Reinforced Teddy with 1-byte approach, based on "shift-or" and AVX2.

This commit is contained in:
Chang, Harry
2017-01-22 12:23:25 -08:00
committed by Matthew Barr
parent b09e3acd04
commit dbd3f66e87
10 changed files with 1070 additions and 1233 deletions

View File

@@ -309,74 +309,65 @@ bool TeddyCompiler::pack(map<BucketIndex,
return true;
}
bytecode_ptr<FDR> TeddyCompiler::build() {
assert(eng.numMasks <= MAX_NUM_MASKS);
// this entry has all-zero mask to skip reinforcement
#define NO_REINFORCEMENT N_CHARS
if (lits.size() > eng.getNumBuckets() * TEDDY_BUCKET_LOAD) {
DEBUG_PRINTF("too many literals: %zu\n", lits.size());
return nullptr;
// this means every entry in reinforcement table
#define ALL_CHAR_SET N_CHARS
// each item's reinforcement mask has REINFORCED_MSK_LEN bytes
#define REINFORCED_MSK_LEN 8
static
void initReinforcedTable(u8 *reinforcedMsk) {
u64a *mask = (u64a *)reinforcedMsk;
fill_n(mask, N_CHARS, 0x00ffffffffffffffULL);
}
static
void fillReinforcedMskZero(u8 *reinforcedMsk) {
u8 *mc = reinforcedMsk + NO_REINFORCEMENT * REINFORCED_MSK_LEN;
fill_n(mc, REINFORCED_MSK_LEN, 0x00);
}
static
void fillReinforcedMsk(u8 *reinforcedMsk, u16 c, u32 j, u8 bmsk) {
assert(j > 0);
if (c == ALL_CHAR_SET) {
for (size_t i = 0; i < N_CHARS; i++) {
u8 *mc = reinforcedMsk + i * REINFORCED_MSK_LEN;
mc[j - 1] &= ~bmsk;
}
} else {
u8 *mc = reinforcedMsk + c * REINFORCED_MSK_LEN;
mc[j - 1] &= ~bmsk;
}
}
#ifdef TEDDY_DEBUG
for (size_t i = 0; i < lits.size(); i++) {
printf("lit %zu (len = %zu, %s) is ", i, lits[i].s.size(),
lits[i].nocase ? "caseless" : "caseful");
for (size_t j = 0; j < lits[i].s.size(); j++) {
printf("%02x", ((u32)lits[i].s[j]) & 0xff);
static
void dumpReinforcedMaskTable(const u8 *msks) {
for (u32 i = 0; i <= N_CHARS; i++) {
printf("0x%02x: ", i);
for (u32 j = 0; j < REINFORCED_MSK_LEN; j++) {
u8 val = msks[i * REINFORCED_MSK_LEN + j];
for (u32 k = 0; k < 8; k++) {
printf("%s", ((val >> k) & 0x1) ? "1" : "0");
}
printf(" ");
}
printf("\n");
}
}
#endif
map<BucketIndex, std::vector<LiteralIndex>> bucketToLits;
if (eng.needConfirm(lits)) {
if (!pack(bucketToLits)) {
DEBUG_PRINTF("more lits (%zu) than buckets (%u), can't pack.\n",
lits.size(), eng.getNumBuckets());
return nullptr;
}
} else {
for (u32 i = 0; i < lits.size(); i++) {
bucketToLits[i].push_back(i);
}
}
u32 maskWidth = eng.getNumBuckets() / 8;
size_t headerSize = sizeof(Teddy);
size_t maskLen = eng.numMasks * 16 * 2 * maskWidth;
auto floodTable = setupFDRFloodControl(lits, eng, grey);
auto confirmTable = setupFullConfs(lits, eng, bucketToLits, make_small);
// Note: we place each major structure here on a cacheline boundary.
size_t size = ROUNDUP_CL(headerSize) + ROUNDUP_CL(maskLen) +
ROUNDUP_CL(confirmTable.size()) + floodTable.size();
auto fdr = make_zeroed_bytecode_ptr<FDR>(size, 64);
assert(fdr); // otherwise would have thrown std::bad_alloc
Teddy *teddy = (Teddy *)fdr.get(); // ugly
u8 *teddy_base = (u8 *)teddy;
// Write header.
teddy->size = size;
teddy->engineID = eng.getID();
teddy->maxStringLen = verify_u32(maxLen(lits));
// Write confirm structures.
u8 *ptr = teddy_base + ROUNDUP_CL(headerSize) + ROUNDUP_CL(maskLen);
assert(ISALIGNED_CL(ptr));
teddy->confOffset = verify_u32(ptr - teddy_base);
memcpy(ptr, confirmTable.get(), confirmTable.size());
ptr += ROUNDUP_CL(confirmTable.size());
// Write flood control structures.
assert(ISALIGNED_CL(ptr));
teddy->floodOffset = verify_u32(ptr - teddy_base);
memcpy(ptr, floodTable.get(), floodTable.size());
ptr += floodTable.size();
// Write teddy masks.
u8 *baseMsk = teddy_base + ROUNDUP_CL(headerSize);
static
void fillNibbleMasks(const map<BucketIndex,
vector<LiteralIndex>> &bucketToLits,
const vector<hwlmLiteral> &lits,
u32 numMasks, u32 maskWidth, size_t maskLen,
u8 *baseMsk) {
memset(baseMsk, 0xff, maskLen);
for (const auto &b2l : bucketToLits) {
const u32 &bucket_id = b2l.first;
@@ -389,7 +380,7 @@ bytecode_ptr<FDR> TeddyCompiler::build() {
const u32 sz = verify_u32(l.s.size());
// fill in masks
for (u32 j = 0; j < eng.numMasks; j++) {
for (u32 j = 0; j < numMasks; j++) {
const u32 msk_id_lo = j * 2 * maskWidth + (bucket_id / 8);
const u32 msk_id_hi = (j * 2 + 1) * maskWidth + (bucket_id / 8);
const u32 lo_base = msk_id_lo * 16;
@@ -399,8 +390,8 @@ bytecode_ptr<FDR> TeddyCompiler::build() {
// locations in these masks with '1'
if (j >= sz) {
for (u32 n = 0; n < 16; n++) {
baseMsk[lo_base + n] |= bmsk;
baseMsk[hi_base + n] |= bmsk;
baseMsk[lo_base + n] &= ~bmsk;
baseMsk[hi_base + n] &= ~bmsk;
}
} else {
u8 c = l.s[sz - 1 - j];
@@ -419,27 +410,139 @@ bytecode_ptr<FDR> TeddyCompiler::build() {
for (u8 cm = 0; cm < 0x10; cm++) {
if ((cm & m_lo) == (cmp_lo & m_lo)) {
baseMsk[lo_base + cm] |= bmsk;
baseMsk[lo_base + cm] &= ~bmsk;
}
if ((cm & m_hi) == (cmp_hi & m_hi)) {
baseMsk[hi_base + cm] |= bmsk;
baseMsk[hi_base + cm] &= ~bmsk;
}
}
} else {
if (l.nocase && ourisalpha(c)) {
u32 cmHalfClear = (0xdf >> hiShift) & 0xf;
u32 cmHalfSet = (0x20 >> hiShift) & 0xf;
baseMsk[hi_base + (n_hi & cmHalfClear)] |= bmsk;
baseMsk[hi_base + (n_hi | cmHalfSet)] |= bmsk;
baseMsk[hi_base + (n_hi & cmHalfClear)] &= ~bmsk;
baseMsk[hi_base + (n_hi | cmHalfSet)] &= ~bmsk;
} else {
baseMsk[hi_base + n_hi] |= bmsk;
baseMsk[hi_base + n_hi] &= ~bmsk;
}
baseMsk[lo_base + n_lo] |= bmsk;
baseMsk[lo_base + n_lo] &= ~bmsk;
}
}
}
}
}
}
static
void fillReinforcedTable(const map<BucketIndex,
vector<LiteralIndex>> &bucketToLits,
const vector<hwlmLiteral> &lits,
u8 *reinforcedMsk) {
initReinforcedTable(reinforcedMsk);
for (const auto &b2l : bucketToLits) {
const u32 &bucket_id = b2l.first;
const vector<LiteralIndex> &ids = b2l.second;
const u8 bmsk = 1U << (bucket_id % 8);
for (const LiteralIndex &lit_id : ids) {
const hwlmLiteral &l = lits[lit_id];
DEBUG_PRINTF("putting lit %u into bucket %u\n", lit_id, bucket_id);
const u32 sz = verify_u32(l.s.size());
// fill in reinforced masks
for (u32 j = 1; j < REINFORCED_MSK_LEN; j++) {
if (sz - 1 < j) {
fillReinforcedMsk(reinforcedMsk, ALL_CHAR_SET, j, bmsk);
} else {
u8 c = l.s[sz - 1 - j];
if (l.nocase && ourisalpha(c)) {
u8 c_up = c & 0xdf;
fillReinforcedMsk(reinforcedMsk, c_up, j, bmsk);
u8 c_lo = c | 0x20;
fillReinforcedMsk(reinforcedMsk, c_lo, j, bmsk);
} else {
fillReinforcedMsk(reinforcedMsk, c, j, bmsk);
}
}
}
}
}
fillReinforcedMskZero(reinforcedMsk);
}
bytecode_ptr<FDR> TeddyCompiler::build() {
assert(eng.numMasks <= MAX_NUM_MASKS);
if (lits.size() > eng.getNumBuckets() * TEDDY_BUCKET_LOAD) {
DEBUG_PRINTF("too many literals: %zu\n", lits.size());
return nullptr;
}
#ifdef TEDDY_DEBUG
for (size_t i = 0; i < lits.size(); i++) {
printf("lit %zu (len = %zu, %s) is ", i, lits[i].s.size(),
lits[i].nocase ? "caseless" : "caseful");
for (size_t j = 0; j < lits[i].s.size(); j++) {
printf("%02x", ((u32)lits[i].s[j])&0xff);
}
printf("\n");
}
#endif
map<BucketIndex, std::vector<LiteralIndex>> bucketToLits;
if (!pack(bucketToLits)) {
DEBUG_PRINTF("more lits (%zu) than buckets (%u), can't pack.\n",
lits.size(), eng.getNumBuckets());
return nullptr;
}
u32 maskWidth = eng.getNumBuckets() / 8;
size_t headerSize = sizeof(Teddy);
size_t maskLen = eng.numMasks * 16 * 2 * maskWidth;
size_t reinforcedMaskLen = (N_CHARS + 1) * REINFORCED_MSK_LEN;
auto floodTable = setupFDRFloodControl(lits, eng, grey);
auto confirmTable = setupFullConfs(lits, eng, bucketToLits, make_small);
// Note: we place each major structure here on a cacheline boundary.
size_t size = ROUNDUP_CL(headerSize) + ROUNDUP_CL(maskLen) +
ROUNDUP_CL(reinforcedMaskLen) +
ROUNDUP_CL(confirmTable.size()) + floodTable.size();
auto fdr = make_zeroed_bytecode_ptr<FDR>(size, 64);
assert(fdr); // otherwise would have thrown std::bad_alloc
Teddy *teddy = (Teddy *)fdr.get(); // ugly
u8 *teddy_base = (u8 *)teddy;
// Write header.
teddy->size = size;
teddy->engineID = eng.getID();
teddy->maxStringLen = verify_u32(maxLen(lits));
// Write confirm structures.
u8 *ptr = teddy_base + ROUNDUP_CL(headerSize) + ROUNDUP_CL(maskLen) +
ROUNDUP_CL(reinforcedMaskLen);
assert(ISALIGNED_CL(ptr));
teddy->confOffset = verify_u32(ptr - teddy_base);
memcpy(ptr, confirmTable.get(), confirmTable.size());
ptr += ROUNDUP_CL(confirmTable.size());
// Write flood control structures.
assert(ISALIGNED_CL(ptr));
teddy->floodOffset = verify_u32(ptr - teddy_base);
memcpy(ptr, floodTable.get(), floodTable.size());
ptr += floodTable.size();
// Write teddy masks.
u8 *baseMsk = teddy_base + ROUNDUP_CL(headerSize);
fillNibbleMasks(bucketToLits, lits, eng.numMasks, maskWidth, maskLen,
baseMsk);
// Write reinforcement masks.
u8 *reinforcedMsk = baseMsk + ROUNDUP_CL(maskLen);
fillReinforcedTable(bucketToLits, lits, reinforcedMsk);
#ifdef TEDDY_DEBUG
for (u32 i = 0; i < eng.numMasks * 2; i++) {
@@ -452,6 +555,10 @@ bytecode_ptr<FDR> TeddyCompiler::build() {
}
printf("\n");
}
printf("\n===============================================\n"
"reinforced mask table for low boundary (original)\n\n");
dumpReinforcedMaskTable(reinforcedMsk);
#endif
return fdr;