refactor Noodle to use the same loop as Shufti/Truffle, now it's at least 2x as fast

This commit is contained in:
Konstantinos Margaritis 2023-12-14 23:06:40 +02:00 committed by Konstantinos Margaritis
parent 17fb9f41f6
commit d4fde85897

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
* Copyright (c) 2020-2023, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@ -34,7 +34,7 @@
static really_really_inline
hwlm_error_t single_zscan(const struct noodTable *n,const u8 *d, const u8 *buf,
Z_TYPE z, size_t len, const struct cb_info *cbi) {
Z_TYPE z, size_t len, const struct cb_info *cbi) {
while (unlikely(z)) {
Z_TYPE pos = JOIN(findAndClearLSB_, Z_BITS)(&z) >> Z_POSSHIFT;
size_t matchPos = d - buf + pos;
@ -47,9 +47,10 @@ hwlm_error_t single_zscan(const struct noodTable *n,const u8 *d, const u8 *buf,
static really_really_inline
hwlm_error_t double_zscan(const struct noodTable *n,const u8 *d, const u8 *buf,
Z_TYPE z, size_t len, const struct cb_info *cbi) {
Z_TYPE z, size_t len, const struct cb_info *cbi) {
while (unlikely(z)) {
Z_TYPE pos = JOIN(findAndClearLSB_, Z_BITS)(&z) >> Z_POSSHIFT;
DEBUG_PRINTF("pos %u\n", pos);
size_t matchPos = d - buf + pos - 1;
DEBUG_PRINTF("match pos %zu\n", matchPos);
hwlmcb_rv_t rv = final(n, buf, len, true, cbi, matchPos);
@ -58,116 +59,6 @@ hwlm_error_t double_zscan(const struct noodTable *n,const u8 *d, const u8 *buf,
return HWLM_SUCCESS;
}
template<uint16_t S>
static really_inline
hwlm_error_t scanSingleShort(const struct noodTable *n, const u8 *buf,
SuperVector<S> caseMask, SuperVector<S> mask1,
const struct cb_info *cbi, size_t len, size_t start,
size_t end) {
const u8 *d = buf + start;
DEBUG_PRINTF("start %zu end %zu\n", start, end);
const size_t l = end - start;
DEBUG_PRINTF("l = %ld\n", l);
//assert(l <= 64);
if (!l) {
return HWLM_SUCCESS;
}
SuperVector<S> v = SuperVector<S>::Zeroes();
memcpy(&v.u, d, l);
typename SuperVector<S>::comparemask_type mask =
SINGLE_LOAD_MASK(l * SuperVector<S>::mask_width());
v = v & caseMask;
typename SuperVector<S>::comparemask_type z = mask & mask1.eqmask(v);
z = SuperVector<S>::iteration_mask(z);
return single_zscan(n, d, buf, z, len, cbi);
}
// The short scan routine. It is used both to scan data up to an
// alignment boundary if needed and to finish off data that the aligned scan
// function can't handle (due to small/unaligned chunk at end)
template<uint16_t S>
static really_inline
hwlm_error_t scanSingleUnaligned(const struct noodTable *n, const u8 *buf,
SuperVector<S> caseMask, SuperVector<S> mask1,
const struct cb_info *cbi, size_t len, size_t offset,
size_t start,
size_t end) {
const u8 *d = buf + offset;
DEBUG_PRINTF("start %zu end %zu offset %zu\n", start, end, offset);
const size_t l = end - start;
DEBUG_PRINTF("l = %ld\n", l);
assert(l <= 64);
if (!l) {
return HWLM_SUCCESS;
}
size_t buf_off = start - offset;
typename SuperVector<S>::comparemask_type mask =
SINGLE_LOAD_MASK(l * SuperVector<S>::mask_width())
<< (buf_off * SuperVector<S>::mask_width());
SuperVector<S> v = SuperVector<S>::loadu(d) & caseMask;
typename SuperVector<S>::comparemask_type z = mask & mask1.eqmask(v);
z = SuperVector<S>::iteration_mask(z);
return single_zscan(n, d, buf, z, len, cbi);
}
template<uint16_t S>
static really_inline
hwlm_error_t scanDoubleShort(const struct noodTable *n, const u8 *buf,
SuperVector<S> caseMask, SuperVector<S> mask1, SuperVector<S> mask2,
const struct cb_info *cbi, size_t len, size_t start, size_t end) {
const u8 *d = buf + start;
DEBUG_PRINTF("start %zu end %zu\n", start, end);
const size_t l = end - start;
assert(l <= S);
if (!l) {
return HWLM_SUCCESS;
}
SuperVector<S> v = SuperVector<S>::Zeroes();
memcpy(&v.u, d, l);
v = v & caseMask;
typename SuperVector<S>::comparemask_type mask =
DOUBLE_LOAD_MASK(l * SuperVector<S>::mask_width());
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(v);
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(v);
typename SuperVector<S>::comparemask_type z =
mask & (z1 << (SuperVector<S>::mask_width())) & z2;
z = SuperVector<S>::iteration_mask(z);
return double_zscan(n, d, buf, z, len, cbi);
}
template<uint16_t S>
static really_inline
hwlm_error_t scanDoubleUnaligned(const struct noodTable *n, const u8 *buf,
SuperVector<S> caseMask, SuperVector<S> mask1, SuperVector<S> mask2,
const struct cb_info *cbi, size_t len, size_t offset, size_t start, size_t end) {
const u8 *d = buf + offset;
DEBUG_PRINTF("start %zu end %zu offset %zu\n", start, end, offset);
const size_t l = end - start;
assert(l <= S);
if (!l) {
return HWLM_SUCCESS;
}
SuperVector<S> v = SuperVector<S>::loadu(d) & caseMask;
size_t buf_off = start - offset;
typename SuperVector<S>::comparemask_type mask =
DOUBLE_LOAD_MASK(l * SuperVector<S>::mask_width())
<< (buf_off * SuperVector<S>::mask_width());
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(v);
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(v);
typename SuperVector<S>::comparemask_type z =
mask & (z1 << SuperVector<S>::mask_width()) & z2;
z = SuperVector<S>::iteration_mask(z);
return double_zscan(n, d, buf, z, len, cbi);
}
template <uint16_t S>
static really_inline
hwlm_error_t scanSingleMain(const struct noodTable *n, const u8 *buf,
@ -175,32 +66,36 @@ hwlm_error_t scanSingleMain(const struct noodTable *n, const u8 *buf,
SuperVector<S> caseMask, SuperVector<S> mask1,
const struct cb_info *cbi) {
size_t start = offset + n->msk_len - 1;
size_t end = len;
const u8 *d = buf + start;
const u8 *e = buf + end;
DEBUG_PRINTF("start %p end %p \n", d, e);
assert(d < e);
if (e - d < S) {
return scanSingleShort(n, buf, caseMask, mask1, cbi, len, start, end);
}
if (d + S <= e) {
// peel off first part to cacheline boundary
const u8 *d1 = ROUNDUP_PTR(d, S);
DEBUG_PRINTF("until aligned %p \n", d1);
if (scanSingleUnaligned(n, buf, caseMask, mask1, cbi, len, start, start, d1 - buf) == HWLM_TERMINATED) {
return HWLM_TERMINATED;
const u8 *buf_end = buf + len;
assert(d < buf_end);
DEBUG_PRINTF("noodle %p start %zu len %zu\n", buf, start, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
__builtin_prefetch(d + 16*64);
assert(d < buf_end);
if (d + S <= buf_end) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
const u8 *d1 = ROUNDUP_PTR(d, S);
DEBUG_PRINTF("d1 - d: %ld \n", d1 - d);
size_t l = d1 - d;
SuperVector<S> chars = SuperVector<S>::loadu(d) & caseMask;
typename SuperVector<S>::comparemask_type mask = SINGLE_LOAD_MASK(l * SuperVector<S>::mask_width());
typename SuperVector<S>::comparemask_type z = mask & mask1.eqmask(chars);
hwlm_error_t rv = single_zscan(n, d, buf, z, len, cbi);
RETURN_IF_TERMINATED(rv);
d = d1;
}
d = d1;
size_t loops = (end - (d - buf)) / S;
DEBUG_PRINTF("loops %ld \n", loops);
for (size_t i = 0; i < loops; i++, d+= S) {
while(d + S <= buf_end) {
__builtin_prefetch(d + 16*64);
DEBUG_PRINTF("d %p \n", d);
const u8 *base = ROUNDUP_PTR(d, 64);
// On large packet buffers, this prefetch appears to get us about 2%.
__builtin_prefetch(base + 256);
SuperVector<S> v = SuperVector<S>::load(d) & caseMask;
typename SuperVector<S>::comparemask_type z = mask1.eqmask(v);
@ -208,17 +103,23 @@ hwlm_error_t scanSingleMain(const struct noodTable *n, const u8 *buf,
hwlm_error_t rv = single_zscan(n, d, buf, z, len, cbi);
RETURN_IF_TERMINATED(rv);
d += S;
}
}
DEBUG_PRINTF("d %p e %p \n", d, e);
DEBUG_PRINTF("d %p e %p \n", d, buf_end);
// finish off tail
size_t s2End = ROUNDDOWN_PTR(e, S) - buf;
if (s2End == end) {
return HWLM_SUCCESS;
if (d != buf_end) {
SuperVector<S> chars = SuperVector<S>::loadu(d) & caseMask;
size_t l = buf_end - d;
typename SuperVector<S>::comparemask_type mask = SINGLE_LOAD_MASK(l * SuperVector<S>::mask_width());
typename SuperVector<S>::comparemask_type z = mask & mask1.eqmask(chars);
hwlm_error_t rv = single_zscan(n, d, buf, z, len, cbi);
RETURN_IF_TERMINATED(rv);
}
return scanSingleUnaligned(n, buf, caseMask, mask1, cbi, len, end - S, s2End, len);
return HWLM_SUCCESS;
}
template <uint16_t S>
@ -227,66 +128,84 @@ hwlm_error_t scanDoubleMain(const struct noodTable *n, const u8 *buf,
size_t len, size_t offset,
SuperVector<S> caseMask, SuperVector<S> mask1, SuperVector<S> mask2,
const struct cb_info *cbi) {
// we stop scanning for the key-fragment when the rest of the key can't
// possibly fit in the remaining buffer
size_t end = len - n->key_offset + 2;
size_t start = offset + n->msk_len - n->key_offset;
const u8 *d = buf + start;
const u8 *buf_end = buf + end;
assert(d < buf_end);
DEBUG_PRINTF("noodle %p start %zu len %zu\n", buf, start, buf_end - buf);
DEBUG_PRINTF("b %s\n", buf);
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
typename SuperVector<S>::comparemask_type lastz1{0};
const u8 *d = buf + start;
const u8 *e = buf + end;
DEBUG_PRINTF("start %p end %p \n", d, e);
assert(d < e);
if (e - d < S) {
return scanDoubleShort(n, buf, caseMask, mask1, mask2, cbi, len, d - buf, end);
}
if (d + S <= e) {
// peel off first part to cacheline boundary
const u8 *d1 = ROUNDUP_PTR(d, S) + 1;
DEBUG_PRINTF("until aligned %p \n", d1);
if (scanDoubleUnaligned(n, buf, caseMask, mask1, mask2, cbi, len, start, start, d1 - buf) == HWLM_TERMINATED) {
return HWLM_TERMINATED;
}
d = d1 - 1;
size_t loops = (end - (d - buf)) / S;
DEBUG_PRINTF("loops %ld \n", loops);
for (size_t i = 0; i < loops; i++, d+= S) {
DEBUG_PRINTF("d %p \n", d);
const u8 *base = ROUNDUP_PTR(d, 64);
// On large packet buffers, this prefetch appears to get us about 2%.
__builtin_prefetch(base + 256);
SuperVector<S> v = SuperVector<S>::load(d) & caseMask;
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(v);
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(v);
typename SuperVector<S>::comparemask_type z =
(z1 << SuperVector<S>::mask_width() | lastz1) & z2;
__builtin_prefetch(d + 16*64);
assert(d < buf_end);
if (d + S <= buf_end) {
// Reach vector aligned boundaries
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
if (!ISALIGNED_N(d, S)) {
const u8 *d1 = ROUNDUP_PTR(d, S);
size_t l = d1 - d;
SuperVector<S> chars = SuperVector<S>::loadu(d) & caseMask;
typename SuperVector<S>::comparemask_type mask = DOUBLE_LOAD_MASK(l * SuperVector<S>::mask_width());
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(chars);
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(chars);
typename SuperVector<S>::comparemask_type z = mask & (z1 << SuperVector<S>::mask_width()) & z2;
lastz1 = z1 >> (Z_SHIFT * SuperVector<S>::mask_width());
z = SuperVector<S>::iteration_mask(z);
hwlm_error_t rv = double_zscan(n, d, buf, z, len, cbi);
RETURN_IF_TERMINATED(rv);
d = d1;
}
if (loops == 0) {
d = d1;
while(d + S <= buf_end) {
__builtin_prefetch(d + 16*64);
DEBUG_PRINTF("d %p \n", d);
SuperVector<S> chars = SuperVector<S>::load(d) & caseMask;
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(chars);
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(chars);
typename SuperVector<S>::comparemask_type z = (z1 << SuperVector<S>::mask_width() | lastz1) & z2;
lastz1 = z1 >> (Z_SHIFT * SuperVector<S>::mask_width());
z = SuperVector<S>::iteration_mask(z);
hwlm_error_t rv = double_zscan(n, d, buf, z, len, cbi);
RETURN_IF_TERMINATED(rv);
d += S;
}
}
DEBUG_PRINTF("d %p e %p \n", d, buf_end);
// finish off tail
size_t s2End = ROUNDDOWN_PTR(e, S) - buf;
if (s2End == end) {
return HWLM_SUCCESS;
if (d != buf_end) {
size_t l = buf_end - d;
SuperVector<S> chars = SuperVector<S>::loadu(d) & caseMask;
typename SuperVector<S>::comparemask_type mask = DOUBLE_LOAD_MASK(l * SuperVector<S>::mask_width());
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(chars);
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(chars);
typename SuperVector<S>::comparemask_type z = mask & (z1 << SuperVector<S>::mask_width() | lastz1) & z2;
z = SuperVector<S>::iteration_mask(z);
hwlm_error_t rv = double_zscan(n, d, buf, z, len, cbi);
RETURN_IF_TERMINATED(rv);
}
return scanDoubleUnaligned(n, buf, caseMask, mask1, mask2, cbi, len, end - S, d - buf, end);
return HWLM_SUCCESS;
}
// Single-character specialisation, used when keyLen = 1
static really_inline
hwlm_error_t scanSingle(const struct noodTable *n, const u8 *buf, size_t len,
size_t start, bool noCase, const struct cb_info *cbi) {
/* if (len < VECTORSIZE) {
return scanSingleSlow(n, buf, len, start, noCase, n->key0, cbi);
}*/
if (!ourisalpha(n->key0)) {
noCase = 0; // force noCase off if we don't have an alphabetic char
}