Reinforced Teddy with 1-byte approach, based on "shift-or" and AVX2.

This commit is contained in:
Chang, Harry
2017-01-22 12:23:25 -08:00
committed by Matthew Barr
parent b09e3acd04
commit dbd3f66e87
10 changed files with 1070 additions and 1233 deletions

View File

@@ -38,8 +38,12 @@
#include "ue2common.h"
#include "util/bitutils.h"
#include "util/simd_utils.h"
#include "util/uniform_ops.h"
extern const u8 ALIGN_DIRECTIVE p_mask_arr[17][32];
#if defined(__AVX2__)
extern const u8 ALIGN_DIRECTIVE p_mask_arr256[33][64];
#endif
#ifdef ARCH_64_BIT
#define TEDDY_CONF_TYPE u64a
@@ -110,8 +114,27 @@ void copyRuntBlock128(u8 *dst, const u8 *src, size_t len) {
}
// Note: p_mask is an output param that initialises a poison mask.
// *p_mask = load128(p_mask_arr[n] + 16 - m) means:
// m byte 0xff in the beginning, followed by n byte 0x00,
// then followed by the rest bytes 0xff.
// ptr >= lo:
// no history.
// for end/short zone, ptr==lo and start_offset==0
// for start zone, see below
// lo ptr hi hi
// |----------|-------|----------------|............|
// start 0 start+offset end(<=16)
// p_mask ffff..ff0000...........00ffff..........
// ptr < lo:
// only start zone.
// history
// ptr lo hi hi
// |----------|-------|----------------|............|
// 0 start start+offset end(<=16)
// p_mask ffff.....ffffff..ff0000...........00ffff..........
static really_inline
m128 vectoredLoad128(m128 *p_mask, const u8 *ptr, const u8 *lo, const u8 *hi,
m128 vectoredLoad128(m128 *p_mask, const u8 *ptr, const size_t start_offset,
const u8 *lo, const u8 *hi,
const u8 *buf_history, size_t len_history,
const u32 nMasks) {
union {
@@ -123,27 +146,34 @@ m128 vectoredLoad128(m128 *p_mask, const u8 *ptr, const u8 *lo, const u8 *hi,
uintptr_t copy_start;
uintptr_t copy_len;
if (ptr >= lo) {
if (ptr >= lo) { // short/end/start zone
uintptr_t start = (uintptr_t)(ptr - lo);
uintptr_t avail = (uintptr_t)(hi - ptr);
if (avail >= 16) {
*p_mask = load128(p_mask_arr[16] + 16);
assert(start_offset - start <= 16);
*p_mask = loadu128(p_mask_arr[16 - start_offset + start]
+ 16 - start_offset + start);
return loadu128(ptr);
}
*p_mask = load128(p_mask_arr[avail] + 16);
assert(start_offset - start <= avail);
*p_mask = loadu128(p_mask_arr[avail - start_offset + start]
+ 16 - start_offset + start);
copy_start = 0;
copy_len = avail;
} else {
} else { // start zone
uintptr_t need = MIN((uintptr_t)(lo - ptr),
MIN(len_history, nMasks - 1));
uintptr_t start = (uintptr_t)(lo - ptr);
uintptr_t i;
for (i = start - need; ptr + i < lo; i++) {
u.val8[i] = buf_history[len_history - (lo - (ptr + i))];
for (i = start - need; i < start; i++) {
u.val8[i] = buf_history[len_history - (start - i)];
}
uintptr_t end = MIN(16, (uintptr_t)(hi - ptr));
*p_mask = loadu128(p_mask_arr[end - start] + 16 - start);
copy_start = i;
copy_len = end - i;
assert(start + start_offset <= end);
*p_mask = loadu128(p_mask_arr[end - start - start_offset]
+ 16 - start - start_offset);
copy_start = start;
copy_len = end - start;
}
// Runt block from the buffer.
@@ -152,6 +182,135 @@ m128 vectoredLoad128(m128 *p_mask, const u8 *ptr, const u8 *lo, const u8 *hi,
return u.val128;
}
#if defined(__AVX2__)
/*
* \brief Copy a block of [0,31] bytes efficiently.
*
* This function is a workaround intended to stop some compilers from
* synthesizing a memcpy function call out of the copy of a small number of
* bytes that we do in vectoredLoad256.
*/
static really_inline
void copyRuntBlock256(u8 *dst, const u8 *src, size_t len) {
switch (len) {
case 0:
break;
case 1:
*dst = *src;
break;
case 2:
unaligned_store_u16(dst, unaligned_load_u16(src));
break;
case 3:
unaligned_store_u16(dst, unaligned_load_u16(src));
dst[2] = src[2];
break;
case 4:
unaligned_store_u32(dst, unaligned_load_u32(src));
break;
case 5:
case 6:
case 7:
/* Perform copy with two overlapping 4-byte chunks. */
unaligned_store_u32(dst + len - 4, unaligned_load_u32(src + len - 4));
unaligned_store_u32(dst, unaligned_load_u32(src));
break;
case 8:
unaligned_store_u64a(dst, unaligned_load_u64a(src));
break;
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
/* Perform copy with two overlapping 8-byte chunks. */
unaligned_store_u64a(dst + len - 8, unaligned_load_u64a(src + len - 8));
unaligned_store_u64a(dst, unaligned_load_u64a(src));
break;
case 16:
storeu128(dst, loadu128(src));
break;
default:
/* Perform copy with two overlapping 16-byte chunks. */
assert(len < 32);
storeu128(dst + len - 16, loadu128(src + len - 16));
storeu128(dst, loadu128(src));
break;
}
}
// Note: p_mask is an output param that initialises a poison mask.
// *p_mask = load256(p_mask_arr256[n] + 32 - m) means:
// m byte 0xff in the beginning, followed by n byte 0x00,
// then followed by the rest bytes 0xff.
// ptr >= lo:
// no history.
// for end/short zone, ptr==lo and start_offset==0
// for start zone, see below
// lo ptr hi hi
// |----------|-------|----------------|............|
// start 0 start+offset end(<=32)
// p_mask ffff..ff0000...........00ffff..........
// ptr < lo:
// only start zone.
// history
// ptr lo hi hi
// |----------|-------|----------------|............|
// 0 start start+offset end(<=32)
// p_mask ffff.....ffffff..ff0000...........00ffff..........
static really_inline
m256 vectoredLoad256(m256 *p_mask, const u8 *ptr, const size_t start_offset,
const u8 *lo, const u8 *hi,
const u8 *buf_history, size_t len_history,
const u32 nMasks) {
union {
u8 val8[32];
m256 val256;
} u;
u.val256 = zeroes256();
uintptr_t copy_start;
uintptr_t copy_len;
if (ptr >= lo) { // short/end/start zone
uintptr_t start = (uintptr_t)(ptr - lo);
uintptr_t avail = (uintptr_t)(hi - ptr);
if (avail >= 32) {
assert(start_offset - start <= 32);
*p_mask = loadu256(p_mask_arr256[32 - start_offset + start]
+ 32 - start_offset + start);
return loadu256(ptr);
}
assert(start_offset - start <= avail);
*p_mask = loadu256(p_mask_arr256[avail - start_offset + start]
+ 32 - start_offset + start);
copy_start = 0;
copy_len = avail;
} else { //start zone
uintptr_t need = MIN((uintptr_t)(lo - ptr),
MIN(len_history, nMasks - 1));
uintptr_t start = (uintptr_t)(lo - ptr);
uintptr_t i;
for (i = start - need; i < start; i++) {
u.val8[i] = buf_history[len_history - (start - i)];
}
uintptr_t end = MIN(32, (uintptr_t)(hi - ptr));
assert(start + start_offset <= end);
*p_mask = loadu256(p_mask_arr256[end - start - start_offset]
+ 32 - start - start_offset);
copy_start = start;
copy_len = end - start;
}
// Runt block from the buffer.
copyRuntBlock256(&u.val8[copy_start], &ptr[copy_start], copy_len);
return u.val256;
}
#endif // __AVX2__
static really_inline
u64a getConfVal(const struct FDR_Runtime_Args *a, const u8 *ptr, u32 byte,
CautionReason reason) {
@@ -196,53 +355,17 @@ void do_confWithBit_teddy(TEDDY_CONF_TYPE *conf, u8 bucket, u8 offset,
} while (unlikely(*conf));
}
static really_inline
void do_confWithBit1_teddy(TEDDY_CONF_TYPE *conf, u8 bucket, u8 offset,
const u32 *confBase, CautionReason reason,
const struct FDR_Runtime_Args *a, const u8 *ptr,
hwlmcb_rv_t *control, u32 *last_match) {
do {
u32 bit = TEDDY_FIND_AND_CLEAR_LSB(conf);
u32 byte = bit / bucket + offset;
u32 idx = bit % bucket;
u32 cf = confBase[idx];
const struct FDRConfirm *fdrc = (const struct FDRConfirm *)
((const u8 *)confBase + cf);
if (!(fdrc->groups & *control)) {
continue;
}
u64a confVal = getConfVal(a, ptr, byte, reason);
confWithBit1(fdrc, a, ptr - a->buf + byte, control, last_match,
confVal);
} while (unlikely(*conf));
}
static really_inline
void do_confWithBitMany_teddy(TEDDY_CONF_TYPE *conf, u8 bucket, u8 offset,
const u32 *confBase, CautionReason reason,
const struct FDR_Runtime_Args *a, const u8 *ptr,
hwlmcb_rv_t *control, u32 *last_match) {
do {
u32 bit = TEDDY_FIND_AND_CLEAR_LSB(conf);
u32 byte = bit / bucket + offset;
u32 idx = bit % bucket;
u32 cf = confBase[idx];
const struct FDRConfirm *fdrc = (const struct FDRConfirm *)
((const u8 *)confBase + cf);
if (!(fdrc->groups & *control)) {
continue;
}
u64a confVal = getConfVal(a, ptr, byte, reason);
confWithBitMany(fdrc, a, ptr - a->buf + byte, reason, control,
last_match, confVal);
} while (unlikely(*conf));
}
static really_inline
const m128 *getMaskBase(const struct Teddy *teddy) {
return (const m128 *)((const u8 *)teddy + ROUNDUP_CL(sizeof(struct Teddy)));
}
static really_inline
const u64a *getReinforcedMaskBase(const struct Teddy *teddy, u8 numMask) {
return (const u64a *)((const u8 *)getMaskBase(teddy)
+ ROUNDUP_CL(2 * numMask * sizeof(m128)));
}
static really_inline
const u32 *getConfBase(const struct Teddy *teddy) {
return (const u32 *)((const u8 *)teddy + teddy->confOffset);