mirror of
https://github.com/VectorCamp/vectorscan.git
synced 2025-06-28 16:41:01 +03:00
refactor Noodle to use the same loop as Shufti/Truffle, now it's at least 2x as fast
This commit is contained in:
parent
17fb9f41f6
commit
d4fde85897
@ -1,6 +1,6 @@
|
||||
/*
|
||||
* Copyright (c) 2017, Intel Corporation
|
||||
* Copyright (c) 2020-2021, VectorCamp PC
|
||||
* Copyright (c) 2020-2023, VectorCamp PC
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
@ -50,6 +50,7 @@ hwlm_error_t double_zscan(const struct noodTable *n,const u8 *d, const u8 *buf,
|
||||
Z_TYPE z, size_t len, const struct cb_info *cbi) {
|
||||
while (unlikely(z)) {
|
||||
Z_TYPE pos = JOIN(findAndClearLSB_, Z_BITS)(&z) >> Z_POSSHIFT;
|
||||
DEBUG_PRINTF("pos %u\n", pos);
|
||||
size_t matchPos = d - buf + pos - 1;
|
||||
DEBUG_PRINTF("match pos %zu\n", matchPos);
|
||||
hwlmcb_rv_t rv = final(n, buf, len, true, cbi, matchPos);
|
||||
@ -58,116 +59,6 @@ hwlm_error_t double_zscan(const struct noodTable *n,const u8 *d, const u8 *buf,
|
||||
return HWLM_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
template<uint16_t S>
|
||||
static really_inline
|
||||
hwlm_error_t scanSingleShort(const struct noodTable *n, const u8 *buf,
|
||||
SuperVector<S> caseMask, SuperVector<S> mask1,
|
||||
const struct cb_info *cbi, size_t len, size_t start,
|
||||
size_t end) {
|
||||
const u8 *d = buf + start;
|
||||
DEBUG_PRINTF("start %zu end %zu\n", start, end);
|
||||
const size_t l = end - start;
|
||||
DEBUG_PRINTF("l = %ld\n", l);
|
||||
//assert(l <= 64);
|
||||
if (!l) {
|
||||
return HWLM_SUCCESS;
|
||||
}
|
||||
|
||||
SuperVector<S> v = SuperVector<S>::Zeroes();
|
||||
memcpy(&v.u, d, l);
|
||||
|
||||
typename SuperVector<S>::comparemask_type mask =
|
||||
SINGLE_LOAD_MASK(l * SuperVector<S>::mask_width());
|
||||
v = v & caseMask;
|
||||
typename SuperVector<S>::comparemask_type z = mask & mask1.eqmask(v);
|
||||
z = SuperVector<S>::iteration_mask(z);
|
||||
|
||||
return single_zscan(n, d, buf, z, len, cbi);
|
||||
}
|
||||
|
||||
// The short scan routine. It is used both to scan data up to an
|
||||
// alignment boundary if needed and to finish off data that the aligned scan
|
||||
// function can't handle (due to small/unaligned chunk at end)
|
||||
template<uint16_t S>
|
||||
static really_inline
|
||||
hwlm_error_t scanSingleUnaligned(const struct noodTable *n, const u8 *buf,
|
||||
SuperVector<S> caseMask, SuperVector<S> mask1,
|
||||
const struct cb_info *cbi, size_t len, size_t offset,
|
||||
size_t start,
|
||||
size_t end) {
|
||||
const u8 *d = buf + offset;
|
||||
DEBUG_PRINTF("start %zu end %zu offset %zu\n", start, end, offset);
|
||||
const size_t l = end - start;
|
||||
DEBUG_PRINTF("l = %ld\n", l);
|
||||
assert(l <= 64);
|
||||
if (!l) {
|
||||
return HWLM_SUCCESS;
|
||||
}
|
||||
size_t buf_off = start - offset;
|
||||
typename SuperVector<S>::comparemask_type mask =
|
||||
SINGLE_LOAD_MASK(l * SuperVector<S>::mask_width())
|
||||
<< (buf_off * SuperVector<S>::mask_width());
|
||||
SuperVector<S> v = SuperVector<S>::loadu(d) & caseMask;
|
||||
typename SuperVector<S>::comparemask_type z = mask & mask1.eqmask(v);
|
||||
z = SuperVector<S>::iteration_mask(z);
|
||||
|
||||
return single_zscan(n, d, buf, z, len, cbi);
|
||||
}
|
||||
|
||||
template<uint16_t S>
|
||||
static really_inline
|
||||
hwlm_error_t scanDoubleShort(const struct noodTable *n, const u8 *buf,
|
||||
SuperVector<S> caseMask, SuperVector<S> mask1, SuperVector<S> mask2,
|
||||
const struct cb_info *cbi, size_t len, size_t start, size_t end) {
|
||||
const u8 *d = buf + start;
|
||||
DEBUG_PRINTF("start %zu end %zu\n", start, end);
|
||||
const size_t l = end - start;
|
||||
assert(l <= S);
|
||||
if (!l) {
|
||||
return HWLM_SUCCESS;
|
||||
}
|
||||
SuperVector<S> v = SuperVector<S>::Zeroes();
|
||||
memcpy(&v.u, d, l);
|
||||
v = v & caseMask;
|
||||
|
||||
typename SuperVector<S>::comparemask_type mask =
|
||||
DOUBLE_LOAD_MASK(l * SuperVector<S>::mask_width());
|
||||
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(v);
|
||||
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(v);
|
||||
typename SuperVector<S>::comparemask_type z =
|
||||
mask & (z1 << (SuperVector<S>::mask_width())) & z2;
|
||||
z = SuperVector<S>::iteration_mask(z);
|
||||
|
||||
return double_zscan(n, d, buf, z, len, cbi);
|
||||
}
|
||||
|
||||
template<uint16_t S>
|
||||
static really_inline
|
||||
hwlm_error_t scanDoubleUnaligned(const struct noodTable *n, const u8 *buf,
|
||||
SuperVector<S> caseMask, SuperVector<S> mask1, SuperVector<S> mask2,
|
||||
const struct cb_info *cbi, size_t len, size_t offset, size_t start, size_t end) {
|
||||
const u8 *d = buf + offset;
|
||||
DEBUG_PRINTF("start %zu end %zu offset %zu\n", start, end, offset);
|
||||
const size_t l = end - start;
|
||||
assert(l <= S);
|
||||
if (!l) {
|
||||
return HWLM_SUCCESS;
|
||||
}
|
||||
SuperVector<S> v = SuperVector<S>::loadu(d) & caseMask;
|
||||
size_t buf_off = start - offset;
|
||||
typename SuperVector<S>::comparemask_type mask =
|
||||
DOUBLE_LOAD_MASK(l * SuperVector<S>::mask_width())
|
||||
<< (buf_off * SuperVector<S>::mask_width());
|
||||
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(v);
|
||||
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(v);
|
||||
typename SuperVector<S>::comparemask_type z =
|
||||
mask & (z1 << SuperVector<S>::mask_width()) & z2;
|
||||
z = SuperVector<S>::iteration_mask(z);
|
||||
|
||||
return double_zscan(n, d, buf, z, len, cbi);
|
||||
}
|
||||
|
||||
template <uint16_t S>
|
||||
static really_inline
|
||||
hwlm_error_t scanSingleMain(const struct noodTable *n, const u8 *buf,
|
||||
@ -175,32 +66,36 @@ hwlm_error_t scanSingleMain(const struct noodTable *n, const u8 *buf,
|
||||
SuperVector<S> caseMask, SuperVector<S> mask1,
|
||||
const struct cb_info *cbi) {
|
||||
size_t start = offset + n->msk_len - 1;
|
||||
size_t end = len;
|
||||
|
||||
const u8 *d = buf + start;
|
||||
const u8 *e = buf + end;
|
||||
DEBUG_PRINTF("start %p end %p \n", d, e);
|
||||
assert(d < e);
|
||||
if (e - d < S) {
|
||||
return scanSingleShort(n, buf, caseMask, mask1, cbi, len, start, end);
|
||||
}
|
||||
if (d + S <= e) {
|
||||
// peel off first part to cacheline boundary
|
||||
const u8 *buf_end = buf + len;
|
||||
assert(d < buf_end);
|
||||
|
||||
DEBUG_PRINTF("noodle %p start %zu len %zu\n", buf, start, buf_end - buf);
|
||||
DEBUG_PRINTF("b %s\n", buf);
|
||||
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
|
||||
|
||||
__builtin_prefetch(d + 16*64);
|
||||
assert(d < buf_end);
|
||||
if (d + S <= buf_end) {
|
||||
// Reach vector aligned boundaries
|
||||
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
|
||||
if (!ISALIGNED_N(d, S)) {
|
||||
const u8 *d1 = ROUNDUP_PTR(d, S);
|
||||
DEBUG_PRINTF("until aligned %p \n", d1);
|
||||
if (scanSingleUnaligned(n, buf, caseMask, mask1, cbi, len, start, start, d1 - buf) == HWLM_TERMINATED) {
|
||||
return HWLM_TERMINATED;
|
||||
}
|
||||
DEBUG_PRINTF("d1 - d: %ld \n", d1 - d);
|
||||
size_t l = d1 - d;
|
||||
SuperVector<S> chars = SuperVector<S>::loadu(d) & caseMask;
|
||||
typename SuperVector<S>::comparemask_type mask = SINGLE_LOAD_MASK(l * SuperVector<S>::mask_width());
|
||||
typename SuperVector<S>::comparemask_type z = mask & mask1.eqmask(chars);
|
||||
|
||||
hwlm_error_t rv = single_zscan(n, d, buf, z, len, cbi);
|
||||
RETURN_IF_TERMINATED(rv);
|
||||
d = d1;
|
||||
}
|
||||
|
||||
size_t loops = (end - (d - buf)) / S;
|
||||
DEBUG_PRINTF("loops %ld \n", loops);
|
||||
|
||||
for (size_t i = 0; i < loops; i++, d+= S) {
|
||||
while(d + S <= buf_end) {
|
||||
__builtin_prefetch(d + 16*64);
|
||||
DEBUG_PRINTF("d %p \n", d);
|
||||
const u8 *base = ROUNDUP_PTR(d, 64);
|
||||
// On large packet buffers, this prefetch appears to get us about 2%.
|
||||
__builtin_prefetch(base + 256);
|
||||
|
||||
SuperVector<S> v = SuperVector<S>::load(d) & caseMask;
|
||||
typename SuperVector<S>::comparemask_type z = mask1.eqmask(v);
|
||||
@ -208,17 +103,23 @@ hwlm_error_t scanSingleMain(const struct noodTable *n, const u8 *buf,
|
||||
|
||||
hwlm_error_t rv = single_zscan(n, d, buf, z, len, cbi);
|
||||
RETURN_IF_TERMINATED(rv);
|
||||
d += S;
|
||||
}
|
||||
}
|
||||
|
||||
DEBUG_PRINTF("d %p e %p \n", d, e);
|
||||
DEBUG_PRINTF("d %p e %p \n", d, buf_end);
|
||||
// finish off tail
|
||||
size_t s2End = ROUNDDOWN_PTR(e, S) - buf;
|
||||
if (s2End == end) {
|
||||
return HWLM_SUCCESS;
|
||||
|
||||
if (d != buf_end) {
|
||||
SuperVector<S> chars = SuperVector<S>::loadu(d) & caseMask;
|
||||
size_t l = buf_end - d;
|
||||
typename SuperVector<S>::comparemask_type mask = SINGLE_LOAD_MASK(l * SuperVector<S>::mask_width());
|
||||
typename SuperVector<S>::comparemask_type z = mask & mask1.eqmask(chars);
|
||||
hwlm_error_t rv = single_zscan(n, d, buf, z, len, cbi);
|
||||
RETURN_IF_TERMINATED(rv);
|
||||
}
|
||||
|
||||
return scanSingleUnaligned(n, buf, caseMask, mask1, cbi, len, end - S, s2End, len);
|
||||
return HWLM_SUCCESS;
|
||||
}
|
||||
|
||||
template <uint16_t S>
|
||||
@ -227,66 +128,84 @@ hwlm_error_t scanDoubleMain(const struct noodTable *n, const u8 *buf,
|
||||
size_t len, size_t offset,
|
||||
SuperVector<S> caseMask, SuperVector<S> mask1, SuperVector<S> mask2,
|
||||
const struct cb_info *cbi) {
|
||||
// we stop scanning for the key-fragment when the rest of the key can't
|
||||
// possibly fit in the remaining buffer
|
||||
size_t end = len - n->key_offset + 2;
|
||||
|
||||
size_t start = offset + n->msk_len - n->key_offset;
|
||||
|
||||
const u8 *d = buf + start;
|
||||
const u8 *buf_end = buf + end;
|
||||
assert(d < buf_end);
|
||||
|
||||
DEBUG_PRINTF("noodle %p start %zu len %zu\n", buf, start, buf_end - buf);
|
||||
DEBUG_PRINTF("b %s\n", buf);
|
||||
DEBUG_PRINTF("start %p end %p \n", d, buf_end);
|
||||
|
||||
typename SuperVector<S>::comparemask_type lastz1{0};
|
||||
|
||||
const u8 *d = buf + start;
|
||||
const u8 *e = buf + end;
|
||||
DEBUG_PRINTF("start %p end %p \n", d, e);
|
||||
assert(d < e);
|
||||
if (e - d < S) {
|
||||
return scanDoubleShort(n, buf, caseMask, mask1, mask2, cbi, len, d - buf, end);
|
||||
}
|
||||
if (d + S <= e) {
|
||||
// peel off first part to cacheline boundary
|
||||
const u8 *d1 = ROUNDUP_PTR(d, S) + 1;
|
||||
DEBUG_PRINTF("until aligned %p \n", d1);
|
||||
if (scanDoubleUnaligned(n, buf, caseMask, mask1, mask2, cbi, len, start, start, d1 - buf) == HWLM_TERMINATED) {
|
||||
return HWLM_TERMINATED;
|
||||
}
|
||||
d = d1 - 1;
|
||||
|
||||
size_t loops = (end - (d - buf)) / S;
|
||||
DEBUG_PRINTF("loops %ld \n", loops);
|
||||
|
||||
for (size_t i = 0; i < loops; i++, d+= S) {
|
||||
DEBUG_PRINTF("d %p \n", d);
|
||||
const u8 *base = ROUNDUP_PTR(d, 64);
|
||||
// On large packet buffers, this prefetch appears to get us about 2%.
|
||||
__builtin_prefetch(base + 256);
|
||||
|
||||
SuperVector<S> v = SuperVector<S>::load(d) & caseMask;
|
||||
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(v);
|
||||
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(v);
|
||||
typename SuperVector<S>::comparemask_type z =
|
||||
(z1 << SuperVector<S>::mask_width() | lastz1) & z2;
|
||||
__builtin_prefetch(d + 16*64);
|
||||
assert(d < buf_end);
|
||||
if (d + S <= buf_end) {
|
||||
// Reach vector aligned boundaries
|
||||
DEBUG_PRINTF("until aligned %p \n", ROUNDUP_PTR(d, S));
|
||||
if (!ISALIGNED_N(d, S)) {
|
||||
const u8 *d1 = ROUNDUP_PTR(d, S);
|
||||
size_t l = d1 - d;
|
||||
SuperVector<S> chars = SuperVector<S>::loadu(d) & caseMask;
|
||||
typename SuperVector<S>::comparemask_type mask = DOUBLE_LOAD_MASK(l * SuperVector<S>::mask_width());
|
||||
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(chars);
|
||||
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(chars);
|
||||
typename SuperVector<S>::comparemask_type z = mask & (z1 << SuperVector<S>::mask_width()) & z2;
|
||||
lastz1 = z1 >> (Z_SHIFT * SuperVector<S>::mask_width());
|
||||
z = SuperVector<S>::iteration_mask(z);
|
||||
|
||||
hwlm_error_t rv = double_zscan(n, d, buf, z, len, cbi);
|
||||
RETURN_IF_TERMINATED(rv);
|
||||
}
|
||||
if (loops == 0) {
|
||||
d = d1;
|
||||
}
|
||||
|
||||
while(d + S <= buf_end) {
|
||||
__builtin_prefetch(d + 16*64);
|
||||
DEBUG_PRINTF("d %p \n", d);
|
||||
|
||||
SuperVector<S> chars = SuperVector<S>::load(d) & caseMask;
|
||||
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(chars);
|
||||
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(chars);
|
||||
typename SuperVector<S>::comparemask_type z = (z1 << SuperVector<S>::mask_width() | lastz1) & z2;
|
||||
lastz1 = z1 >> (Z_SHIFT * SuperVector<S>::mask_width());
|
||||
z = SuperVector<S>::iteration_mask(z);
|
||||
|
||||
hwlm_error_t rv = double_zscan(n, d, buf, z, len, cbi);
|
||||
RETURN_IF_TERMINATED(rv);
|
||||
d += S;
|
||||
}
|
||||
}
|
||||
|
||||
DEBUG_PRINTF("d %p e %p \n", d, buf_end);
|
||||
// finish off tail
|
||||
size_t s2End = ROUNDDOWN_PTR(e, S) - buf;
|
||||
if (s2End == end) {
|
||||
return HWLM_SUCCESS;
|
||||
|
||||
if (d != buf_end) {
|
||||
size_t l = buf_end - d;
|
||||
SuperVector<S> chars = SuperVector<S>::loadu(d) & caseMask;
|
||||
typename SuperVector<S>::comparemask_type mask = DOUBLE_LOAD_MASK(l * SuperVector<S>::mask_width());
|
||||
typename SuperVector<S>::comparemask_type z1 = mask1.eqmask(chars);
|
||||
typename SuperVector<S>::comparemask_type z2 = mask2.eqmask(chars);
|
||||
typename SuperVector<S>::comparemask_type z = mask & (z1 << SuperVector<S>::mask_width() | lastz1) & z2;
|
||||
z = SuperVector<S>::iteration_mask(z);
|
||||
|
||||
hwlm_error_t rv = double_zscan(n, d, buf, z, len, cbi);
|
||||
RETURN_IF_TERMINATED(rv);
|
||||
}
|
||||
return scanDoubleUnaligned(n, buf, caseMask, mask1, mask2, cbi, len, end - S, d - buf, end);
|
||||
|
||||
return HWLM_SUCCESS;
|
||||
}
|
||||
|
||||
// Single-character specialisation, used when keyLen = 1
|
||||
static really_inline
|
||||
hwlm_error_t scanSingle(const struct noodTable *n, const u8 *buf, size_t len,
|
||||
size_t start, bool noCase, const struct cb_info *cbi) {
|
||||
/* if (len < VECTORSIZE) {
|
||||
return scanSingleSlow(n, buf, len, start, noCase, n->key0, cbi);
|
||||
}*/
|
||||
|
||||
if (!ourisalpha(n->key0)) {
|
||||
noCase = 0; // force noCase off if we don't have an alphabetic char
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user