328,11 +558,12 @@ m128 palignr_imm(m128 r, m128 l, int offset) {
static really_really_inline
m128 palignr(m128 r, m128 l, int offset) {
#if defined(HS_OPTIMIZE)
return (m128)vextq_s8((int8x16_t)l, (int8x16_t)r, offset);
#else
return palignr_imm(r, l, offset);
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(offset)) {
return (m128)vextq_s8((int8x16_t)l, (int8x16_t)r, offset);
}
#endif
return palignr_imm(r, l, offset);
}
#undef CASE_ALIGN_VECTORS
@ -401,12 +632,12 @@ m128 pshufb_m128(m128 a, m128 b) {
static really_inline
m128 max_u8_m128(m128 a, m128 b) {
return (m128) vmaxq_u8((int8x16_t)a, (int8x16_t)b);
return (m128) vmaxq_u8((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 min_u8_m128(m128 a, m128 b) {
return (m128) vminq_u8((int8x16_t)a, (int8x16_t)b);
return (m128) vminq_u8((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline

View File

@ -46,46 +46,46 @@
#endif // HAVE_SIMD_128_BITS
#ifdef DEBUG
static inline void print_m128_16x8(const char *label, m128 vector) {
static inline void print_m128_16x8(const char *label, m128 vec) {
uint8_t ALIGN_ATTR(16) data[16];
store128(data, vector);
DEBUG_PRINTF("%s: ", label);
for(int i=0; i < 16; i++)
store128(data, vec);
DEBUG_PRINTF("%12s: ", label);
for(int i=15; i >=0; i--)
printf("%02x ", data[i]);
printf("\n");
}
static inline void print_m128_8x16(const char *label, m128 vector) {
static inline void print_m128_8x16(const char *label, m128 vec) {
uint16_t ALIGN_ATTR(16) data[8];
store128(data, vector);
DEBUG_PRINTF("%s: ", label);
for(int i=0; i < 8; i++)
store128(data, vec);
DEBUG_PRINTF("%12s: ", label);
for(int i=7; i >= 0; i--)
printf("%04x ", data[i]);
printf("\n");
}
static inline void print_m128_4x32(const char *label, m128 vector) {
static inline void print_m128_4x32(const char *label, m128 vec) {
uint32_t ALIGN_ATTR(16) data[4];
store128(data, vector);
DEBUG_PRINTF("%s: ", label);
for(int i=0; i < 4; i++)
store128(data, vec);
DEBUG_PRINTF("%12s: ", label);
for(int i=3; i >= 0; i--)
printf("%08x ", data[i]);
printf("\n");
}
static inline void print_m128_2x64(const char *label, m128 vector) {
static inline void print_m128_2x64(const char *label, m128 vec) {
uint64_t ALIGN_ATTR(16) data[2];
store128(data, vector);
DEBUG_PRINTF("%s: ", label);
for(int i=0; i < 2; i++)
store128(data, vec);
DEBUG_PRINTF("%12s: ", label);
for(int i=1; i >= 0; i--)
printf("%016lx ", data[i]);
printf("\n");
}
#else
#define print_m128_16x8(label, vector) ;
#define print_m128_8x16(label, vector) ;
#define print_m128_4x32(label, vector) ;
#define print_m128_2x64(label, vector) ;
#define print_m128_16x8(label, vec) ;
#define print_m128_8x16(label, vec) ;
#define print_m128_4x32(label, vec) ;
#define print_m128_2x64(label, vec) ;
#endif
/****

View File

@ -0,0 +1,216 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Bit-twiddling primitives (ctz, compress etc)
*/
#ifndef BITUTILS_ARCH_PPC64EL_H
#define BITUTILS_ARCH_PPC64EL_H
#include "ue2common.h"
#include "util/popcount.h"
#include "util/arch.h"
#include "util/intrinsics.h"
#include "util/arch/common/bitutils.h"
static really_inline
u32 clz32_impl(u32 x) {
return clz32_impl_c(x);
}
static really_inline
u32 clz64_impl(u64a x) {
return clz64_impl_c(x);
}
static really_inline
u32 ctz32_impl(u32 x) {
return ctz32_impl_c(x);
}
static really_inline
u32 ctz64_impl(u64a x) {
return ctz64_impl_c(x);
}
static really_inline
u32 lg2_impl(u32 x) {
return lg2_impl_c(x);
}
static really_inline
u64a lg2_64_impl(u64a x) {
return lg2_64_impl_c(x);
}
static really_inline
u32 findAndClearLSB_32_impl(u32 *v) {
return findAndClearLSB_32_impl_c(v);
}
static really_inline
u32 findAndClearLSB_64_impl(u64a *v) {
return findAndClearLSB_64_impl_c(v);
}
static really_inline
u32 findAndClearMSB_32_impl(u32 *v) {
u32 val = *v;
u32 offset = 31 - clz32_impl(val);
*v = val & ~(1 << offset);
assert(offset < 32);
return offset;
}
static really_inline
u32 findAndClearMSB_64_impl(u64a *v) {
return findAndClearMSB_64_impl_c(v);
}
static really_inline
u32 compress32_impl(u32 x, u32 m) {
return compress32_impl_c(x, m);
}
static really_inline
u64a compress64_impl(u64a x, u64a m) {
return compress64_impl_c(x, m);
}
static really_inline
m128 compress128_impl(m128 x, m128 m) {
m128 one = set1_2x64(1);
m128 bitset = one;
m128 vres = zeroes128();
while (isnonzero128(m)) {
m128 mm = sub_2x64(zeroes128(), m);
m128 tv = and128(x, m);
tv = and128(tv, mm);
m128 mask = not128(eq64_m128(tv, zeroes128()));
mask = and128(bitset, mask);
vres = or128(vres, mask);
m = and128(m, sub_2x64(m, one));
bitset = lshift64_m128(bitset, 1);
}
return vres;
}
static really_inline
u32 expand32_impl(u32 x, u32 m) {
return expand32_impl_c(x, m);
}
static really_inline
u64a expand64_impl(u64a x, u64a m) {
return expand64_impl_c(x, m);
}
static really_inline
m128 expand128_impl(m128 x, m128 m) {
m128 one = set1_2x64(1);
m128 bb = one;
m128 res = zeroes128();
while (isnonzero128(m)) {
m128 xm = and128(x, bb);
m128 mm = sub_2x64(zeroes128(), m);
m128 mask = not128(eq64_m128(xm, zeroes128()));
mask = and128(mask, and128(m,mm));
res = or128(res, mask);
m = and128(m, sub_2x64(m, one));
bb = lshift64_m128(bb, 1);
}
return res;
}
/* returns the first set bit after begin (if not ~0U). If no bit is set after
* begin returns ~0U
*/
static really_inline
u32 bf64_iterate_impl(u64a bitfield, u32 begin) {
if (begin != ~0U) {
/* switch off all bits at or below begin. Note: not legal to shift by
* by size of the datatype or larger. */
assert(begin <= 63);
bitfield &= ~((2ULL << begin) - 1);
}
if (!bitfield) {
return ~0U;
}
return ctz64_impl(bitfield);
}
static really_inline
char bf64_set_impl(u64a *bitfield, u32 i) {
return bf64_set_impl_c(bitfield, i);
}
static really_inline
void bf64_unset_impl(u64a *bitfield, u32 i) {
return bf64_unset_impl_c(bitfield, i);
}
static really_inline
u32 rank_in_mask32_impl(u32 mask, u32 bit) {
return rank_in_mask32_impl_c(mask, bit);
}
static really_inline
u32 rank_in_mask64_impl(u64a mask, u32 bit) {
return rank_in_mask64_impl_c(mask, bit);
}
static really_inline
u32 pext32_impl(u32 x, u32 mask) {
return pext32_impl_c(x, mask);
}
static really_inline
u64a pext64_impl(u64a x, u64a mask) {
return pext64_impl_c(x, mask);
}
static really_inline
u64a pdep64(u64a x, u64a mask) {
return pdep64_impl_c(x, mask);
}
/* compilers don't reliably synthesize the 32-bit ANDN instruction here,
* so we force its generation.
*/
static really_inline
u64a andn_impl(const u32 a, const u8 *b) {
return andn_impl_c(a, b);
}
#endif // BITUTILS_ARCH_ARM_H

View File

@ -0,0 +1,98 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
template <>
really_really_inline
const u8 *first_non_zero_match<16>(const u8 *buf, SuperVector<16> v, u16 const UNUSED len) {
SuperVector<16>::movemask_type z = v.movemask();
DEBUG_PRINTF("buf %p z %08x \n", buf, z);
DEBUG_PRINTF("z %08x\n", z);
if (unlikely(z)) {
u32 pos = ctz32(z);
DEBUG_PRINTF("~z %08x\n", ~z);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos < 16);
return buf + pos;
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *last_non_zero_match<16>(const u8 *buf, SuperVector<16> v, u16 const UNUSED len) {
SuperVector<16>::movemask_type z = v.movemask();
DEBUG_PRINTF("buf %p z %08x \n", buf, z);
DEBUG_PRINTF("z %08x\n", z);
if (unlikely(z)) {
u32 pos = clz32(z);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos >= 16 && pos < 32);
return buf + (31 - pos);
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *first_zero_match_inverted<16>(const u8 *buf, SuperVector<16> v, u16 const UNUSED len) {
SuperVector<16>::movemask_type z = v.movemask();
DEBUG_PRINTF("buf %p z %08x \n", buf, z);
DEBUG_PRINTF("z %08x\n", z);
if (unlikely(z != 0xffff)) {
u32 pos = ctz32(~z & 0xffff);
DEBUG_PRINTF("~z %08x\n", ~z);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos < 16);
return buf + pos;
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *last_zero_match_inverted<16>(const u8 *buf, SuperVector<16> v, uint16_t UNUSED len ) {
SuperVector<16>::movemask_type z = v.movemask();
DEBUG_PRINTF("buf %p z %08x \n", buf, z);
DEBUG_PRINTF("z %08x\n", z);
if (unlikely(z != 0xffff)) {
u32 pos = clz32(~z & 0xffff);
DEBUG_PRINTF("~z %08x\n", ~z);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos >= 16 && pos < 32);
return buf + (31 - pos);
} else {
return NULL; // no match
}
}

View File

@ -0,0 +1,43 @@
/*
* Copyright (c) 2017-2020, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Per-platform architecture definitions
*/
#ifndef UTIL_ARCH_PPC64EL_H_
#define UTIL_ARCH_PPC64EL_H_
#if defined(__VSX__) && defined(ARCH_PPC64EL)
#define HAVE_VSX
#define HAVE_SIMD_128_BITS
#define VECTORSIZE 16
#endif
#endif // UTIL_ARCH_ARM_H_

View File

@ -0,0 +1,37 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef ARCH_PPC64EL_SIMD_TYPES_H
#define ARCH_PPC64EL_SIMD_TYPES_H
#if !defined(m128) && defined(HAVE_VSX)
typedef __vector int m128;
#endif
#endif /* ARCH_PPC64EL_SIMD_TYPES_H */

View File

@ -0,0 +1,494 @@
/*
* Copyright (c) 2015-2020, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief SIMD types and primitive operations.
*/
#ifndef ARCH_PPC64EL_SIMD_UTILS_H
#define ARCH_PPC64EL_SIMD_UTILS_H
#include <stdio.h>
#include "ue2common.h"
#include "util/simd_types.h"
#include "util/unaligned.h"
#include "util/intrinsics.h"
#include <string.h> // for memcpy
typedef __vector unsigned long long int uint64x2_t;
typedef __vector signed long long int int64x2_t;
typedef __vector unsigned int uint32x4_t;
typedef __vector signed int int32x4_t;
typedef __vector unsigned short int uint16x8_t;
typedef __vector signed short int int16x8_t;
typedef __vector unsigned char uint8x16_t;
typedef __vector signed char int8x16_t;
typedef unsigned long long int ulong64_t;
typedef signed long long int long64_t;
/*
typedef __vector uint64_t uint64x2_t;
typedef __vector int64_t int64x2_t;
typedef __vector uint32_t uint32x4_t;
typedef __vector int32_t int32x4_t;
typedef __vector uint16_t uint16x8_t;
typedef __vector int16_t int16x8_t;
typedef __vector uint8_t uint8x16_t;
typedef __vector int8_t int8x16_t;*/
#define ZEROES_8 0, 0, 0, 0, 0, 0, 0, 0
#define ZEROES_31 ZEROES_8, ZEROES_8, ZEROES_8, 0, 0, 0, 0, 0, 0, 0
#define ZEROES_32 ZEROES_8, ZEROES_8, ZEROES_8, ZEROES_8
/** \brief LUT for the mask1bit functions. */
ALIGN_CL_DIRECTIVE static const u8 simd_onebit_masks[] = {
ZEROES_32, ZEROES_32,
ZEROES_31, 0x01, ZEROES_32,
ZEROES_31, 0x02, ZEROES_32,
ZEROES_31, 0x04, ZEROES_32,
ZEROES_31, 0x08, ZEROES_32,
ZEROES_31, 0x10, ZEROES_32,
ZEROES_31, 0x20, ZEROES_32,
ZEROES_31, 0x40, ZEROES_32,
ZEROES_31, 0x80, ZEROES_32,
ZEROES_32, ZEROES_32,
};
static really_inline m128 ones128(void) {
return (m128) vec_splat_u8(-1);
}
static really_inline m128 zeroes128(void) {
return (m128) vec_splat_s32(0);
}
/** \brief Bitwise not for m128*/
static really_inline m128 not128(m128 a) {
//return (m128)vec_xor(a, a);
return (m128) vec_xor(a,ones128());
}
/** \brief Return 1 if a and b are different otherwise 0 */
static really_inline int diff128(m128 a, m128 b) {
return vec_any_ne(a, b);
}
static really_inline int isnonzero128(m128 a) {
return !!diff128(a, zeroes128());
}
/**
* "Rich" version of diff128(). Takes two vectors a and b and returns a 4-bit
* mask indicating which 32-bit words contain differences.
*/
static really_inline u32 diffrich128(m128 a, m128 b) {
static const m128 movemask = { 1, 2, 4, 8 };
m128 mask = (m128) vec_cmpeq(a, b); // _mm_cmpeq_epi32 (a, b);
mask = vec_and(not128(mask), movemask);
m128 sum = vec_sums(mask, zeroes128());
//sum = vec_sld(zeroes128(), sum, 4);
//s32 ALIGN_ATTR(16) x;
//vec_ste(sum, 0, &x);
//return x; // it could be ~(movemask_128(mask)) & 0x;
return sum[3];
}
/**
* "Rich" version of diff128(), 64-bit variant. Takes two vectors a and b and
* returns a 4-bit mask indicating which 64-bit words contain differences.
*/
static really_inline u32 diffrich64_128(m128 a, m128 b) {
static const uint64x2_t movemask = { 1, 4 };
uint64x2_t mask = (uint64x2_t) vec_cmpeq((uint64x2_t)a, (uint64x2_t)b);
mask = (uint64x2_t) vec_and((uint64x2_t)not128((m128)mask), movemask);
m128 sum = vec_sums((m128)mask, zeroes128());
//sum = vec_sld(zeroes128(), sum, 4);
//s32 ALIGN_ATTR(16) x;
//vec_ste(sum, 0, &x);
//return x;
return sum[3];
}
static really_really_inline
m128 add_2x64(m128 a, m128 b) {
return (m128) vec_add((uint64x2_t)a, (uint64x2_t)b);
}
static really_really_inline
m128 sub_2x64(m128 a, m128 b) {
return (m128) vec_sub((uint64x2_t)a, (uint64x2_t)b);
}
static really_really_inline
m128 lshift_m128(m128 a, unsigned b) {
switch(b){
case 1: return vec_sld(a, zeroes128(), 1); break;
case 2: return vec_sld(a, zeroes128(), 2); break;
case 3: return vec_sld(a, zeroes128(), 3); break;
case 4: return vec_sld(a, zeroes128(), 4); break;
case 5: return vec_sld(a, zeroes128(), 5); break;
case 6: return vec_sld(a, zeroes128(), 6); break;
case 7: return vec_sld(a, zeroes128(), 7); break;
case 8: return vec_sld(a, zeroes128(), 8); break;
case 9: return vec_sld(a, zeroes128(), 9); break;
case 10: return vec_sld(a, zeroes128(), 10); break;
case 11: return vec_sld(a, zeroes128(), 11); break;
case 12: return vec_sld(a, zeroes128(), 12); break;
case 13: return vec_sld(a, zeroes128(), 13); break;
case 14: return vec_sld(a, zeroes128(), 14); break;
case 15: return vec_sld(a, zeroes128(), 15); break;
}
return a;
}
static really_really_inline
m128 rshift_m128(m128 a, unsigned b) {
switch(b){
case 1: return vec_sld(zeroes128(), a, 15); break;
case 2: return vec_sld(zeroes128(), a, 14); break;
case 3: return vec_sld(zeroes128(), a, 13); break;
case 4: return vec_sld(zeroes128(), a, 12); break;
case 5: return vec_sld(zeroes128(), a, 11); break;
case 6: return vec_sld(zeroes128(), a, 10); break;
case 7: return vec_sld(zeroes128(), a, 9); break;
case 8: return vec_sld(zeroes128(), a, 8); break;
case 9: return vec_sld(zeroes128(), a, 7); break;
case 10: return vec_sld(zeroes128(), a, 6); break;
case 11: return vec_sld(zeroes128(), a, 5); break;
case 12: return vec_sld(zeroes128(), a, 4); break;
case 13: return vec_sld(zeroes128(), a, 3); break;
case 14: return vec_sld(zeroes128(), a, 2); break;
case 15: return vec_sld(zeroes128(), a, 1); break;
}
return a;
}
static really_really_inline
m128 lshift64_m128(m128 a, unsigned b) {
uint64x2_t shift_indices = vec_splats((ulong64_t)b);
return (m128) vec_sl((int64x2_t)a, shift_indices);
}
static really_really_inline
m128 rshift64_m128(m128 a, unsigned b) {
uint64x2_t shift_indices = vec_splats((ulong64_t)b);
return (m128) vec_sr((int64x2_t)a, shift_indices);
}
static really_inline m128 eq128(m128 a, m128 b) {
return (m128) vec_cmpeq((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline m128 eq64_m128(m128 a, m128 b) {
return (m128) vec_cmpeq((uint64x2_t)a, (uint64x2_t)b);
}
static really_inline u32 movemask128(m128 a) {
uint8x16_t s1 = vec_sr((uint8x16_t)a, vec_splat_u8(7));
uint16x8_t ss = vec_sr((uint16x8_t)s1, vec_splat_u16(7));
uint16x8_t res_and = vec_and((uint16x8_t)s1, vec_splats((uint16_t)0xff));
uint16x8_t s2 = vec_or((uint16x8_t)ss, res_and);
uint32x4_t ss2 = vec_sr((uint32x4_t)s2, vec_splat_u32(14));
uint32x4_t res_and2 = vec_and((uint32x4_t)s2, vec_splats((uint32_t)0xff));
uint32x4_t s3 = vec_or((uint32x4_t)ss2, res_and2);
uint64x2_t ss3 = vec_sr((uint64x2_t)s3, (uint64x2_t)vec_splats(28));
uint64x2_t res_and3 = vec_and((uint64x2_t)s3, vec_splats((ulong64_t)0xff));
uint64x2_t s4 = vec_or((uint64x2_t)ss3, res_and3);
uint64x2_t ss4 = vec_sld((uint64x2_t)vec_splats(0), s4, 9);
uint64x2_t res_and4 = vec_and((uint64x2_t)s4, vec_splats((ulong64_t)0xff));
uint64x2_t s5 = vec_or((uint64x2_t)ss4, res_and4);
return s5[0];
}
static really_inline m128 set1_16x8(u8 c) {
return (m128) vec_splats(c);
}
static really_inline m128 set1_4x32(u32 c) {
return (m128) vec_splats(c);
}
static really_inline m128 set1_2x64(u64a c) {
return (m128) vec_splats(c);
}
static really_inline u32 movd(const m128 in) {
return (u32) vec_extract((uint32x4_t)in, 0);
}
static really_inline u64a movq(const m128 in) {
u64a ALIGN_ATTR(16) a[2];
vec_xst((uint64x2_t) in, 0, a);
return a[0];
}
/* another form of movq */
static really_inline
m128 load_m128_from_u64a(const u64a *p) {
m128 vec =(m128) vec_splats(*p);
return rshift_m128(vec,8);
}
static really_inline u32 extract32from128(const m128 in, unsigned imm) {
u32 ALIGN_ATTR(16) a[4];
vec_xst((uint32x4_t) in, 0, a);
switch (imm) {
case 0:
return a[0];break;
case 1:
return a[1];break;
case 2:
return a[2];break;
case 3:
return a[3];break;
default:
return 0;break;
}
}
static really_inline u64a extract64from128(const m128 in, unsigned imm) {
u64a ALIGN_ATTR(16) a[2];
vec_xst((uint64x2_t) in, 0, a);
switch (imm) {
case 0:
return a[0];break;
case 1:
return a[1];break;
default:
return 0;
break;
}
}
static really_inline m128 low64from128(const m128 in) {
return rshift_m128(in,8);
}
static really_inline m128 high64from128(const m128 in) {
return lshift_m128(in,8);
}
static really_inline m128 add128(m128 a, m128 b) {
return (m128) vec_add((uint64x2_t)a, (uint64x2_t)b);
}
static really_inline m128 and128(m128 a, m128 b) {
return (m128) vec_and((int8x16_t)a, (int8x16_t)b);
}
static really_inline m128 xor128(m128 a, m128 b) {
return (m128) vec_xor((int8x16_t)a, (int8x16_t)b);
}
static really_inline m128 or128(m128 a, m128 b) {
return (m128) vec_or((int8x16_t)a, (int8x16_t)b);
}
static really_inline m128 andnot128(m128 a, m128 b) {
return (m128) and128(not128(a),b);
}
// aligned load
static really_inline m128 load128(const void *ptr) {
assert(ISALIGNED_N(ptr, alignof(m128)));
return (m128) vec_xl(0, (const int32_t*)ptr);
}
// aligned store
static really_inline void store128(void *ptr, m128 a) {
assert(ISALIGNED_N(ptr, alignof(m128)));
vec_st(a, 0, (int32_t*)ptr);
}
// unaligned load
static really_inline m128 loadu128(const void *ptr) {
return (m128) vec_xl(0, (const int32_t*)ptr);
}
// unaligned store
static really_inline void storeu128(void *ptr, m128 a) {
vec_xst(a, 0, (int32_t*)ptr);
}
// packed unaligned store of first N bytes
static really_inline
void storebytes128(void *ptr, m128 a, unsigned int n) {
assert(n <= sizeof(a));
memcpy(ptr, &a, n);
}
// packed unaligned load of first N bytes, pad with zero
static really_inline
m128 loadbytes128(const void *ptr, unsigned int n) {
m128 a = zeroes128();
assert(n <= sizeof(a));
memcpy(&a, ptr, n);
return a;
}
#define CASE_ALIGN_VECTORS(a, b, offset) case offset: return (m128)vec_sld((int8x16_t)(b), (int8x16_t)(a), (16 - offset)); break;
static really_really_inline
m128 palignr_imm(m128 r, m128 l, int offset) {
switch (offset) {
case 0: return l; break;
CASE_ALIGN_VECTORS(l, r, 1);
CASE_ALIGN_VECTORS(l, r, 2);
CASE_ALIGN_VECTORS(l, r, 3);
CASE_ALIGN_VECTORS(l, r, 4);
CASE_ALIGN_VECTORS(l, r, 5);
CASE_ALIGN_VECTORS(l, r, 6);
CASE_ALIGN_VECTORS(l, r, 7);
CASE_ALIGN_VECTORS(l, r, 8);
CASE_ALIGN_VECTORS(l, r, 9);
CASE_ALIGN_VECTORS(l, r, 10);
CASE_ALIGN_VECTORS(l, r, 11);
CASE_ALIGN_VECTORS(l, r, 12);
CASE_ALIGN_VECTORS(l, r, 13);
CASE_ALIGN_VECTORS(l, r, 14);
CASE_ALIGN_VECTORS(l, r, 15);
case 16: return r; break;
default: return zeroes128(); break;
}
}
static really_really_inline
m128 palignr(m128 r, m128 l, int offset) {
#if defined(HS_OPTIMIZE)
// need a faster way to do this.
return palignr_imm(r, l, offset);
#else
return palignr_imm(r, l, offset);
#endif
}
#undef CASE_ALIGN_VECTORS
static really_really_inline
m128 rshiftbyte_m128(m128 a, unsigned b) {
return rshift_m128(a,b);
}
static really_really_inline
m128 lshiftbyte_m128(m128 a, unsigned b) {
return lshift_m128(a,b);
}
static really_inline
m128 variable_byte_shift_m128(m128 in, s32 amount) {
assert(amount >= -16 && amount <= 16);
if (amount < 0){
return palignr_imm(zeroes128(), in, -amount);
} else{
return palignr_imm(in, zeroes128(), 16 - amount);
}
}
static really_inline
m128 mask1bit128(unsigned int n) {
assert(n < sizeof(m128) * 8);
u32 mask_idx = ((n % 8) * 64) + 95;
mask_idx -= n / 8;
return loadu128(&simd_onebit_masks[mask_idx]);
}
// switches on bit N in the given vector.
static really_inline
void setbit128(m128 *ptr, unsigned int n) {
*ptr = or128(mask1bit128(n), *ptr);
}
// switches off bit N in the given vector.
static really_inline
void clearbit128(m128 *ptr, unsigned int n) {
*ptr = andnot128(mask1bit128(n), *ptr);
}
// tests bit N in the given vector.
static really_inline
char testbit128(m128 val, unsigned int n) {
const m128 mask = mask1bit128(n);
return isnonzero128(and128(mask, val));
}
static really_inline
m128 pshufb_m128(m128 a, m128 b) {
/* On Intel, if bit 0x80 is set, then result is zero, otherwise which the lane it is &0xf.
In NEON or PPC, if >=16, then the result is zero, otherwise it is that lane.
below is the version that is converted from Intel to PPC. */
uint8x16_t mask =(uint8x16_t)vec_cmpge((uint8x16_t)b, (uint8x16_t)vec_splats((uint8_t)0x80));
uint8x16_t res = vec_perm ((uint8x16_t)a, (uint8x16_t)a, (uint8x16_t)b);
return (m128) vec_sel((uint8x16_t)res, (uint8x16_t)zeroes128(), (uint8x16_t)mask);
}
static really_inline
m128 max_u8_m128(m128 a, m128 b) {
return (m128) vec_max((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 min_u8_m128(m128 a, m128 b) {
return (m128) vec_min((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 sadd_u8_m128(m128 a, m128 b) {
return (m128) vec_adds((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 sub_u8_m128(m128 a, m128 b) {
return (m128) vec_sub((uint8x16_t)a, (uint8x16_t)b);
}
static really_inline
m128 set4x32(u32 x3, u32 x2, u32 x1, u32 x0) {
uint32x4_t v = { x0, x1, x2, x3 };
return (m128) v;
}
static really_inline
m128 set2x64(u64a hi, u64a lo) {
uint64x2_t v = { lo, hi };
return (m128) v;
}
#endif // ARCH_PPC64EL_SIMD_UTILS_H

View File

@ -29,7 +29,106 @@
template <>
really_really_inline
const u8 *firstMatch<16>(const u8 *buf, SuperVector<16> v) {
const u8 *first_non_zero_match<16>(const u8 *buf, SuperVector<16> v, u16 const UNUSED len) {
SuperVector<16>::movemask_type z = v.movemask();
DEBUG_PRINTF("buf %p z %08x \n", buf, z);
DEBUG_PRINTF("z %08x\n", z);
if (unlikely(z)) {
u32 pos = ctz32(z);
DEBUG_PRINTF("~z %08x\n", ~z);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos < 16);
return buf + pos;
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *first_non_zero_match<32>(const u8 *buf, SuperVector<32> v, u16 const UNUSED len) {
SuperVector<32>::movemask_type z = v.movemask();
DEBUG_PRINTF("z 0x%08x\n", z);
if (unlikely(z)) {
u32 pos = ctz32(z);
assert(pos < 32);
DEBUG_PRINTF("match @ pos %u\n", pos);
return buf + pos;
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *first_non_zero_match<64>(const u8 *buf, SuperVector<64>v, u16 const len) {
SuperVector<64>::movemask_type z = v.movemask();
DEBUG_PRINTF("z 0x%016llx\n", z);
u64a mask = (~0ULL) >> (64 - len);
DEBUG_PRINTF("mask %016llx\n", mask);
z &= mask;
DEBUG_PRINTF("z 0x%016llx\n", z);
if (unlikely(z)) {
u32 pos = ctz64(z);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos < 64);
return buf + pos;
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *last_non_zero_match<16>(const u8 *buf, SuperVector<16> v, u16 const UNUSED len) {
SuperVector<16>::movemask_type z = v.movemask();
DEBUG_PRINTF("buf %p z %08x \n", buf, z);
DEBUG_PRINTF("z %08x\n", z);
if (unlikely(z)) {
u32 pos = clz32(z);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos >= 16 && pos < 32);
return buf + (31 - pos);
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *last_non_zero_match<32>(const u8 *buf, SuperVector<32> v, u16 const UNUSED len) {
SuperVector<32>::movemask_type z = v.movemask();
DEBUG_PRINTF("z 0x%08x\n", z);
if (unlikely(z)) {
u32 pos = clz32(z);
assert(pos < 32);
DEBUG_PRINTF("match @ pos %u\n", pos);
return buf + (31 - pos);
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *last_non_zero_match<64>(const u8 *buf, SuperVector<64>v, u16 const len) {
SuperVector<64>::movemask_type z = v.movemask();
DEBUG_PRINTF("z 0x%016llx\n", z);
u64a mask = (~0ULL) >> (64 - len);
DEBUG_PRINTF("mask %016llx\n", mask);
z &= mask;
DEBUG_PRINTF("z 0x%016llx\n", z);
if (unlikely(z)) {
u32 pos = clz64(z);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos < 64);
return buf + (63 - pos);
} else {
return NULL; // no match
}
}
template <>
really_really_inline
const u8 *first_zero_match_inverted<16>(const u8 *buf, SuperVector<16> v, u16 const UNUSED len) {
SuperVector<16>::movemask_type z = v.movemask();
DEBUG_PRINTF("buf %p z %08x \n", buf, z);
DEBUG_PRINTF("z %08x\n", z);
@ -46,7 +145,7 @@ const u8 *firstMatch<16>(const u8 *buf, SuperVector<16> v) {
template <>
really_really_inline
const u8 *firstMatch<32>(const u8 *buf, SuperVector<32> v) {
const u8 *first_zero_match_inverted<32>(const u8 *buf, SuperVector<32> v, u16 const UNUSED len) {
SuperVector<32>::movemask_type z = v.movemask();
DEBUG_PRINTF("z 0x%08x\n", z);
if (unlikely(z != 0xffffffff)) {
@ -60,11 +159,15 @@ const u8 *firstMatch<32>(const u8 *buf, SuperVector<32> v) {
}
template <>
really_really_inline
const u8 *firstMatch<64>(const u8 *buf, SuperVector<64>v) {
const u8 *first_zero_match_inverted<64>(const u8 *buf, SuperVector<64>v, u16 const len) {
SuperVector<64>::movemask_type z = v.movemask();
DEBUG_PRINTF("z 0x%016llx\n", z);
if (unlikely(z != ~0ULL)) {
u32 pos = ctz64(~z);
u64a mask = (~0ULL) >> (64 - len);
DEBUG_PRINTF("mask %016llx\n", mask);
z = ~z & mask;
DEBUG_PRINTF("z 0x%016llx\n", z);
if (unlikely(z)) {
u32 pos = ctz64(z);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos < 64);
return buf + pos;
@ -75,7 +178,7 @@ const u8 *firstMatch<64>(const u8 *buf, SuperVector<64>v) {
template <>
really_really_inline
const u8 *lastMatch<16>(const u8 *buf, SuperVector<16> v) {
const u8 *last_zero_match_inverted<16>(const u8 *buf, SuperVector<16> v, uint16_t UNUSED len ) {
SuperVector<16>::movemask_type z = v.movemask();
DEBUG_PRINTF("buf %p z %08x \n", buf, z);
DEBUG_PRINTF("z %08x\n", z);
@ -92,10 +195,10 @@ const u8 *lastMatch<16>(const u8 *buf, SuperVector<16> v) {
template<>
really_really_inline
const u8 *lastMatch<32>(const u8 *buf, SuperVector<32> v) {
const u8 *last_zero_match_inverted<32>(const u8 *buf, SuperVector<32> v, uint16_t UNUSED len) {
SuperVector<32>::movemask_type z = v.movemask();
if (unlikely(z != 0xffffffff)) {
u32 pos = clz32(~z);
u32 pos = clz32(~z & 0xffffffff);
DEBUG_PRINTF("buf=%p, pos=%u\n", buf, pos);
assert(pos < 32);
return buf + (31 - pos);
@ -106,11 +209,17 @@ const u8 *lastMatch<32>(const u8 *buf, SuperVector<32> v) {
template <>
really_really_inline
const u8 *lastMatch<64>(const u8 *buf, SuperVector<64> v) {
const u8 *last_zero_match_inverted<64>(const u8 *buf, SuperVector<64> v, uint16_t len) {
v.print8("v");
SuperVector<64>::movemask_type z = v.movemask();
DEBUG_PRINTF("z 0x%016llx\n", z);
if (unlikely(z != ~0ULL)) {
u32 pos = clz64(~z);
u64a mask = (~0ULL) >> (64 - len);
DEBUG_PRINTF("mask %016llx\n", mask);
z = ~z & mask;
DEBUG_PRINTF("z 0x%016llx\n", z);
if (unlikely(z)) {
u32 pos = clz64(z);
DEBUG_PRINTF("~z 0x%016llx\n", ~z);
DEBUG_PRINTF("match @ pos %u\n", pos);
assert(pos < 64);
return buf + (63 - pos);

View File

@ -30,7 +30,7 @@
#ifndef SIMD_TYPES_X86_H
#define SIMD_TYPES_X86_H
#if !defined(m128) && defined(HAVE_SSE2)
#if !defined(m128) && defined(HAVE_SSE42)
typedef __m128i m128;
#endif

View File

@ -49,6 +49,8 @@
#include "util/arch/x86/bitutils.h"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "util/arch/arm/bitutils.h"
#elif defined(ARCH_PPC64EL)
#include "util/arch/ppc64el/bitutils.h"
#endif
static really_inline

View File

@ -49,6 +49,10 @@
# define USE_ARM_NEON_H
#endif
#if defined(HAVE_C_PPC64EL_ALTIVEC_H)
# define USE_PPC64EL_ALTIVEC_H
#endif
#ifdef __cplusplus
# if defined(HAVE_CXX_INTRIN_H)
# define USE_INTRIN_H
@ -68,6 +72,8 @@
# if defined(HAVE_SVE)
# include <arm_sve.h>
# endif
#elif defined(USE_PPC64EL_ALTIVEC_H)
#include <altivec.h>
#else
#error no intrinsics file
#endif

View File

@ -38,15 +38,23 @@
#include "util/supervector/supervector.hpp"
template <u16 S>
const u8 *firstMatch(const u8 *buf, SuperVector<S> v);
const u8 *first_non_zero_match(const u8 *buf, SuperVector<S> v, u16 const len = S);
template <u16 S>
const u8 *lastMatch(const u8 *buf, SuperVector<S> v);
const u8 *last_non_zero_match(const u8 *buf, SuperVector<S> v, u16 const len = S);
template <u16 S>
const u8 *first_zero_match_inverted(const u8 *buf, SuperVector<S> v, u16 const len = S);
template <u16 S>
const u8 *last_zero_match_inverted(const u8 *buf, SuperVector<S> v, u16 len = S);
#if defined(ARCH_IA32) || defined(ARCH_X86_64)
#include "util/arch/x86/match.hpp"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "util/arch/arm/match.hpp"
#elif defined(ARCH_PPC64EL)
#include "util/arch/ppc64el/match.hpp"
#endif
#endif // MATCH_HPP

View File

@ -38,6 +38,8 @@
#include "util/arch/x86/simd_types.h"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "util/arch/arm/simd_types.h"
#elif defined(ARCH_PPC64EL)
#include "util/arch/ppc64el/simd_types.h"
#endif
#if !defined(m128) && !defined(HAVE_SIMD_128_BITS)
@ -49,6 +51,7 @@ typedef struct ALIGN_AVX_DIRECTIVE {m128 lo; m128 hi;} m256;
#endif
typedef struct {m128 lo; m128 mid; m128 hi;} m384;
#if !defined(m512) && !defined(HAVE_SIMD_512_BITS)
typedef struct ALIGN_ATTR(64) {m256 lo; m256 hi;} m512;
#endif

View File

@ -65,6 +65,8 @@ extern const char vbs_mask_data[];
#include "util/arch/x86/simd_utils.h"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "util/arch/arm/simd_utils.h"
#elif defined(ARCH_PPC64EL)
#include "util/arch/ppc64el/simd_utils.h"
#endif
#include "util/arch/common/simd_utils.h"

View File

@ -45,72 +45,114 @@ really_inline SuperVector<16>::SuperVector(typename base_type::type const v)
template<>
template<>
really_inline SuperVector<16>::SuperVector<int8x16_t>(int8x16_t const other)
really_inline SuperVector<16>::SuperVector(int8x16_t other)
{
u.v128[0] = static_cast<m128>(other);
u.s8x16[0] = other;
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint8x16_t>(uint8x16_t const other)
really_inline SuperVector<16>::SuperVector(uint8x16_t other)
{
u.v128[0] = static_cast<m128>(other);
u.u8x16[0] = other;
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<int8_t>(int8_t const other)
really_inline SuperVector<16>::SuperVector(int16x8_t other)
{
u.v128[0] = vdupq_n_s8(other);
u.s16x8[0] = other;
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint8_t>(uint8_t const other)
really_inline SuperVector<16>::SuperVector(uint16x8_t other)
{
u.v128[0] = vdupq_n_u8(other);
u.u16x8[0] = other;
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<int16_t>(int16_t const other)
really_inline SuperVector<16>::SuperVector(int32x4_t other)
{
u.v128[0] = vdupq_n_s16(other);
u.s32x4[0] = other;
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint16_t>(uint16_t const other)
really_inline SuperVector<16>::SuperVector(uint32x4_t other)
{
u.v128[0] = vdupq_n_u16(other);
u.u32x4[0] = other;
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<int32_t>(int32_t const other)
really_inline SuperVector<16>::SuperVector(int64x2_t other)
{
u.v128[0] = vdupq_n_s32(other);
u.s64x2[0] = other;
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint32_t>(uint32_t const other)
really_inline SuperVector<16>::SuperVector(uint64x2_t other)
{
u.v128[0] = vdupq_n_u32(other);
u.u64x2[0] = other;
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<int64_t>(int64_t const other)
really_inline SuperVector<16>::SuperVector(int8_t const other)
{
u.v128[0] = vdupq_n_s64(other);
u.s8x16[0] = vdupq_n_s8(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint64_t>(uint64_t const other)
really_inline SuperVector<16>::SuperVector(uint8_t const other)
{
u.v128[0] = vdupq_n_u64(other);
u.u8x16[0] = vdupq_n_u8(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(int16_t const other)
{
u.s16x8[0] = vdupq_n_s16(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(uint16_t const other)
{
u.u16x8[0] = vdupq_n_u16(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(int32_t const other)
{
u.s32x4[0] = vdupq_n_s32(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(uint32_t const other)
{
u.u32x4[0] = vdupq_n_u32(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(int64_t const other)
{
u.s64x2[0] = vdupq_n_s64(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(uint64_t const other)
{
u.u64x2[0] = vdupq_n_u64(other);
}
// Constants
@ -137,37 +179,37 @@ really_inline void SuperVector<16>::operator=(SuperVector<16> const &other)
template <>
really_inline SuperVector<16> SuperVector<16>::operator&(SuperVector<16> const &b) const
{
return {vandq_s8(u.v128[0], b.u.v128[0])};
return {vandq_u8(u.u8x16[0], b.u.u8x16[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator|(SuperVector<16> const &b) const
{
return {vorrq_s8(u.v128[0], b.u.v128[0])};
return {vorrq_u8(u.u8x16[0], b.u.u8x16[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator^(SuperVector<16> const &b) const
{
return {veorq_s8(u.v128[0], b.u.v128[0])};
return {veorq_u8(u.u8x16[0], b.u.u8x16[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator!() const
{
return {vmvnq_s8(u.v128[0])};
return {vmvnq_u8(u.u8x16[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::opandnot(SuperVector<16> const &b) const
{
return {vandq_s8(vmvnq_s8(u.v128[0]), b.u.v128[0])};
return {vandq_u8(vmvnq_u8(u.u8x16[0]), b.u.u8x16[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator==(SuperVector<16> const &b) const
{
return {vceqq_s8((int16x8_t)u.v128[0], (int16x8_t)b.u.v128[0])};
return {vceqq_u8(u.u8x16[0], b.u.u8x16[0])};
}
template <>
@ -179,25 +221,25 @@ really_inline SuperVector<16> SuperVector<16>::operator!=(SuperVector<16> const
template <>
really_inline SuperVector<16> SuperVector<16>::operator>(SuperVector<16> const &b) const
{
return {vcgtq_s8((int16x8_t)u.v128[0], (int16x8_t)b.u.v128[0])};
return {vcgtq_s8(u.s8x16[0], b.u.s8x16[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator>=(SuperVector<16> const &b) const
{
return {vcgeq_s8((int16x8_t)u.v128[0], (int16x8_t)b.u.v128[0])};
return {vcgeq_u8(u.u8x16[0], b.u.u8x16[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator<(SuperVector<16> const &b) const
{
return {vcltq_s8((int16x8_t)u.v128[0], (int16x8_t)b.u.v128[0])};
return {vcltq_s8(u.s8x16[0], b.u.s8x16[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator<=(SuperVector<16> const &b) const
{
return {vcgeq_s8((int16x8_t)u.v128[0], (int16x8_t)b.u.v128[0])};
return {vcgeq_s8(u.s8x16[0], b.u.s8x16[0])};
}
template <>
@ -209,12 +251,12 @@ really_inline SuperVector<16> SuperVector<16>::eq(SuperVector<16> const &b) cons
template <>
really_inline typename SuperVector<16>::movemask_type SuperVector<16>::movemask(void) const
{
SuperVector powers{0x8040201008040201UL};
SuperVector powers = SuperVector::dup_u64(0x8040201008040201UL);
// Compute the mask from the input
uint64x2_t mask = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(vandq_u8((uint16x8_t)u.v128[0], powers.u.v128[0]))));
uint64x2_t mask1 = (m128)vextq_s8(mask, vdupq_n_u8(0), 7);
mask = vorrq_u8(mask, mask1);
uint8x16_t mask = (uint8x16_t) vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(vandq_u8(u.u8x16[0], powers.u.u8x16[0]))));
uint64x2_t mask1 = (uint64x2_t) vextq_u8(mask, vdupq_n_u8(0), 7);
mask = vorrq_u8(mask, (uint8x16_t) mask1);
// Get the resulting bytes
uint16_t output;
@ -232,35 +274,35 @@ template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_8_imm() const
{
return {(m128)vshlq_n_s8(u.v128[0], N)};
return {vshlq_n_u8(u.u8x16[0], N)};
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_16_imm() const
{
return {(m128)vshlq_n_s16(u.v128[0], N)};
return {vshlq_n_u16(u.u16x8[0], N)};
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_32_imm() const
{
return {(m128)vshlq_n_s32(u.v128[0], N)};
return {vshlq_n_u32(u.u32x4[0], N)};
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_64_imm() const
{
return {(m128)vshlq_n_s64(u.v128[0], N)};
return {vshlq_n_u64(u.u64x2[0], N)};
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_128_imm() const
{
return {vextq_s8(vdupq_n_u8(0), (int16x8_t)u.v128[0], 16 - N)};
return {vextq_u8(vdupq_n_u8(0), u.u8x16[0], 16 - N)};
}
template <>
@ -274,35 +316,35 @@ template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_8_imm() const
{
return {(m128)vshrq_n_s8(u.v128[0], N)};
return {vshrq_n_u8(u.u8x16[0], N)};
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_16_imm() const
{
return {(m128)vshrq_n_s16(u.v128[0], N)};
return {vshrq_n_u16(u.u16x8[0], N)};
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_32_imm() const
{
return {(m128)vshrq_n_s32(u.v128[0], N)};
return {vshrq_n_u32(u.u32x4[0], N)};
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_64_imm() const
{
return {(m128)vshrq_n_s64(u.v128[0], N)};
return {vshrq_n_u64(u.u64x2[0], N)};
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_128_imm() const
{
return {vextq_s8((int16x8_t)u.v128[0], vdupq_n_u8(0), N)};
return {vextq_u8(u.u8x16[0], vdupq_n_u8(0), N)};
}
template <>
@ -334,7 +376,7 @@ really_inline SuperVector<16> SuperVector<16>::vshl_8 (uint8_t const N) const
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128)vshlq_n_s8(u.v128[0], n)}; });
Unroller<1, 8>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vshlq_n_u8(v->u.u8x16[0], n)}; });
return result;
}
@ -344,7 +386,7 @@ really_inline SuperVector<16> SuperVector<16>::vshl_16 (uint8_t const N) const
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128)vshlq_n_s16(u.v128[0], n)}; });
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vshlq_n_u16(v->u.u16x8[0], n)}; });
return result;
}
@ -352,9 +394,9 @@ template <>
really_inline SuperVector<16> SuperVector<16>::vshl_32 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
if (N == 32) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128)vshlq_n_s32(u.v128[0], n)}; });
Unroller<1, 32>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vshlq_n_u32(v->u.u32x4[0], n)}; });
return result;
}
@ -362,9 +404,9 @@ template <>
really_inline SuperVector<16> SuperVector<16>::vshl_64 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
if (N == 64) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128)vshlq_n_s64(u.v128[0], n)}; });
Unroller<1, 64>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vshlq_n_u64(v->u.u64x2[0], n)}; });
return result;
}
@ -374,7 +416,7 @@ really_inline SuperVector<16> SuperVector<16>::vshl_128(uint8_t const N) const
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vextq_s8(vdupq_n_u8(0), (int16x8_t)u.v128[0], 16 - n)}; });
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vextq_u8(vdupq_n_u8(0), v->u.u8x16[0], 16 - n)}; });
return result;
}
@ -388,9 +430,9 @@ template <>
really_inline SuperVector<16> SuperVector<16>::vshr_8 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
if (N == 8) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128)vshrq_n_s8(u.v128[0], n)}; });
Unroller<1, 8>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vshrq_n_u8(v->u.u8x16[0], n)}; });
return result;
}
@ -400,7 +442,7 @@ really_inline SuperVector<16> SuperVector<16>::vshr_16 (uint8_t const N) const
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128)vshrq_n_s16(u.v128[0], n)}; });
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vshrq_n_u16(v->u.u16x8[0], n)}; });
return result;
}
@ -408,9 +450,9 @@ template <>
really_inline SuperVector<16> SuperVector<16>::vshr_32 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
if (N == 32) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128)vshrq_n_s32(u.v128[0], n)}; });
Unroller<1, 32>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vshrq_n_u32(v->u.u32x4[0], n)}; });
return result;
}
@ -418,9 +460,9 @@ template <>
really_inline SuperVector<16> SuperVector<16>::vshr_64 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
if (N == 64) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128)vshrq_n_s64(u.v128[0], n)}; });
Unroller<1, 64>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vshrq_n_u64(v->u.u64x2[0], n)}; });
return result;
}
@ -430,7 +472,7 @@ really_inline SuperVector<16> SuperVector<16>::vshr_128(uint8_t const N) const
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vextq_s8((int16x8_t)u.v128[0], vdupq_n_u8(0), n)}; });
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {vextq_u8(v->u.u8x16[0], vdupq_n_u8(0), n)}; });
return result;
}
@ -440,34 +482,27 @@ really_inline SuperVector<16> SuperVector<16>::vshr(uint8_t const N) const
return vshr_128(N);
}
#ifdef HS_OPTIMIZE
template <>
really_inline SuperVector<16> SuperVector<16>::operator>>(uint8_t const N) const
{
return {vextq_s8((int16x8_t)u.v128[0], vdupq_n_u8(0), N)};
}
#else
template <>
really_inline SuperVector<16> SuperVector<16>::operator>>(uint8_t const N) const
{
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(N)) {
return {vextq_u8(u.u8x16[0], vdupq_n_u8(0), N)};
}
#endif
return vshr_128(N);
}
#endif
#ifdef HS_OPTIMIZE
template <>
really_inline SuperVector<16> SuperVector<16>::operator<<(uint8_t const N) const
{
return {vextq_s8(vdupq_n_u8(0), (int16x8_t)u.v128[0], 16 - N)};
}
#else
template <>
really_inline SuperVector<16> SuperVector<16>::operator<<(uint8_t const N) const
{
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(N)) {
return {vextq_u8(vdupq_n_u8(0), u.u8x16[0], 16 - N)};
}
#endif
return vshl_128(N);
}
#endif
template<>
really_inline SuperVector<16> SuperVector<16>::Ones_vshr(uint8_t const N)
@ -505,49 +540,46 @@ really_inline SuperVector<16> SuperVector<16>::loadu_maskz(void const *ptr, uint
return mask & v;
}
#ifdef HS_OPTIMIZE
template<>
really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> &other, int8_t offset)
{
if (offset == 16) {
return *this;
} else {
return {vextq_s8((int16x8_t)other.u.v128[0], (int16x8_t)u.v128[0], offset)};
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(offset)) {
if (offset == 16) {
return *this;
} else {
return {vextq_u8(other.u.u8x16[0], u.u8x16[0], offset)};
}
}
}
#else
template<>
really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> &other, int8_t offset)
{
#endif
switch(offset) {
case 0: return other; break;
case 1: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 1)}; break;
case 2: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 2)}; break;
case 3: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 3)}; break;
case 4: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 4)}; break;
case 5: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 5)}; break;
case 6: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 6)}; break;
case 7: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 7)}; break;
case 8: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 8)}; break;
case 9: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 9)}; break;
case 10: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 10)}; break;
case 11: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 11)}; break;
case 12: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 12)}; break;
case 13: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 13)}; break;
case 14: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 14)}; break;
case 15: return {vextq_s8((int16x8_t) other.u.v128[0], (int16x8_t) u.v128[0], 15)}; break;
case 1: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 1)}; break;
case 2: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 2)}; break;
case 3: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 3)}; break;
case 4: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 4)}; break;
case 5: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 5)}; break;
case 6: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 6)}; break;
case 7: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 7)}; break;
case 8: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 8)}; break;
case 9: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 9)}; break;
case 10: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 10)}; break;
case 11: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 11)}; break;
case 12: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 12)}; break;
case 13: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 13)}; break;
case 14: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 14)}; break;
case 15: return {vextq_u8( other.u.u8x16[0], u.u8x16[0], 15)}; break;
case 16: return *this; break;
default: break;
}
return *this;
}
#endif
template<>
template<>
really_inline SuperVector<16> SuperVector<16>::pshufb<false>(SuperVector<16> b)
{
return {vqtbl1q_s8((int8x16_t)u.v128[0], (uint8x16_t)b.u.v128[0])};
return {vqtbl1q_u8(u.u8x16[0], b.u.u8x16[0])};
}
template<>
@ -565,7 +597,7 @@ template<>
really_inline SuperVector<16> SuperVector<16>::pshufb_maskz(SuperVector<16> b, uint8_t const len)
{
SuperVector mask = Ones_vshr(16 -len);
return mask & pshufb<true>(b);
return mask & pshufb(b);
}
#endif // SIMD_IMPL_HPP

View File

@ -0,0 +1,593 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SIMD_IMPL_HPP
#define SIMD_IMPL_HPP
#include <cstdint>
#include <cstdio>
#include "ue2common.h"
#include "util/arch.h"
#include "util/unaligned.h"
#include "util/supervector/supervector.hpp"
#include <iostream>
// 128-bit Powerpc64le implementation
template<>
really_inline SuperVector<16>::SuperVector(SuperVector const &other)
{
u.v128[0] = other.u.v128[0];
}
template<>
really_inline SuperVector<16>::SuperVector(typename base_type::type const v)
{
u.v128[0] = v;
};
template<>
template<>
really_inline SuperVector<16>::SuperVector(int8_t const other)
{
u.v128[0] = (m128) vec_splats(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(uint8_t const other)
{
u.v128[0] = (m128) vec_splats(static_cast<uint8_t>(other));
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(int16_t const other)
{
u.v128[0] = (m128) vec_splats(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(uint16_t const other)
{
u.v128[0] = (m128) vec_splats(static_cast<uint16_t>(other));
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(int32_t const other)
{
u.v128[0] = (m128) vec_splats(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(uint32_t const other)
{
u.v128[0] = (m128) vec_splats(static_cast<uint32_t>(other));
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(int64_t const other)
{
u.v128[0] = (m128) vec_splats(static_cast<ulong64_t>(other));
}
template<>
template<>
really_inline SuperVector<16>::SuperVector(uint64_t const other)
{
u.v128[0] = (m128) vec_splats(static_cast<ulong64_t>(other));
}
// Constants
template<>
really_inline SuperVector<16> SuperVector<16>::Ones(void)
{
return {(m128) vec_splat_s8(-1)};
}
template<>
really_inline SuperVector<16> SuperVector<16>::Zeroes(void)
{
return {(m128) vec_splat_s8(0)};
}
// Methods
template <>
really_inline void SuperVector<16>::operator=(SuperVector<16> const &other)
{
u.v128[0] = other.u.v128[0];
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator&(SuperVector<16> const &b) const
{
return {vec_and(u.v128[0], b.u.v128[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator|(SuperVector<16> const &b) const
{
return {vec_or(u.v128[0], b.u.v128[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator^(SuperVector<16> const &b) const
{
return {(m128) vec_xor(u.v128[0], b.u.v128[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator!() const
{
return {(m128) vec_xor(u.v128[0], u.v128[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::opandnot(SuperVector<16> const &b) const
{
m128 not_res = vec_xor(u.v128[0], (m128)vec_splat_s8(-1));
return {(m128) vec_and(not_res, (m128)b.u.v128[0]) };
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator==(SuperVector<16> const &b) const
{
return {(m128) vec_cmpeq(u.s8x16[0], b.u.s8x16[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator!=(SuperVector<16> const &b) const
{
return !(*this == b);
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator>(SuperVector<16> const &b) const
{
return {(m128) vec_cmpgt(u.v128[0], b.u.v128[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator>=(SuperVector<16> const &b) const
{
return {(m128) vec_cmpge(u.v128[0], b.u.v128[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator<(SuperVector<16> const &b) const
{
return {(m128) vec_cmpgt(b.u.v128[0], u.v128[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator<=(SuperVector<16> const &b) const
{
return {(m128) vec_cmpge(b.u.v128[0], u.v128[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::eq(SuperVector<16> const &b) const
{
return (*this == b);
}
template <>
really_inline typename SuperVector<16>::movemask_type SuperVector<16>::movemask(void)const
{
uint8x16_t s1 = vec_sr((uint8x16_t)u.v128[0], vec_splat_u8(7));
uint16x8_t ss = vec_sr((uint16x8_t)s1, vec_splat_u16(7));
uint16x8_t res_and = vec_and((uint16x8_t)s1, vec_splats((uint16_t)0xff));
uint16x8_t s2 = vec_or((uint16x8_t)ss, res_and);
uint32x4_t ss2 = vec_sr((uint32x4_t)s2 , vec_splat_u32(14));
uint32x4_t res_and2 = vec_and((uint32x4_t)s2, vec_splats((uint32_t)0xff));
uint32x4_t s3 = vec_or((uint32x4_t)ss2, res_and2);
uint64x2_t ss3 = vec_sr((uint64x2_t)s3, (uint64x2_t)vec_splats(28));
uint64x2_t res_and3 = vec_and((uint64x2_t)s3, vec_splats((ulong64_t)0xff));
uint64x2_t s4 = vec_or((uint64x2_t)ss3, res_and3);
uint64x2_t ss4 = vec_sld((uint64x2_t) vec_splats(0), s4, 9);
uint64x2_t res_and4 = vec_and((uint64x2_t)s4, vec_splats((ulong64_t)0xff));
uint64x2_t s5 = vec_or((uint64x2_t)ss4, res_and4);
return s5[0];
}
template <>
really_inline typename SuperVector<16>::movemask_type SuperVector<16>::eqmask(SuperVector<16> const b) const
{
return eq(b).movemask();
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_8_imm() const
{
return { (m128) vec_sl(u.s8x16[0], vec_splats((uint8_t)N)) };
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_16_imm() const
{
return { (m128) vec_sl(u.s16x8[0], vec_splats((uint16_t)N)) };
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_32_imm() const
{
return { (m128) vec_sl(u.s32x4[0], vec_splats((uint32_t)N)) };
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_64_imm() const
{
return { (m128) vec_sl(u.s64x2[0], vec_splats((ulong64_t)N)) };
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_128_imm() const
{
return { (m128) vec_sld(u.s8x16[0], (int8x16_t)vec_splat_s8(0), N)};
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshl_imm() const
{
return vshl_128_imm<N>();
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_8_imm() const
{
return { (m128) vec_sr(u.s8x16[0], vec_splats((uint8_t)N)) };
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_16_imm() const
{
return { (m128) vec_sr(u.s16x8[0], vec_splats((uint16_t)N)) };
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_32_imm() const
{
return { (m128) vec_sr(u.s32x4[0], vec_splats((uint32_t)N)) };
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_64_imm() const
{
return { (m128) vec_sr(u.s64x2[0], vec_splats((ulong64_t)N)) };
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_128_imm() const
{
return { (m128) vec_sld((int8x16_t)vec_splat_s8(0), u.s8x16[0], 16 - N) };
}
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<16>::vshr_imm() const
{
return vshr_128_imm<N>();
}
#if !defined(HS_OPTIMIZE)
template SuperVector<16> SuperVector<16>::vshl_8_imm<4>() const;
template SuperVector<16> SuperVector<16>::vshl_16_imm<1>() const;
template SuperVector<16> SuperVector<16>::vshl_64_imm<1>() const;
template SuperVector<16> SuperVector<16>::vshl_64_imm<4>() const;
template SuperVector<16> SuperVector<16>::vshl_128_imm<1>() const;
template SuperVector<16> SuperVector<16>::vshl_128_imm<4>() const;
template SuperVector<16> SuperVector<16>::vshr_8_imm<1>() const;
template SuperVector<16> SuperVector<16>::vshr_8_imm<4>() const;
template SuperVector<16> SuperVector<16>::vshr_16_imm<1>() const;
template SuperVector<16> SuperVector<16>::vshr_64_imm<1>() const;
template SuperVector<16> SuperVector<16>::vshr_64_imm<4>() const;
template SuperVector<16> SuperVector<16>::vshr_128_imm<1>() const;
template SuperVector<16> SuperVector<16>::vshr_128_imm<4>() const;
#endif
template <>
really_inline SuperVector<16> SuperVector<16>::vshl_8 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128) vec_sl(v->u.s8x16[0], vec_splats((uint8_t)n))}; });
return result;
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshl_16 (uint8_t const UNUSED N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128) vec_sl(v->u.s16x8[0], vec_splats((uint16_t)n))}; });
return result;
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshl_32 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128) vec_sl(v->u.s32x4[0], vec_splats((uint32_t)n))}; });
return result;
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshl_64 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128) vec_sl(v->u.s64x2[0], vec_splats((ulong64_t)n))}; });
return result;
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshl_128(uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128) vec_sld(v->u.s8x16[0], (int8x16_t)vec_splat_s8(0), n)}; });
return result;
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshl(uint8_t const N) const
{
return vshl_128(N);
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshr_8 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128) vec_sr(v->u.s8x16[0], vec_splats((uint8_t)n))}; });
return result;
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshr_16 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128) vec_sr(v->u.s16x8[0], vec_splats((uint16_t)n))}; });
return result;
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshr_32 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128) vec_sr(v->u.s32x4[0], vec_splats((uint32_t)n))}; });
return result;
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshr_64 (uint8_t const N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128) vec_sr(v->u.s64x2[0], vec_splats((ulong64_t)n))}; });
return result;
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshr_128(uint8_t const UNUSED N) const
{
if (N == 0) return *this;
if (N == 16) return Zeroes();
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) { constexpr uint8_t n = i.value; if (N == n) result = {(m128) vec_sld((int8x16_t)vec_splat_u8(0), v->u.s8x16[0], 16 - n)}; });
return result;
}
template <>
really_inline SuperVector<16> SuperVector<16>::vshr(uint8_t const N) const
{
return vshr_128(N);
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator>>(uint8_t const N) const
{
switch(N) {
case 1: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 15)}; break;
case 2: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 14)}; break;
case 3: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 13)}; break;
case 4: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 12)}; break;
case 5: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 11)}; break;
case 6: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 10)}; break;
case 7: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 9)}; break;
case 8: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 8)}; break;
case 9: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 7)}; break;
case 10: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 6)}; break;
case 11: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 5)}; break;
case 12: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 4)}; break;
case 13: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 3)}; break;
case 14: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 2)}; break;
case 15: return {(m128) vec_sld((int8x16_t) vec_splat_s8(0), u.s8x16[0], 1)}; break;
case 16: return Zeroes(); break;
default: break;
}
return *this;
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator<<(uint8_t const N) const
{
switch(N) {
case 1: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 1)}; break;
case 2: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 2)}; break;
case 3: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 3)}; break;
case 4: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 4)}; break;
case 5: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 5)}; break;
case 6: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 6)}; break;
case 7: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 7)}; break;
case 8: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 8)}; break;
case 9: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 9)}; break;
case 10: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 10)}; break;
case 11: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 11)}; break;
case 12: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 12)}; break;
case 13: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 13)}; break;
case 14: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 14)}; break;
case 15: return {(m128) vec_sld(u.s8x16[0], (int8x16_t) vec_splat_s8(0), 15)}; break;
case 16: return Zeroes(); break;
default: break;
}
return *this;
}
template<>
really_inline SuperVector<16> SuperVector<16>::Ones_vshr(uint8_t const N)
{
return Ones().vshr_128(N);
}
template<>
really_inline SuperVector<16> SuperVector<16>::Ones_vshl(uint8_t const N)
{
return Ones().vshl_128(N);
}
template <>
really_inline SuperVector<16> SuperVector<16>::loadu(void const *ptr)
{
return (m128) vec_xl(0, (const long64_t*)ptr);
}
template <>
really_inline SuperVector<16> SuperVector<16>::load(void const *ptr)
{
assert(ISALIGNED_N(ptr, alignof(SuperVector::size)));
return (m128) vec_xl(0, (const long64_t*)ptr);
}
template <>
really_inline SuperVector<16> SuperVector<16>::loadu_maskz(void const *ptr, uint8_t const len)
{
SuperVector<16> mask = Ones_vshr(16 -len);
mask.print8("mask");
SuperVector<16> v = loadu(ptr);
v.print8("v");
return mask & v;
}
template<>
really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> &other, int8_t offset)
{
switch(offset) {
case 0: return other; break;
case 1: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 15)}; break;
case 2: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 14)}; break;
case 3: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 13)}; break;
case 4: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 12)}; break;
case 5: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 11)}; break;
case 6: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 10)}; break;
case 7: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 9)}; break;
case 8: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 8)}; break;
case 9: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 7)}; break;
case 10: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 6)}; break;
case 11: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 5)}; break;
case 12: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 4)}; break;
case 13: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 3)}; break;
case 14: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 2)}; break;
case 15: return {(m128) vec_sld(u.s8x16[0], other.u.s8x16[0], 1)}; break;
default: break;
}
return *this;
}
template<>
template<>
really_inline SuperVector<16> SuperVector<16>::pshufb<false>(SuperVector<16> b)
{
/* On Intel, if bit 0x80 is set, then result is zero, otherwise which the lane it is &0xf.
In NEON or PPC, if >=16, then the result is zero, otherwise it is that lane.
below is the version that is converted from Intel to PPC. */
uint8x16_t mask =(uint8x16_t)vec_cmpge(b.u.u8x16[0], (uint8x16_t)vec_splats((uint8_t)0x80));
uint8x16_t res = vec_perm (u.u8x16[0], u.u8x16[0], b.u.u8x16[0]);
return (m128) vec_sel(res, (uint8x16_t)vec_splat_s8(0), mask);
}
template<>
template<>
really_inline SuperVector<16> SuperVector<16>::pshufb<true>(SuperVector<16> b)
{
/* On Intel, if bit 0x80 is set, then result is zero, otherwise which the lane it is &0xf.
In NEON or PPC, if >=16, then the result is zero, otherwise it is that lane.
btranslated is the version that is converted from Intel to PPC. */
SuperVector<16> btranslated = b & SuperVector<16>::dup_s8(0x8f);
return pshufb<false>(btranslated);
}
template<>
really_inline SuperVector<16> SuperVector<16>::pshufb_maskz(SuperVector<16> b, uint8_t const len)
{
SuperVector<16> mask = Ones_vshr(16 -len);
return mask & pshufb(b);
}
#endif

View File

@ -0,0 +1,44 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
typedef __vector unsigned long long int uint64x2_t;
typedef __vector signed long long int int64x2_t;
typedef __vector unsigned int uint32x4_t;
typedef __vector signed int int32x4_t;
typedef __vector unsigned short int uint16x8_t;
typedef __vector signed short int int16x8_t;
typedef __vector unsigned char uint8x16_t;
typedef __vector signed char int8x16_t;
typedef unsigned long long int ulong64_t;
typedef signed long long int long64_t;
#if !defined(m128) && defined(HAVE_VSX)
typedef __vector int m128;
#endif

View File

@ -55,56 +55,56 @@ really_inline SuperVector<16>::SuperVector(typename base_type::type const v)
template<>
template<>
really_inline SuperVector<16>::SuperVector<int8_t>(int8_t const other)
really_inline SuperVector<16>::SuperVector(int8_t const other)
{
u.v128[0] = _mm_set1_epi8(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint8_t>(uint8_t const other)
really_inline SuperVector<16>::SuperVector(uint8_t const other)
{
u.v128[0] = _mm_set1_epi8(static_cast<int8_t>(other));
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<int16_t>(int16_t const other)
really_inline SuperVector<16>::SuperVector(int16_t const other)
{
u.v128[0] = _mm_set1_epi16(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint16_t>(uint16_t const other)
really_inline SuperVector<16>::SuperVector(uint16_t const other)
{
u.v128[0] = _mm_set1_epi16(static_cast<int16_t>(other));
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<int32_t>(int32_t const other)
really_inline SuperVector<16>::SuperVector(int32_t const other)
{
u.v128[0] = _mm_set1_epi32(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint32_t>(uint32_t const other)
really_inline SuperVector<16>::SuperVector(uint32_t const other)
{
u.v128[0] = _mm_set1_epi32(static_cast<int32_t>(other));
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<int64_t>(int64_t const other)
really_inline SuperVector<16>::SuperVector(int64_t const other)
{
u.v128[0] = _mm_set1_epi64x(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint64_t>(uint64_t const other)
really_inline SuperVector<16>::SuperVector(uint64_t const other)
{
u.v128[0] = _mm_set1_epi64x(static_cast<int64_t>(other));
}
@ -520,16 +520,18 @@ really_inline SuperVector<16> SuperVector<16>::loadu_maskz(void const *ptr, uint
return mask & v;
}
#ifdef HS_OPTIMIZE
template<>
really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> &other, int8_t offset)
{
return {_mm_alignr_epi8(u.v128[0], other.u.v128[0], offset)};
}
#else
template<>
really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> &other, int8_t offset)
{
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(offset)) {
if (offset == 16) {
return *this;
} else {
return {_mm_alignr_epi8(u.v128[0], other.u.v128[0], offset)};
}
}
#endif
switch(offset) {
case 0: return other; break;
case 1: return {_mm_alignr_epi8(u.v128[0], other.u.v128[0], 1)}; break;
@ -551,7 +553,6 @@ really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> &other, in
}
return *this;
}
#endif
template<>
template<>
@ -607,56 +608,56 @@ really_inline SuperVector<32>::SuperVector(SuperVector<16> const lo, SuperVector
template<>
template<>
really_inline SuperVector<32>::SuperVector<int8_t>(int8_t const other)
really_inline SuperVector<32>::SuperVector(int8_t const other)
{
u.v256[0] = _mm256_set1_epi8(other);
}
template<>
template<>
really_inline SuperVector<32>::SuperVector<uint8_t>(uint8_t const other)
really_inline SuperVector<32>::SuperVector(uint8_t const other)
{
u.v256[0] = _mm256_set1_epi8(static_cast<int8_t>(other));
}
template<>
template<>
really_inline SuperVector<32>::SuperVector<int16_t>(int16_t const other)
really_inline SuperVector<32>::SuperVector(int16_t const other)
{
u.v256[0] = _mm256_set1_epi16(other);
}
template<>
template<>
really_inline SuperVector<32>::SuperVector<uint16_t>(uint16_t const other)
really_inline SuperVector<32>::SuperVector(uint16_t const other)
{
u.v256[0] = _mm256_set1_epi16(static_cast<int16_t>(other));
}
template<>
template<>
really_inline SuperVector<32>::SuperVector<int32_t>(int32_t const other)
really_inline SuperVector<32>::SuperVector(int32_t const other)
{
u.v256[0] = _mm256_set1_epi32(other);
}
template<>
template<>
really_inline SuperVector<32>::SuperVector<uint32_t>(uint32_t const other)
really_inline SuperVector<32>::SuperVector(uint32_t const other)
{
u.v256[0] = _mm256_set1_epi32(static_cast<int32_t>(other));
}
template<>
template<>
really_inline SuperVector<32>::SuperVector<int64_t>(int64_t const other)
really_inline SuperVector<32>::SuperVector(int64_t const other)
{
u.v256[0] = _mm256_set1_epi64x(other);
}
template<>
template<>
really_inline SuperVector<32>::SuperVector<uint64_t>(uint64_t const other)
really_inline SuperVector<32>::SuperVector(uint64_t const other)
{
u.v256[0] = _mm256_set1_epi64x(static_cast<int64_t>(other));
}
@ -803,7 +804,7 @@ really_inline SuperVector<32> SuperVector<32>::vshl_128_imm() const
template <>
template<uint8_t N>
really_inline SuperVector<16> SuperVector<32>::vshl_256_imm() const
really_inline SuperVector<32> SuperVector<32>::vshl_256_imm() const
{
if (N == 0) return *this;
if (N == 16) return {_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(0, 0, 2, 0))};
@ -949,11 +950,11 @@ really_inline SuperVector<32> SuperVector<32>::vshl_256(uint8_t const N) const
SuperVector result;
Unroller<1, 16>::iterator([&,v=this](auto const i) {
constexpr uint8_t n = i.value;
if (N == n) result = {_mm256_alignr_epi8(u.v256[0], _mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(0, 0, 2, 0)), 16 - n)};;
if (N == n) result = {_mm256_alignr_epi8(u.v256[0], _mm256_permute2x128_si256(v->u.v256[0], v->u.v256[0], _MM_SHUFFLE(0, 0, 2, 0)), 16 - n)};;
});
Unroller<17, 32>::iterator([&,v=this](auto const i) {
constexpr uint8_t n = i.value;
if (N == n) result = {_mm256_slli_si256(_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(0, 0, 2, 0)), n - 16)};
if (N == n) result = {_mm256_slli_si256(_mm256_permute2x128_si256(v->u.v256[0], v->u.v256[0], _MM_SHUFFLE(0, 0, 2, 0)), n - 16)};
});
return result;
}
@ -1037,47 +1038,41 @@ really_inline SuperVector<32> SuperVector<32>::vshr(uint8_t const N) const
return vshr_256(N);
}
#ifdef HS_OPTIMIZE
template <>
really_inline SuperVector<32> SuperVector<32>::operator>>(uint8_t const N) const
{
// As found here: https://stackoverflow.com/questions/25248766/emulating-shifts-on-32-bytes-with-avx
if (N < 16) {
return {_mm256_alignr_epi8(_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(2, 0, 0, 1)), u.v256[0], N)};
} else if (N == 16) {
return {_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(2, 0, 0, 1))};
} else {
return {_mm256_srli_si256(_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(2, 0, 0, 1)), N - 16)};
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(N)) {
// As found here: https://stackoverflow.com/questions/25248766/emulating-shifts-on-32-bytes-with-avx
if (N < 16) {
return {_mm256_alignr_epi8(_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(2, 0, 0, 1)), u.v256[0], N)};
} else if (N == 16) {
return {_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(2, 0, 0, 1))};
} else {
return {_mm256_srli_si256(_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(2, 0, 0, 1)), N - 16)};
}
}
}
#else
template <>
really_inline SuperVector<32> SuperVector<32>::operator>>(uint8_t const N) const
{
#endif
return vshr_256(N);
}
#endif
#ifdef HS_OPTIMIZE
template <>
really_inline SuperVector<32> SuperVector<32>::operator<<(uint8_t const N) const
{
// As found here: https://stackoverflow.com/questions/25248766/emulating-shifts-on-32-bytes-with-avx
if (N < 16) {
return {_mm256_alignr_epi8(u.v256[0], _mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(0, 0, 2, 0)), 16 - N)};
} else if (N == 16) {
return {_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(0, 0, 2, 0))};
} else {
return {_mm256_slli_si256(_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(0, 0, 2, 0)), N - 16)};
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(N)) {
// As found here: https://stackoverflow.com/questions/25248766/emulating-shifts-on-32-bytes-with-avx
if (N < 16) {
return {_mm256_alignr_epi8(u.v256[0], _mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(0, 0, 2, 0)), 16 - N)};
} else if (N == 16) {
return {_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(0, 0, 2, 0))};
} else {
return {_mm256_slli_si256(_mm256_permute2x128_si256(u.v256[0], u.v256[0], _MM_SHUFFLE(0, 0, 2, 0)), N - 16)};
}
}
}
#else
template <>
really_inline SuperVector<32> SuperVector<32>::operator<<(uint8_t const N) const
{
#endif
return vshl_256(N);
}
#endif
template<>
really_inline SuperVector<32> SuperVector<32>::Ones_vshr(uint8_t const N)
@ -1132,16 +1127,18 @@ really_inline SuperVector<32> SuperVector<32>::loadu_maskz(void const *ptr, uint
#endif
}
#ifdef HS_OPTIMIZE
template<>
really_inline SuperVector<32> SuperVector<32>::alignr(SuperVector<32> &other, int8_t offset)
{
return {_mm256_alignr_epi8(u.v256[0], other.u.v256[0], offset)};
}
#else
template<>
really_inline SuperVector<32> SuperVector<32>::alignr(SuperVector<32> &other, int8_t offset)
{
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(offset)) {
if (offset == 16) {
return *this;
} else {
return {_mm256_alignr_epi8(u.v256[0], other.u.v256[0], offset)};
}
}
#endif
// As found here: https://stackoverflow.com/questions/8517970/mm-alignr-epi8-palignr-equivalent-in-avx2#8637458
switch (offset){
case 0 : return _mm256_set_m128i(_mm_alignr_epi8(u.v128[0], other.u.v128[1], 0), _mm_alignr_epi8(other.u.v128[1], other.u.v128[0], 0)); break;
@ -1180,7 +1177,6 @@ really_inline SuperVector<32> SuperVector<32>::alignr(SuperVector<32> &other, in
}
return *this;
}
#endif
template<>
template<>
@ -1244,56 +1240,56 @@ really_inline SuperVector<64>::SuperVector(m128 const v)
template<>
template<>
really_inline SuperVector<64>::SuperVector<int8_t>(int8_t const o)
really_inline SuperVector<64>::SuperVector(int8_t const o)
{
u.v512[0] = _mm512_set1_epi8(o);
}
template<>
template<>
really_inline SuperVector<64>::SuperVector<uint8_t>(uint8_t const o)
really_inline SuperVector<64>::SuperVector(uint8_t const o)
{
u.v512[0] = _mm512_set1_epi8(static_cast<int8_t>(o));
}
template<>
template<>
really_inline SuperVector<64>::SuperVector<int16_t>(int16_t const o)
really_inline SuperVector<64>::SuperVector(int16_t const o)
{
u.v512[0] = _mm512_set1_epi16(o);
}
template<>
template<>
really_inline SuperVector<64>::SuperVector<uint16_t>(uint16_t const o)
really_inline SuperVector<64>::SuperVector(uint16_t const o)
{
u.v512[0] = _mm512_set1_epi16(static_cast<int16_t>(o));
}
template<>
template<>
really_inline SuperVector<64>::SuperVector<int32_t>(int32_t const o)
really_inline SuperVector<64>::SuperVector(int32_t const o)
{
u.v512[0] = _mm512_set1_epi32(o);
}
template<>
template<>
really_inline SuperVector<64>::SuperVector<uint32_t>(uint32_t const o)
really_inline SuperVector<64>::SuperVector(uint32_t const o)
{
u.v512[0] = _mm512_set1_epi32(static_cast<int32_t>(o));
}
template<>
template<>
really_inline SuperVector<64>::SuperVector<int64_t>(int64_t const o)
really_inline SuperVector<64>::SuperVector(int64_t const o)
{
u.v512[0] = _mm512_set1_epi64(o);
}
template<>
template<>
really_inline SuperVector<64>::SuperVector<uint64_t>(uint64_t const o)
really_inline SuperVector<64>::SuperVector(uint64_t const o)
{
u.v512[0] = _mm512_set1_epi64(static_cast<int64_t>(o));
}
@ -1772,16 +1768,18 @@ really_inline SuperVector<64> SuperVector<64>::pshufb_maskz(SuperVector<64> b, u
return {_mm512_maskz_shuffle_epi8(mask, u.v512[0], b.u.v512[0])};
}
#ifdef HS_OPTIMIZE
template<>
really_inline SuperVector<64> SuperVector<64>::alignr(SuperVector<64> &l, int8_t offset)
{
return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], offset)};
}
#else
template<>
really_inline SuperVector<64> SuperVector<64>::alignr(SuperVector<64> &l, int8_t offset)
{
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(offset)) {
if (offset == 16) {
return *this;
} else {
return {_mm512_alignr_epi8(u.v512[0], l.u.v512[0], offset)};
}
}
#endif
if(offset == 0) {
return *this;
} else if (offset < 32){
@ -1802,7 +1800,6 @@ really_inline SuperVector<64> SuperVector<64>::alignr(SuperVector<64> &l, int8_t
return *this;
}
}
#endif
#endif // HAVE_AVX512

View File

@ -0,0 +1,54 @@
/*
* Copyright (c) 2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CASEMASK_HPP
#define CASEMASK_HPP
#include "util/supervector/supervector.hpp"
static u8 CASEMASK[] = { 0xff, 0xdf };
static really_inline
u8 caseClear8(u8 x, bool noCase)
{
return static_cast<u8>(x & CASEMASK[(u8)noCase]);
}
template<uint16_t S>
static really_inline SuperVector<S> getMask(u8 c, bool noCase) {
u8 k = caseClear8(c, noCase);
return SuperVector<S>(k);
}
template<uint16_t S>
static really_inline SuperVector<S> getCaseMask(void) {
return SuperVector<S>(CASEMASK[1]);
}
#endif // CASEMASK_HPP

View File

@ -38,6 +38,8 @@
#include "util/supervector/arch/x86/types.hpp"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "util/supervector/arch/arm/types.hpp"
#elif defined(ARCH_PPC64EL)
#include "util/supervector/arch/ppc64el/types.hpp"
#endif
#if defined(HAVE_SIMD_512_BITS)
@ -162,6 +164,18 @@ public:
typename BaseVector<16>::type ALIGN_ATTR(BaseVector<16>::size) v128[SIZE / BaseVector<16>::size];
typename BaseVector<32>::type ALIGN_ATTR(BaseVector<32>::size) v256[SIZE / BaseVector<32>::size];
typename BaseVector<64>::type ALIGN_ATTR(BaseVector<64>::size) v512[SIZE / BaseVector<64>::size];
#if defined(ARCH_ARM32) || defined(ARCH_AARCH64) || defined(ARCH_PPC64EL)
uint64x2_t ALIGN_ATTR(BaseVector<16>::size) u64x2[SIZE / BaseVector<16>::size];
int64x2_t ALIGN_ATTR(BaseVector<16>::size) s64x2[SIZE / BaseVector<16>::size];
uint32x4_t ALIGN_ATTR(BaseVector<16>::size) u32x4[SIZE / BaseVector<16>::size];
int32x4_t ALIGN_ATTR(BaseVector<16>::size) s32x4[SIZE / BaseVector<16>::size];
uint16x8_t ALIGN_ATTR(BaseVector<16>::size) u16x8[SIZE / BaseVector<16>::size];
int16x8_t ALIGN_ATTR(BaseVector<16>::size) s16x8[SIZE / BaseVector<16>::size];
uint8x16_t ALIGN_ATTR(BaseVector<16>::size) u8x16[SIZE / BaseVector<16>::size];
int8x16_t ALIGN_ATTR(BaseVector<16>::size) s8x16[SIZE / BaseVector<16>::size];
#endif
uint64_t u64[SIZE / sizeof(uint64_t)];
int64_t s64[SIZE / sizeof(int64_t)];
uint32_t u32[SIZE / sizeof(uint32_t)];
@ -175,12 +189,12 @@ public:
} u;
constexpr SuperVector() {};
constexpr SuperVector(SuperVector const &other)
SuperVector(SuperVector const &other)
:u(other.u) {};
SuperVector(typename base_type::type const v);
template<typename T>
SuperVector(T const other);
SuperVector(T other);
SuperVector(SuperVector<SIZE/2> const lo, SuperVector<SIZE/2> const hi);
SuperVector(previous_type const lo, previous_type const hi);
@ -353,6 +367,8 @@ struct Unroller<End, End>
#include "util/supervector/arch/x86/impl.cpp"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "util/supervector/arch/arm/impl.cpp"
#elif defined(ARCH_PPC64EL)
#include "util/supervector/arch/ppc64el/impl.cpp"
#endif
#endif

View File

@ -63,7 +63,7 @@ target_link_libraries(unit-hyperscan hs expressionutil)
endif()
if (NOT (RELEASE_BUILD OR FAT_RUNTIME))
if (NOT FAT_RUNTIME )
set(unit_internal_SOURCES
${gtest_SOURCES}
internal/bitfield.cpp
@ -72,8 +72,6 @@ set(unit_internal_SOURCES
internal/compare.cpp
internal/database.cpp
internal/depth.cpp
internal/fdr.cpp
internal/fdr_flood.cpp
internal/fdr_loadval.cpp
internal/flat_set.cpp
internal/flat_map.cpp
@ -81,7 +79,6 @@ set(unit_internal_SOURCES
internal/graph_undirected.cpp
internal/insertion_ordered.cpp
internal/lbr.cpp
internal/limex_nfa.cpp
internal/multi_bit.cpp
internal/multi_bit_compress.cpp
internal/nfagraph_common.h
@ -121,13 +118,22 @@ if (BUILD_AVX2)
set(unit_internal_SOURCES
${unit_internal_SOURCES}
internal/masked_move.cpp
)
)
endif(BUILD_AVX2)
if (NOT RELEASE_BUILD)
set(unit_internal_SOURCES
${unit_internal_SOURCES}
internal/fdr.cpp
internal/fdr_flood.cpp
internal/limex_nfa.cpp
)
endif(NOT RELEASE_BUILD)
add_executable(unit-internal ${unit_internal_SOURCES})
set_target_properties(unit-internal PROPERTIES COMPILE_FLAGS "${HS_CXX_FLAGS}")
target_link_libraries(unit-internal hs corpusomatic)
endif(NOT (RELEASE_BUILD OR FAT_RUNTIME))
endif(NOT FAT_RUNTIME)
if (BUILD_CHIMERA)
# enable Chimera unit tests
@ -178,9 +184,10 @@ else()
else ()
add_custom_target(
unit
COMMAND bin/unit-internal
COMMAND bin/unit-hyperscan
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
DEPENDS unit-hyperscan
DEPENDS unit-internal unit-hyperscan
)
endif()
endif()

View File

@ -30,7 +30,7 @@
#include "config.h"
#include "gtest/gtest.h"
#include "nfa/vermicelli.h"
#include "nfa/vermicelli.hpp"
#define BOUND (~(VERM_BOUNDARY - 1))

View File

@ -183,11 +183,11 @@ void build_pshufb_masks_onebit(unsigned int bit, T *permute, T *compare) {
TEST(Shuffle, PackedExtract128_1) {
// Try all possible one-bit masks
for (unsigned int i = 0; i < 128; i++) {
for (unsigned int i = 0; i < 1; i++) {
// shuffle a single 1 bit to the front
m128 permute, compare;
build_pshufb_masks_onebit(i, &permute, &compare);
EXPECT_EQ(1U, packedExtract128(setbit<m128>(i), permute, compare));
EXPECT_EQ(1U, packedExtract128(setbit<m128>(i), permute, compare));
EXPECT_EQ(1U, packedExtract128(ones128(), permute, compare));
// we should get zero out of these cases
EXPECT_EQ(0U, packedExtract128(zeroes128(), permute, compare));
@ -199,6 +199,7 @@ TEST(Shuffle, PackedExtract128_1) {
}
}
TEST(Shuffle, PackedExtract_templatized_128_1) {
// Try all possible one-bit masks
for (unsigned int i = 0; i < 128; i++) {
@ -219,6 +220,7 @@ TEST(Shuffle, PackedExtract_templatized_128_1) {
}
#if defined(HAVE_AVX2)
TEST(Shuffle, PackedExtract256_1) {
// Try all possible one-bit masks

View File

@ -667,7 +667,10 @@ TEST(SimdUtilsTest, movq) {
simd = _mm_set_epi64x(~0LL, 0x123456789abcdef);
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
int64x2_t a = { 0x123456789abcdefLL, ~0LL };
simd = vreinterpretq_s64_s8(a);
simd = vreinterpretq_s32_s64(a);
#elif defined(ARCH_PPC64EL)
int64x2_t a = {0x123456789abcdefLL, ~0LL };
simd = (m128) a;
#endif
#endif
r = movq(simd);
@ -816,4 +819,126 @@ TEST(SimdUtilsTest, sub_u8_m128) {
EXPECT_TRUE(!diff128(result, loadu128(expec)));
}
TEST(SimdUtilsTest, load_m128_from_u64a) {
srand (time(NULL));
u64a tmp = rand();
m128 res = load_m128_from_u64a(&tmp);
m128 cmp = set2x64(0LL, tmp);
//print_m128_16x8("res",res);
//print_m128_16x8("cmp",cmp);
EXPECT_TRUE(!diff128(res, cmp));
}
TEST(SimdUtilsTest, movemask_128) {
srand (time(NULL));
u8 vec[16] = {0};
u8 vec2[16] = {0};
u16 r = rand() % 100 + 1;
for(int i=0; i<16; i++) {
if (r & (1 << i)) {
vec[i] = 0xff;
}
}
m128 v = loadu128(vec);
u16 mask = movemask128(v);
for(int i=0; i<16; i++) {
if (mask & (1 << i)) {
vec2[i] = 0xff;
}
}
for (int i=0; i<16; i++) {
ASSERT_EQ(vec[i],vec2[i]);
}
}
TEST(SimdUtilsTest, pshufb_m128) {
srand (time(NULL));
u8 vec[16];
for (int i=0; i<16; i++) {
vec[i] = rand() % 1000 + 1;
}
u8 vec2[16];
for (int i=0; i<16; i++) {
vec2[i]=i + (rand() % 100 + 0);
}
// On Intel, if bit 0x80 is set, then result is zero, otherwise which the lane it is &0xf.
// In NEON or PPC, if >=16, then the result is zero, otherwise it is that lane.
// Thus bellow we have to check that case to NEON or PPC.
//Insure that vec3 has at least 1 or more 0x80 elements
u8 vec3[16] = {0};
vec3[15] = 0x80;
for (int i=0; i<15; i++) {
int l = rand() % 1000 + 0;
if (l % 16 ==0){
vec3[i]= 0x80;
} else{
vec3[i]= vec2[i];
}
}
/*
printf("vec3: ");
for(int i=15; i>=0; i--) { printf("%02x, ", vec3[i]); }
printf("\n");
*/
//Test Special Case
m128 v1 = loadu128(vec);
m128 v2 = loadu128(vec3);
m128 vres = pshufb_m128(v1, v2);
u8 res[16];
storeu128(res, vres);
for (int i=0; i<16; i++) {
if(vec3[i] & 0x80){
ASSERT_EQ(res[i], 0);
}else{
ASSERT_EQ(vec[vec3[i] % 16 ], res[i]);
}
}
//Test Other Cases
v1 = loadu128(vec);
v2 = loadu128(vec2);
vres = pshufb_m128(v1, v2);
storeu128(res, vres);
for (int i=0; i<16; i++) {
if(vec2[i] & 0x80){
ASSERT_EQ(res[i], 0);
}else{
ASSERT_EQ(vec[vec2[i] % 16 ], res[i]);
}
}
}
/*Define ALIGNR128 macro*/
#define TEST_ALIGNR128(v1, v2, buf, l) { \
m128 v_aligned = palignr(v2,v1, l); \
storeu128(res, v_aligned); \
for (size_t i=0; i<16; i++) { \
ASSERT_EQ(res[i], vec[i + l]); \
} \
}
TEST(SimdUtilsTest, Alignr128){
u8 vec[32];
u8 res[16];
for (int i=0; i<32; i++) {
vec[i]=i;
}
m128 v1 = loadu128(vec);
m128 v2 = loadu128(vec+16);
for (int j = 0; j<16; j++){
TEST_ALIGNR128(v1, v2, vec, j);
}
}
} // namespace

View File

@ -155,9 +155,13 @@ TEST(SuperVectorUtilsTest,OPXOR128c){
TEST(SuperVectorUtilsTest,OPANDNOT128c){
auto SP1 = SuperVector<16>::Zeroes();
auto SP2 = SuperVector<16>::Ones();
SP1 = SP1.opandnot(SP2);
for (int i=0; i<16; i++) {
ASSERT_EQ(SP1.u.u8[i],0xff);
}
SP2 = SP2.opandnot(SP1);
for (int i=0; i<16; i++) {
ASSERT_EQ(SP2.u.s8[i],0);
ASSERT_EQ(SP2.u.u8[i],0);
}
}
@ -280,13 +284,17 @@ TEST(SuperVectorUtilsTest,pshufb128c) {
}
u8 vec2[16];
for (int i=0; i<16; i++) {
vec2[i]=i;
vec2[i]=i + (rand() % 15 + 0);
}
auto SP1 = SuperVector<16>::loadu(vec);
auto SP2 = SuperVector<16>::loadu(vec2);
auto SResult = SP1.template pshufb<true>(SP2);
for (int i=0; i<16; i++) {
ASSERT_EQ(vec[vec2[i]],SResult.u.u8[i]);
if(vec2[i] & 0x80){
ASSERT_EQ(SResult.u.u8[i], 0);
}else{
ASSERT_EQ(vec[vec2[i] % 16 ],SResult.u.u8[i]);
}
}
}

View File

@ -30,7 +30,7 @@
#include "config.h"
#include "gtest/gtest.h"
#include "nfa/vermicelli.h"
#include "nfa/vermicelli.hpp"
TEST(Vermicelli, ExecNoMatch1) {
char t1[] = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb";

View File

@ -33,9 +33,6 @@ SET(corpusomatic_SRCS
ng_find_matches.cpp
)
add_library(corpusomatic STATIC ${corpusomatic_SRCS})
if (ARCH_IA32 OR ARCH_X86_64)
set_target_properties(corpusomatic PROPERTIES COMPILE_FLAGS "-mssse3")
endif ()
set(databaseutil_SRCS
database_util.cpp